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Summary for the Day
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Summary for the day

Fast Taylor Series.

Critical Points and Extrema.

Constrained Maxima and Minima.

3



Daily Summary Fast Taylor Series Critical Points and Extrema Lagrange Multipliers

Fast Taylor Series
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Formula for Taylor Series

Notation: f twice differentiable function

Gradient: ∇f = ( ∂f
∂x1

, . . . , ∂f
∂xn

).

Hessian:

Hf =

⎛

⎜

⎝

∂2f
∂x1∂x1

⋅ ⋅ ⋅ ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
⋅ ⋅ ⋅ ∂2f

∂xn∂xn

⎞

⎟

⎠
.

Second Order Taylor Expansion at −→x 0

f (−→x 0) + (∇f )(−→x 0) ⋅ (−→x −−→x 0) +
1
2
(
−→x −−→x 0)

T(Hf )(−→x 0)(
−→x −−→x 0)

where (
−→x −−→x 0)

T is the row vector which is the transpose of −→x −−→x 0.
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Example

Let f (x , y) = sin(x + y) + (x + 1)3y and (x0, y0) = (0, 0). Then

(∇f )(x , y) =
(

cos(x + y) + 3(x + 1)2y , cos(x + y) + (x + 1)3)

and

(Hf )(x , y) =

(

− sin(x + y) + 6(x + 1)2y − sin(x + y) + 3(x + 1)2

− sin(x + y) + 3(x + 1)2 − sin(x + y)

)

,

so

f (0, 0) = 0, (∇f )(0, 0) = (1, 2), (Hf )(0, 0) =
(

0 3
3 0

)

which implies the second order Taylor expansion is

0 + (1, 2) ⋅ (x , y) + 1
2
(x , y)

(

0 3
3 0

)(

x
y

)

= x + 2y +
1
2
(x , y)

(

3y
3x

)

= x + 2y + 3xy .
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Fast Taylor Expansions

Idea: Use Taylor expansions in one-variable to simplify
expansions in several variables.

Key observation: Second Order Taylor Series involves
combinations of 1, x , y , x2, xy , y2; any higher order terms
do not appear (such as x3, x2y , xy2, y3).

Method: Expand as a function of one variable, keeping
only the appropriate order, and then substitute.

Applicability: Works for quantities such as sin(x + y) or
log(1 + x2y), but not sin(

√
x + 3

√
y).
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Fast Taylor Expansions: Example

Let f (x , y) = sin(x + y) + (x + 1)3y and (x0, y0) = (0, 0).

sin(u) = u − u3

3
+ ⋅ ⋅ ⋅ = u + Higher Order Terms.

(v+1)3 = 1+3v+3v2+v3 = 1+3v+3v2+Higher Order Terms.

Take u = x + y , v = x and find

sin(x+y)+(x+1)3y = (x+y+ ⋅ ⋅ ⋅ )+(1+3x+3x2+ ⋅ ⋅ ⋅ )y

We now multiply out, keeping only terms of degree 2:

x + y + y + 3xy = x + 2y + 3xy .

Note recover previous answer with less work!
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Critical Points and Extrema
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One-variable Review

Consequences of the Definition of the Derivative:

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0
.

If f ′(x0) > 0 then f is increasing to the right and
decreasing to the left; while if f ′(x0) < 0 then f is
decreasing to the right and increasing to the left.

Candidates for Extrema
Let f : [a, b] → ℝ. If f has an extrema at c then either
f ′(c) = 0 (so c is a critical point) or c = a or c = b.

Note: Major real analysis theorem that any continuous
function on a closed, bounded set attains its maxima and
minima; can fail for functions on open sets: f (x) = 1

x +
1

x−1 .
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Definitions

Definitions

Local extrema

A function f has a local maximum at −→x 0 if there is a ball B
about −→x 0 such that

f (−→x 0) ≥ f (−→x )

for all −→x ∈ B; the definition for minimum is similar.

Critical point

A point −→x 0 is a critical point of f if

(Df )(−→x 0) = (∇f )(−→x 0) =
−→
0 .
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Example

Find the critical points of f (x , y) = x2 + y2 + 3xy .
Soln: Solve ∇f =

−→
0 . We have

(∇f ) =

(

∂f
∂x

,
∂f
∂y

)

= (2x + 3y , 2y + 3x).
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Example

Find the critical points of f (x , y) = x2 + y2 + 3xy .
Soln: Solve ∇f =

−→
0 . We have

(∇f ) =

(

∂f
∂x

,
∂f
∂y

)

= (2x + 3y , 2y + 3x).

Thus an extremum occurs when

2x + 3y = 0, 3x + 2y = 0.
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Example

Find the critical points of f (x , y) = x2 + y2 + 3xy .
Soln: Solve ∇f =

−→
0 . We have

(∇f ) =

(

∂f
∂x

,
∂f
∂y

)

= (2x + 3y , 2y + 3x).

Thus an extremum occurs when

2x + 3y = 0, 3x + 2y = 0.

We thus have y = −2x/3 from the first equation and
y = −3x/2 from the second. Thus the only solution is
x = y = 0. Alternatively, note 5x + 5y = 0 so x = −y and
then −2y + 3y = 0 yields y = 0.
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Example

Find the critical points of
f (x , y) = x2 − 3xy + 5x − 2y + 6y2 + 8.
Soln: Solve ∇f =

−→
0 . Have

(∇f )(x, y) =

(

∂f

∂x
,
∂f

∂y

)

= (2x − 3y + 5,−3x − 2 + 12y),

so to equal the zero vector must have

2x − 3y + 5 = 0, and − 3x + 12y − 2 = 0.

