NAME:

Section:

Answer to Question 1:

Answer to Question 2:

Answer to Question 3:

Math 105: Quiz 1: Due Wednesday, February 8

Remember, just hand in the answers.

Instructions: The quiz is due by the start of class on Wednesday, and should be handed in on a separate sheet of paper than the HW. Make sure you include your name, section (section 1 or 2, or you can write 9am or 10am). Remember, the quizzes only count if at the end of the semester it helps your average. I will drop your lowest quiz grade. You are on the honor system to work on the quiz by yourself, without consulting any material (ie, it is a closed book quiz). There is no partial credit for quizzes; the answer is either right or wrong. As such, please only hand in your answers (if you hand in your work, please box your answer). I will provide solution keys to each quiz; if afterwards you are not sure if your logic was correct, I and the TAs are of course happy to look at your quiz in greater detail.

Question 1: Give the equation for the line going through the points (1,2,3) and (3,2,1).

Question 2: Give the equation for the line going through the points (1,2,3) and (2,4,6).

Question 3: Let v be a unit vector in the direction of the line in Question 1, and let w be a unit vector in the direction of the line in Question 2. Find the cosine of the angle between v and w.

No time limit for / The first quiz MATH 105: QUZ 1:

#1) Find eq of (ine Am going Through $\vec{p} = (1,2,3)$ and $\vec{Q} = (3,2,1)$

SOLN:

Direction of (ine is $\vec{Q} - \vec{p} = (3, 2, 1) - (1, 2, 3)$ = (2, 0, -2)

Eq of (ine golf going Through point \vec{P} and in direction \vec{v} is $(x,y,z) = \vec{P} + t\vec{v}$

This have (X, Y, t) = (1, 2, 3) + t (2, 0, -2)

or (X,Y,Z) = (1+2t, z, 3-2t)

Ans! (X, Y, Z) = (1+2t, Z, 3-2t)

MATH 105: QUIZ 7

#2) Find eg of (ine going Phrough (1,2,3) and(2,4,8)

Solz: Direction (s: Q= (2,4,6)

P = (1, 2,3)

50 der 15 Q-P = (2,4,6) -(1,2,3)

w = (1, 2, 3)

Eq of line is

(X, Y, Z) = P + 5 W

=(1,2,3) + S(1,2,3)

= 1+5, 2+25, 3+35

Ans: (X, Y, Z) = (1+8, 2+28, 3+35)

MATH 105: QUIZ 1

#3) I unit vector in direction of (2,0,-2)
and w unito vector in direction of (1,2,3),
find (Osine of angle between Men.

Sound: $\vec{A} = (2,0,-2)$ so $||\vec{A}|| = \int z^2 + o^2 + (-z)^2 = \int 8 = 2Jz$ $\vec{B} = (1,2,3)$ so $||\vec{B}|| = \int |z^2 + z^2 + 3z^2 = Jy$ Thus $\vec{V} = \frac{\vec{A}}{zJz} = 9(z^2,0,z^2) = (\frac{1}{5z},0,-\frac{1}{5z})$ $\vec{\omega} = \frac{\vec{B}}{Jy} = (\frac{1}{Jy},\frac{z}{Jy},\frac{3}{Jy})$ Now $\vec{U} \cdot \vec{\omega} = ||\vec{\omega}|| ||\vec{\omega}|| \cos \theta = 0 \cos \theta = \vec{U} \cdot \vec{\omega}||\vec{\omega}|| \sin \theta$ As $\vec{U} \cdot \vec{\omega} = ||\vec{z}|| ||\vec{z}|| + 0 \cdot ||\vec{z}|| - ||\vec{z}|| ||\vec{z}|| = ||\vec{z}|| - ||\vec{z}|| = |$

Solv 2: Key Point: ANGLE Blw Dank in Same as \vec{A} and \vec{B} $\|\vec{A}\| \cdot \|\vec{B}\| \cos \phi = \vec{A} \cdot \vec{B} \implies \cos \phi = \frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\| \|\vec{B}\|}$ As $\vec{A} \cdot \vec{B} = 2 \cdot 1 + 0 \cdot 2 - 2 \cdot 3 = -4$ Thus $\cos \phi = \frac{-4}{252 \cdot 579} = \frac{-4}{55} = -\frac{55}{7}$ $-3 \qquad \text{Answer: } -57/7$