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1. INTRODUCTION TO ITERATED PARTIALS

Typically in mathematics, order does tend to matter. It would be great if this were not the case, as then
we would not have to be careful in how we evaluate expressions. For example, in a perfect world we
would have:

f(g(x)) = g(f(x))

This would hold for any two functions off andg. Thus, we would not need to worry about the order
in which we evaluate the composition. As is readily seen fromsome quick searches, this fails for most
choices off andg. For example, in a slight abuse of notation, the square-rootof a sum is not the sum of
the square-roots:

√

x2 + y2 ∕=
√
x2 +

√

y2

To assume that the sum of a square root will always equal the components of the square root is false, even
though it may hold for some special values ofx andy. Similarly, cos(x2) is typically notcos2(x).

Fortunately, there are many instances where order does not matter. One of the most important is in
iterated partial derivatives. We will see later that if the second order derivatives off are continuous, then

∂

∂y

(

∂f

∂x

)

=
∂

∂x

(

∂f

∂y

)

In other words, we obtain the same answer if we first differentiate with respect tox and then with respect
to y as we would if we first differentiate with respect toy and then with respect tox.

Before stating the general result, let’s look at an example.Consider the function

f(x, y) = cos(xy2).

If we take the derivatives with respect tox andy we find these are the partial derivatives.

∂f

∂x
= −y2 − sin(xy2)

∂f

∂y
= −2xy sin(xy2)

If we take this even further, and we talk the partials ofx andy again with respect to the partial derivatives
we have already computed, we get another set of four partial derivatives.

∂2f

∂x2
=

∂

∂x

(

∂f

∂x

)

= −y4 cos(xy2)

∂2f

∂y2
=

∂

∂y

(

∂f

∂y

)

= −2x sin(xy2)− 2xy2 cos(xy2)
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∂2f

∂y∂x
=

∂

∂y

(

∂f

∂x

)

= −2y sin(xy2)− 2xy3 cos(xy2)

∂2f

∂x∂y
=

∂

∂x

(

∂f

∂y

)

= −2y sin(xy2)− 2xy3 cos(xy2)

Note that ∂2f

∂y∂x
= ∂2f

∂x∂y
. For this function, the order of differentiation does not matter: we may first

differentiate with respect tox and then with respect toy, or first with respect toy and then with respect
to x.

2. EQUALITY OF M IXED PARTIALS

Definition 2.1. We say f is C2 (or of class C2) if all partial derivatives up to the second order exist and
are continuous.

Theorem 2.2(Equality of Mixed Partials). If f is C2, then

∂2f

∂y∂x
=

∂2f

∂x∂y
.

The Law of Equality of Mixed Partials holds for any function of classC2; however, iff is notC2 then
its conclusions need not hold, as the following example shows. Consider

f(x) =

{

xy(x2
−y2)

x2+y2
: (x, y) ∕= (0, 0)

0 : (x, y) = (0, 0).

Calculating the mixed partials, we find

∂2f

∂x∂y
(0, 0) = 1

∂2f

∂y∂x
(0, 0) = −1.

To see that these are the answers, one must return to the definition of the derivative for the values at
(0, 0), though we may differentiate directly away from(0, 0). We leave it to the reader to compute the
partial derivatives and see that they are not continuous, and thus this does not violate the theorem as the
conditions are not satisfied.

3. PROOF OF THETHEOREM OFEQUALITY OF M IXED PARTIALS

Proof of Theorem 2.2. Suppose we have a 2 dimensional square on the x,y coordinate plane. The upper
left corner of the rectangle’s coordinates are(x0, y0 + Δy), the upper right corner of the rectangle’s
coordinates are(x0 + Δx, y0 + Δy), the lower left corner has coordinates(x0, y0) while the lower right
corner is(x0 +Δx, y0). See Figure 1 for a picture. We consider the following function

S(Δx,Δy) = f(x0 +Δx, y0 +Δy)− f(x0 +Δx, y0)− f(x0, y0 +Δy) + f(x0, y0);

note we are evaluating our functionf at the four corners of the rectangle, taking it with positivesigns at
the upper right and lower left and with minus signs at the other two corners. The goal is to compute

lim
Δx,Δy→0

S(Δx,Δy)

ΔxΔy

two different ways; one way will give∂
2f

∂x∂y
and the other will give∂2f

∂y∂x
. This will prove the theorem

because if the two mixed partials are equal to the same limit,they must be equal to each other. We first
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FIGURE 1. This is the figure that was made in reference to the proof of the Equality of
Mixed Partials. As we can see, we have a visualization of the points of the square, and
knowledge of each point that denotes either a negative or a positive value.

analyze the quotientS(Δx,Δy)/ΔxΔy and see that in the limit it equals∂
2f

∂y∂x
. To do so we introduce the

function

g(x) = f(x, y0 +Δy)− f(x, y0),

and we notice that

S(Δx,Δy) = g(x+Δx)− g(x).

Using the Mean Value Theorem1, we have

g(x+Δx)− g(x) =
∂g

∂x
(x̃)Δx

for somex̃ ∈ (x0, x0 +Δx), which implies

S(Δx,Δy) = g(x+Δx)− g(x) =
∂g

∂x
(x̃)Δx .

As g is the difference off evaluated at two points, we have forx̃ ∈ (x0, x0 +Δx)

S(Δx,Δy) =
∂g

∂x
(x̃)Δx =

[

∂f

∂x
(x̃, y0 +Δy)− ∂f

∂x
(x̃, y0)

]

Δx.

We apply the Mean Value Theorem to the function∂f

∂x
, noting that thex-coordinate is the same and the

y-coordinate is varying. Thus in using the Mean Value Theoremfor our expression above, the derivative
of ∂f

∂x
that enters is the derivative with respect toy (as the first coordinate is fixed, we are just applying

1Recall the Mean Value Theorem says the following: ifℎ(x) is a differentiable function, thenℎ(b)−ℎ(a)
b−a

= ℎ′(c) for some
c in [a, b].
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the one-dimensional Mean Value Theorem to∂f

∂x
, viewing it as only a function of the second coordinate,

y). We find for somẽy ∈ [y0, y0 +Δy] that

S(Δx,Δy) =

[

∂f

∂x
(x̃, y0 +Δy)− ∂f

∂x
(x̃, y0)

]

Δx =
∂2f

∂y∂x
(x̃, ỹ)ΔxΔy.

Dividing byΔxΔy yields
∂2f

∂y∂x
(x̃, ỹ) =

S(Δx,Δy)

ΔxΔy
.

We now take the limit asΔx,Δy → 0. We finally use our assumption thatf is of classC2 (we should
have to use this somewhere!). We have

lim
Δx,Δy→0

∂2f

∂y∂x
(x̃, ỹ) = lim

Δx,Δy→0

S(Δx,Δy)

ΔxΔy
.

By our continuity assumption, the left hand side is just∂2f

∂y∂x
(x0, y0), becausẽx → x andỹ → y. We have

thus shown that
∂2f

∂y∂x
(x0, y0) = lim

Δx,Δy→0

S(Δx,Δy)

ΔxΔy
.

As S(Δx,Δy) is symmetric, similar calculations shown above is also∂2f

∂x∂y
(x0, y0), thus completing the

proof. □


