
MATH 105: PRACTICE PROBLEMS FOR CHAPTER 6 AND
SEQUENCES AND SERIES: SPRING 2010

INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU)

Question 1 : State the change of variable theorem in the plane. How does the element
dxdy transform in polar coordinates? How does dxdydz transform in cylindrical and spherical
coordinates? Let D be the disk of radius 3 centered at the origin. Evaluate the integral of
f(x, y) = x2 + y3.
Solution: Change of Variables Theorem: Let S be an elementary region in the xy-
plane (such as a disk or parallelogram for example). Let T : ℝ2 → ℝ2 be an invertible and
differentiable mapping, and let T (S) be the image of S under T . Then∫ ∫

S

1 ⋅ dxdy =

∫ ∫
T (S)

1 ⋅
∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂y

∣∣∣∣ dudv,
or more generally∫ ∫

S

f(x, y) ⋅ dxdy =

∫ ∫
T (S)

f
(
T−1(u, v)

)
⋅
∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂y

∣∣∣∣ dudv.
The volume elements transform as: Polar:

dxdy = rdrd�,

Cylindrical:

dxdydz = rdrd�dz

and in Spherical we have

dxdydz = �2 sin�d�d�d�.

In Cartesian coordinates the integral is∫ ∫
D

f(x, y)dydx =

∫ 3

x=−3

∫ √9−x2
y=−

√
9−x2

(x2 + y3)dydx.

As we are integrating over a disk, it is natural to convert to polar coordinates. Before doing
so, however, it is worth noting that the y3 piece integrates to zero. The easiest way to see this
is that this is an odd function over a region that is symmetric. More formally, the integral
of y3dy becomes y4/4, and evaluating at the boundary points gives zero. Thus it suffices to
integrate x over the region. This analysis is extremely common and important – often one
can greatly simplify the computations to be done by a little inspection in the beginning.

We are now left with ∫ 3

x=−3

∫ √9−x2
y=−

√
9−x2

x2dydx.
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If we integrate as written, we would have∫ 3

x=−3
2x2
√

9− x2,

and while doable this is not a function whose integral we remember. If we shift to polar
coordinates we have this integral equals∫ 1

r=0

∫ 2�

�=0

∫ 1

r=0

r2 cos2(�) ⋅ rdrd�.

While the r-integral is relatively straightforward, we need the anti-derivative of cos2(�) (or
more precisely, we need to know the definite integral of this from 0 to 2�). The following
trick simplifies our life. By symmetry, integrating x2 over the disk of radius 3 gives the same
contribution as integrating the function y2. Thus integrating x2 gives the same answer as

integrating x2+y2

2
, and this is very nice in polar coordinates, being just r2/2. We thus have∫ ∫

D

f(x, y)dydx =

∫ ∫
D

(x2 + y3)dydx

=

∫ ∫
D

x2dydx

=

∫ ∫
D

x2 + y2

2
dydx

=

∫ 2�

�=0

∫ 3

r=0

r2

2
⋅ rdrd�

=

∫ 2�

�=0

[∫ 3

r=0

r3

2
dr

]
d�

=

∫ 2�

�=0

r4

8

∣∣∣∣∣
3

0

d�

=

∫ 2�

�=0

1

8
d� =

2�

8
=

�

4
.

We urge the reader to try and do the polar integrations directly. The following trig identity
may be useful:

cos(2�) = cos(�) cos(�)− sin(�) sin(�) = 2 cos2(�)− 1,

or

cos2(�) =
cos(2�) + 1

2
.

Question 2 : Integrate the function z over the unit ball (i.e., all points (x, y, z) with
x2 + y2 + z2 ≤ 1).
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Solution: In Cartesian coordinates we have∫ ∫ ∫
S

zdzdydx =

∫ 1

x=−1

∫ √1−x2
y=−

√
1−x2

∫ √1−x2−y2

z=−
√

1−x2−y2
zdzdydx

=

∫ 1

x=−1

∫ √1−x2
y=−

√
1−x2

[∫ √1−x2−y2

z=−
√

1−x2−y2
z

]
dzdydx

=

∫ 1

x=−1

∫ √1−x2
y=−

√
1−x2

z2

2

∣∣∣∣∣
−
√

1−x2−y2

√
1−x2−y2

= 0.

