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1. INTRODUCTION TOITERATED PARTIALS

Typically in mathematics, order does tend to matter. It widae great if this were not the case, as then
we would not have to be careful in how we evaluate expressiéns example, in a perfect world we

would have:

flg(@)) = g(f(2))
This would hold for any two functions of andg. Thus, we would not need to worry about the order
in which we evaluate the composition. As is readily seen femme quick searches, this fails for most
choices off andg. For example, in a slight abuse of notation, the squareabatsum is not the sum of

the square-roots:
VTP AV P
To assume that the sum of a square root will always equal tmg@onents of the square root is false, even
though it may hold for some special valuesiadindy. Similarly, cos(z?) is typically notcos?(x).
Fortunately, there are many instances where order does atténnOne of the most important is in
iterated partial derivatives. We will see later that if teeasnd order derivatives gfare continuous, then

o (of\ 0 (0f
7 (5e) = ()

In other words, we obtain the same answer if we first diffeeg@twvith respect ta and then with respect
to y as we would if we first differentiate with respectii@nd then with respect te.
Before stating the general result, let’s look at an examptsider the function
f(x,y) = cos(zy?).
If we take the derivatives with respectitandy we find these are the partial derivatives.

of o 2
5 — Y —sin(ey’)
of _ Lo

o 2y sin(zy”)

If we take this even further, and we talk the partials:@ndy again with respect to the partial derivatives
we have already computed, we get another set of four pagdralatives.

82f o 0 8f o 4 2
02 ox (%) =~y cos(ay’)
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2
>’f — aﬁ <8_f) = —2y sin(my2) — 2zy° COS(W/?)
Y

Oyox ox
0? o (0
8x§y =5 <8_£) = —2ysin(xy?) — 2zy° cos(zy?)
Note that% = %. For this function, the order of differentiation does nottrea we may first

differentiate with respect to and then with respect tg, or first with respect tgy and then with respect
to x.

2. EQUALITY OF MIXED PARTIALS

Definition 2.1. We say f isC? (or of class C?) if all partial derivatives up to the second order exist and
are continuous.

Theorem 2.2(Equality of Mixed Partials) If f isC?, then
*f 0*f
oydxr  0xdy’

The Law of Equality of Mixed Partials holds for any functiohatassC?; however, if f is notC? then
its conclusions need not hold, as the following example sh@wnsider

oo ] T @) £ (0,0)
I/ )_{0 (x,y) = (0,0).

Calculating the mixed partials, we find
0*f 0% f
0x0y Oyox
To see that these are the answers, one must return to thetidefioi the derivative for the values at
(0,0), though we may differentiate directly away froft, 0). We leave it to the reader to compute the

partial derivatives and see that they are not continuousftaus this does not violate the theorem as the
conditions are not satisfied.

(0,0) =1 (0,0) = —1.

3. PROOF OF THETHEOREM OFEQUALITY OF MIXED PARTIALS

Proof of Theorem 2.2. Suppose we have a 2 dimensional square on the x,y coordilzate. pT he upper
left corner of the rectangle’s coordinates &g, v, + Ay), the upper right corner of the rectangle’s
coordinates aréry + Az, yo + Ay), the lower left corner has coordinates), y,) while the lower right
corner is(zg + Ax, yo). See Figure 1 for a picture. We consider the following fumcti

S(Ax, Ay) = f(xo + Az, yo + Ay) — f(zo + Az, y0) — f(20, yo + Ay) + (20, v0);

note we are evaluating our functighat the four corners of the rectangle, taking it with posisigns at
the upper right and lower left and with minus signs at the iottve corners. The goal is to compute

i OBz, Ay)
Az, Ay—0 AIIZ’Ay

. ) . . 82f . . 82f . .
two different ways; one way will givers, and the other will givey ;- This will prove the theorem
because if the two mixed partials are equal to the same lil@y, must be equal to each other. We first
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FIGURE 1. This is the figure that was made in reference to the prodi@Bquality of
Mixed Partials. As we can see, we have a visualization of thietp of the square, and
knowledge of each point that denotes either a negative osiéiymvalue.

analyze the quotierfi(Az, Ay)/AxzAy and see that in the limit it equa%%. To do so we introduce the
function

g9(x) = f(2,90 + Ay) — f(z,90),
and we notice that

S(Azx, Ay) = g(x + Azx) — g(x).
Using the Mean Value Theorépwe have
Jg

oo+ Ax) - gla) = 52

(T)Az

for somez € (zg, xo + Ax), which implies

_ 99
- Ox
As g is the difference off evaluated at two points, we have fore (zg, 2o + Ax)

dg , . af . of .
S(ar, ) = P@ar = | @ g+ ag) - e )| an

S(Az, Ay) = g(x + Az) — g(x) (2)Ax

We apply the Mean Value Theorem to the funct%n noting that thec-coordinate is the same and the
y-coordinate is varying. Thus in using the Mean Value Theol@nour expression above, the derivative
of g—ﬁ that enters is the derivative with respectt@as the first coordinate is fixed, we are just applying

'Recall the Mean Value Theorem says the followingh (i) is a differentiable function, the (bg:Z(“) = h/(c) for some
cin [a, b].
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the one-dimensional Mean Value Theorer‘r%:go viewing it as only a function of the second coordinate,
y). We find for somej € [y, yo + Ay] that

af . af . 0Pf
s(az, ) = | 2 (zyo+ dy) - L @0)| 20 = Tz pacay.
Ox Ox Oyox
Dividing by AxzAy yields
Pf . . S(Ar,Ay)
(2,9 = —— -
Jyox AzxAy

We now take the limit ad\z, Ay — 0. We finally use our assumption thatis of classC? (we should
have to use this somewhere!). We have
0 f

- . S5(Az, Ay)
Ax,lArgr/l—m Oyox (7,5) 1 )

= 11m
Az, Ay—0 A.I‘Ay

By our continuity assumption, the left hand side is jg%%f; (20, Y0), because — = andy — y. We have

thus shown that
*f S(Ax, Ay)

8y8x<x0’y0) B A:EPAIE—)O AxAy

As S(Az, Ay) is symmetric, similar calculations shown above is agﬁgg}y(xo, Yo), thus completing the
proof. 0