Two equations in two unknowns. We have

2x − 3y = −5, −3x + 12y = 2.

Many ways to solve. We could multiply the first equation by 4 and add it to the second. Cancels all y terms, leaves
us with 8x − 3x = −20 + 2, or 5x = −18 or x = −18/5. As y = 2x+5

3 , this implies y = −
11
15 .

Another way is to isolate y as a function of x using the first equation, and substitute this into the second. We find
2x − 3y = −5, so y = 2x+5

3 . Substituting this into the second equation yields

−3x − 2 + 12
2x + 5

3
= 0,

which implies
−3x − 2 + 8x + 20 = 0,

or

x = −
18

5
,

exactly as before.
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First Derivative Test

First Derivative Test for Local Extrema
Let f : ℝn → ℝ be differentiable on an open set U ⊂ ℝ

n. If
−→x 0 ∈ U is a local extremum then (∇f )(−→x 0) =

−→
0 .

Proof: Reduce to 1-dimension.

Assume have local max at −→x 0, consider

c(t) :=
−→x 0 + t−→v , A(t) := f (c(t)).

By the Chain Rule, have

A′(0) = (Df )(c(0))(Dc)(0) = (∇f )(−→x 0) ⋅ −→v .

As function of one variable, max implies A′(0) = 0, thus
(∇f )(−→x 0) ⋅ −→v =

−→
0 for all −→v and hence (∇f )(−→x 0) =

−→
0

(take −→v = (∇f )(−→x 0)).
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Second Derivative Test

There is a second derivative test, but without linear
algebra it looks like magic.

We’ll discuss some special cases on Friday.
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Constrained Extrema
and Lagrange Multipliers
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Lagrange Multipliers

Method of Lagrange Multipliers

Let f , g : U → ℝ, where U is an open subset of ℝn. Let S
be the level set of value c for the function g, and let f ∣S be
the function f restricted to S (in other words, we only
evaluate f at −→x ∈ U). Assume (∇g)(−→x 0) ∕=

−→
0 . Then f ∣S

has an extremum at −→x 0 if and only if there is a � such that
(∇f )(−→x 0) = �(∇g)(−→x 0).
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Proof of Lagrange Multipliers

Proof (∇f )(−→x 0) = �(∇g)(−→x 0) at extrema.
S level set, path c(t) in S with c(0) = −→x 0 and c′(0) = −→v :

d
dt

g(c(t))
∣

∣

∣

t=0
= (∇g)(c(0))c′(0) = (∇g)(−→x 0) ⋅ −→v = 0,

where it vanishes as g(c(t)) is constant on S.

If f has extremum at −→x 0 then

d
dt

f (c(t))
∣

∣

∣

t=0
= (∇f )(c(0))c′(0) = (∇f )(−→x 0) ⋅ −→v = 0.

Thus (∇g)(−→x 0) and (∇f )(−→x 0) perpendicular to all tangent
directions, only one direction left and thus parallel!.

Interpretation: (∇g)(−→x 0) is normal to surface, says at
max/min (∇f )(−→x 0) is normal to surface, else increases by
flowing in appropriate direction.
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Examples

Find the extrema of f (x , y , z) = x − y + z subject to
g(x , y , z) = x2 + y2 + z2 = 2.
Soln: Need (∇f )(x , y , z) = �(∇g)(x , y , z) for (x , y , z) to be an
extremum. Have

∇f = (1,−1, 1), ∇g = (2x , 2y , 2z).

Thus we are searching for a � and a point (x , y , z) where

(1,−1, 1) = �(2x , 2y , 2z).

We find
2�x = 1, 2�y = −1, 2�z = 1.

As � ∕= 0, we have x = z = −y . We still have another equation to
use, namely g(x , y , z) = 2. There are several ways to proceed. We
can solve and find x = z = 1/2�, y = −1/2�, and thus

1
4�2 +

1
4�2 +

1
4�2 = 2,

which implies 3/4�2 = 2 or �2 = 3/8, which yields � = ±
√

3/8 and
points

(1/2
√

3/8,−1/2
√

3/8, 1/2
√

3/8), (−1/2
√

3/8, 1/2
√

3/8,−1/2
√

3/8).
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Example

Find the extrema of f (x , y) = x subject to
g(x , y) = x2 + 2y2 = 3.
Soln: Have ∇f = (1, 0), ∇g = (2x , 4y) and at an
extremum

(1, 0) = �(2x , 4y).

Implies 1 = 2�x and 0 = 4�y . Thus y = 0, but don’t know
x and �, only their product (which is 1/2). All is not lost as
know x2 + 2y2 = 3. As y = 0, we find x2 = 3 so x = ±

√
3.

We could now find � (it is ±1/2
√

3); however, there is no
need. Only care about � b/c helps us find where f has an
extremum. As know the x and y coordinates, have all the
needed info. Thus the extrema occur at x = ±

√
3.

We could have predicted this. Function depends only on x
and is constrained to lie on an ellipse. Want x-extension
as large as possible, means taking y = 0 and being at the
extremes of the major-axis.
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