MATH 105 SOLUTION KEYS: HW \#23

STEVEN J MILLER (SJM1 @ WILLIAMS.EDU)

Homework 23

Question: Consider the surface

$$
(x / a)^{2}+(y / b)^{2} \leq 1
$$

Find a change of variables to map this to a nice region, and then use that to find the area of the ellipse.

Solution: We let

$$
u=\frac{x}{a}, \quad v=\frac{y}{b}
$$

so the ellipse becomes the unit disk:

$$
u^{2}+v^{2} \leq 1
$$

We write down the change of variables explicitly:

$$
T(x, y)=(u(x, y), v(x, y))=\left(\frac{x}{a}, \frac{y}{b}\right)
$$

or

$$
T^{-1}(u, v)=(x(u, v), y(u, v))=(a u, b v) .
$$

The derivative is

$$
\left(D T^{-1}\right)(u, v)=\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right),
$$

and so the absolute value of the determinant of the derivative is

$$
\left|\operatorname{det}\left(\left(D T^{-1}\right)(u, v)\right)\right|=a b
$$

(we'll assume a and b are positive). In other words, we have

$$
d x d y \quad \longrightarrow \quad a b d u d v
$$

By the change of variable formula, if we let E be the ellipse $(x / a)^{2}+$ $(y / b)^{2} \leq 1$ and $T(E)$ what the ellipse is mapped to, then $T(E)$ is just the unit disk D and

$$
\iint_{E} 1 d x d y=\iint_{T(E)} 1 a b d u d v
$$

Date: April 29, 2010.

As $T(E)$ is the unit disk, we find

$$
\iint_{E} 1 d x d y=a b \iint_{D} 1 d u d v
$$

Note that the integral of 1 over any region is just the area of that region, and thus the above becomes

$$
\operatorname{Area}(E)=a b \operatorname{Area}(D)
$$

We now see why this change of variables is so useful - it converts the integral for the ellipse's area to that of the unit disk, and we know that! The unit disk has area $\pi 1^{2}=\pi$, as we thus finally obtain

$$
\operatorname{Area}(E)=\pi a b
$$

Note how miraculous this formula is - from knowing the circle's area we quickly get the area of an ellipse! This leads to the natural question: what is the volume of the ellipsoid $(x / a)^{2}+(y / b)^{2}+(z / c)^{2} \leq 1$?

