MATH 105: PRACTICE PROBLEMS FOR CHAPTER 1 AND CALCULUS REVIEW: SPRING 2010

INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU)

Question 1: These problems deal with equations of lines.

- (1) Find the equation of the line going through the points (2,3) and (4,9).
- (2) Find the equation of the line going through the points (2,3) and (-1,2).
- (3) Find the equation of the line going through the point (2,3) with slope 3.
- (4) Find the equation of the line going through the points (2,3,4) and (4,9,16).
- (5) Find the equation of the line going through the point (2,3,4) in the direction (2,6,12).
- (6) Is the point (4,19,26) on the line going through the point (2,3,4) in the direction (2,6,12)?
- (7) Consider the lines in part (1) and part (2). Find all points on both lines.

Question 2: These equations deal with vectors. For all problems below, let $\overrightarrow{P} = (1, 2, 3)$, $\overrightarrow{Q} = (4, 9, 6)$, $\overrightarrow{R} = (3, 3, 3)$, $\overrightarrow{v} = (3, 7, 3)$ and $\overrightarrow{w} = (2, 1, 0)$.

- (1) Find $\overrightarrow{P} + \overrightarrow{R}$, $4\overrightarrow{P} 3\overrightarrow{Q} + 2\overrightarrow{R}$, $(\overrightarrow{P} + 2\overrightarrow{Q}) \cdot \overrightarrow{R}$, and $(\overrightarrow{P} \times \overrightarrow{Q}) \times \overrightarrow{R}$.
- (2) Find the plane containing \overrightarrow{P} with two directions \overrightarrow{v} and \overrightarrow{w} .
- (3) Find the equation of the plane containing the vectors \overrightarrow{P} , \overrightarrow{Q} and \overrightarrow{R} .
- (4) Find the equation of the plane containing the point \overrightarrow{P} whose normal is in the direction (-3, 6, -11).
- (5) Find the equation of the plane containing \overrightarrow{Q} with two directions \overrightarrow{v} and \overrightarrow{w} .
- (6) Find the area of the parallelogram, two of whose sides are \overrightarrow{v} and \overrightarrow{w} .
- (7) Find the cosine of the angle between \overrightarrow{v} and \overrightarrow{w} .

Date: February 12, 2010.

- 2
- (8) Find the length of \overrightarrow{v} , and find a vector of unit length in the same direction as \overrightarrow{v} .
- (9) Find a vector perpendicular to both \overrightarrow{v} and \overrightarrow{w} .
- (10) Find a vector perpendicular to \overrightarrow{v} .

Question 3: State the following results.

- (1) The Pythagorean Formula.
- (2) The Law of Cosines.
- (3) The formula for the cosine of the angle between two vectors \overrightarrow{P} and \overrightarrow{Q} .
- (4) The formulas for the determinant of a 2×2 matrix A and a 3×3 matrix B, where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$$

- (5) Give a reason why we care about determinants.
- (6) Give the formula for the cross product of two vectors; specifically, what is the cross product $\overrightarrow{v} \times \overrightarrow{w}$, where $\overrightarrow{v} = (v_1, v_2, v_3)$ and $\overrightarrow{w} = (w_1, w_2, w_3)$. Give three properties of the cross product.
- (7) Give the formula for the inner (or dot) product of two vectors; specifically, what is $\overrightarrow{v} \cdot \overrightarrow{w}$ where $\overrightarrow{v} = (v_1, \dots, v_n)$ and $\overrightarrow{w} = (w_1, \dots, w_n)$. Give three properties of the inner product.
- (8) Explain what the phrase right hand screw rule means, and why it is useful.
- (9) Prove the triple product formula; specifically, if $\overrightarrow{A} = (a_1, a_2, a_3)$, $\overrightarrow{B} = (b_1, b_2, b_3)$ and $\overrightarrow{C} = (c_1, c_2, c_3)$ then

$$(\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{C} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Question 4: (Calculus Review) Find the maximum and minimum values for $f(x) = \frac{1}{3}x^3 - 9x^2 + 80x + 1$ when $-20 \le x \le 40$. Use the first and second derivative tests to classify the local maximum and minimums, and sketch the curve.

Question 5: (Calculus Review) Consider all rectangles with perimeter 100. Find the rectangle with largest area.

Question 6: State the fundamental theorem of calculus (FTC). (1) Use the FTC to calculate the area under the curve $f(x) = x^2 + 2x + 1$ from x = 1 to x = 4; (2) use the FTC to calculate the area under the curve of $f(x) = \sin(x)$ from x = 0 to $x = \pi/2$. Note we may denote these areas by $\int_1^4 (x^2 + 2x + 1) dx$ and $\int_0^{\pi/2} \sin(x) dx$.

Question 7: Find *all* the anti-derivatives of the following: (1) x^4 ; (2) $x^4 + 3x^5$; (3) $(x+6)^8$; (4) $(x^3 + 4x^2 + 1)^7 \cdot (3x^2 + 8x)$; (5) $\sin(x) - \cos(x) + e^x$.

Question 8 : State L'Hopital's rule. Determine

$$\lim_{x \to 0} \frac{\sin(x)}{x}, \quad \lim_{x \to 0} \frac{\sin(x)\cos(x) - x}{x^2}, \quad \lim_{x \to 2} \frac{x^2 - 4}{(x - 2)\sin(x)}.$$