To practice using spherical coordinates, we give that solution as well. We have∫ ∫ ∫
S

zdzdydx =

∫ �

�=0

∫ 2�

�=0

∫ 1

�=0

� cos� ⋅ �2 sin�d�d�d�,

where we used z = � cos�. The �-integral is just 2� and the �-integral is just 1/4. Here we are
using Fubini’s theorem to do these integrals first. We can as our function is continuous and,
in spherical coordinates, the sphere becomes a box, and thus it is easy to justify interchanging
orders. We have ∫ ∫ ∫

S

zdzdydx = 2� ⋅ 1

4

∫ �

�=0

cos� ⋅ sin�d�

=
�

2

[
− cos2 �

∣∣∣∣∣
�

0

]
= 0.

We could also argue by symmetry that the integral of z over the unit ball (or sphere)
vanishes, as it is an odd function and we’re integrating over a symmetric region with respect
to its oddness.

Note by symmetry the integrals of x or y over the unit sphere also vanishes, though the
angular integrals would be a bit more involved, they won’t be too bad.

Question 3 : Compute the limits of the following sequences, or prove they do not exist:

(1) an = n2+3
n3+2

; (2) bn = cos(n2)
n

; (3) cn = n2+3
n!

.
Solution: We may use L’Hopital’s rule for (1), as the limit is infinity over infinity (and thus
we cannot use the limit of a quotient is the quotient of a limit). We have

lim
n→∞

an = lim
n→∞

2n

3n2
= lim

n→∞

2

6n
.

At this point we no longer have infinity over infinity, and we can evaluate it immediately and
find it equals zero.

For (2), note −1 ≤ cos(n2) ≤ 1, so as the numerator is bounded by 1 and the denominator
tends to infinity, the sequence clearly tends to 0.

For (3), we can use the comparison test. Note n2 + 3 ≤ 3n2 for n large. Further, n! > 6n3

for n large, which gives ∣cn∣ ≤ 3/6n, and thus this sequence too converges to zero.
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Question 4 : State whether or not the following converge, justifying your reasons: (1)∑∞
n=0

2n

3n
; (2)

∑∞
n=0

n!
n!2

; (3)
∑∞

n=0
n!

(2n)!
; (4)

∑∞
n=0

2n

en2 .

Solution: For (1), note this is the same as
∑∞

n=0(2/3)n. This is just a geometric series with
ratio of r = 2/3; as ∣r∣ < 1, the series converges.

For (2), the denominator is n!⋅n!. We may cancel one of the n! and find we have
∑∞

n=0 1/n!.
This is just e, as

ex =
∞∑
n=0

xn

n!
.

We could also see that it converges by using the ratio test.
For (3), note 0 ≤ n!/(2n)! ≤ 1/n!, and thus by the comparison test the series converges.

Why is this true? There are 2n terms in (2n)!, and we thus have

n!

(2n)!
=

n!

(2n) ⋅ (2n− 1) ⋅ ⋅ ⋅ (n+ 1) ⋅ n!
=

1

(2n) ⋅ (2n− 1) ⋅ ⋅ ⋅ (n+ 1)
.

There are thus n terms in the denominator here, and since 2n > n, 2n−1 > n−1, 2n−2 > n−2
and so on down to n+ 1 > 1, we have (2n) ⋅ (2n− 1) ⋅ ⋅ ⋅ (n+ 1) > n ⋅ (n− 1) ⋅ ⋅ ⋅ 1, or

n!

(2n)!
=

1

(2n) ⋅ (2n− 1) ⋅ ⋅ ⋅ (n+ 1)
≤ 1

n!
.

If we use the ratio test we find

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!/(2n+ 2)!

n!/(2n)!
= lim

n→∞

(n+ 1)!(2n)!

n!(2n+ 2)!
= lim

n→∞

n+ 1

(2n+ 2)(2n+ 1)
= 0;

thus the series converges.
Finally, for (4) we use the integral test. For n large the terms are decreasing, and the series

converges / diverges depending on whether or not the integral∫ ∞
1

2x

ex2
dx

converges or diverges. The integral equals∫ ∞
1

e−x
2

2xdx = −e−x2
∣∣∣∣∣
∞

0

= 0− (−1) = 1

which is finite, implying the series converges.


