Daily Summary

Fast Taylor Series

Critical Points and Extrema

Lagrange Multipliers

Math 105: Multivariable Calculus Seventeenth Lecture (3/17/10)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, March 17, 2010

Daily Summary	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers

Summary for the Day

Daily Summary ●	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers
Summary for th	e day		

- Fast Taylor Series.
- Critical Points and Extrema.
- Constrained Maxima and Minima.

Daily Summary	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers

Fast Taylor Series ●○○○ Critical Points and Extrema

Lagrange Multipliers

Formula for Taylor Series

Notation: f twice differentiable function

• Gradient:
$$\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}).$$

Hessian:

Second Order Taylor Expansion at \vec{x}_0

$$f(\overrightarrow{x}_{0}) + (\nabla f)(\overrightarrow{x}_{0}) \cdot (\overrightarrow{x} - \overrightarrow{x}_{0}) + \frac{1}{2}(\overrightarrow{x} - \overrightarrow{x}_{0})^{\mathrm{T}}(Hf)(\overrightarrow{x}_{0})(\overrightarrow{x} - \overrightarrow{x}_{0})$$

where $(\vec{x} - \vec{x}_0)^T$ is the row vector which is the transpose of $\vec{x} - \vec{x}_0$.

Example
Let
$$f(x, y) = \sin(x + y) + (x + 1)^3 y$$
 and $(x_0, y_0) = (0, 0)$. Then
 $(\nabla f)(x, y) = (\cos(x + y) + 3(x + 1)^2 y, \cos(x + y) + (x + 1)^3)$
and
 $(Hf)(x, y) = \begin{pmatrix} -\sin(x + y) + 6(x + 1)^2 y & -\sin(x + y) + 3(x + 1)^2 \\ -\sin(x + y) + 3(x + 1)^2 & -\sin(x + y) \end{pmatrix},$
so
 $f(0, 0) = 0, \quad (\nabla f)(0, 0) = (1, 2), \quad (Hf)(0, 0) = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$
which implies the second order Taylor expansion is
 $0 + (4, 0), (m, y) + \frac{1}{2}(m, y) \begin{pmatrix} 0 & 3 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix}$

Lagrange Multipliers

Fast Taylor Series

Daily Summary

6

$$0 + (1,2) \cdot (x,y) + \frac{1}{2}(x,y) \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} y \end{pmatrix}$$
$$= x + 2y + \frac{1}{2}(x,y) \begin{pmatrix} 3y \\ 3x \end{pmatrix} = x + 2y + 3xy.$$

Daily Summary o	Fast Taylor Series ○○●○	Critical Points and Extrema	Lagrange Multipliers
Fast Taylor Expansions			

Idea: Use Taylor expansions in one-variable to simplify expansions in several variables.

Key observation: Second Order Taylor Series involves combinations of 1, x, y, x^2 , xy, y^2 ; any higher order terms do not appear (such as x^3 , x^2y , xy^2 , y^3).

Method: Expand as a function of one variable, keeping only the appropriate order, and then substitute.

Applicability: Works for quantities such as sin(x + y) or $log(1 + x^2y)$, but not $sin(\sqrt{x} + \sqrt[3]{y})$.

Daily Summary	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers
	0000		
Fast Taylor Expansions: Exam	ble		

Let
$$f(x, y) = \sin(x + y) + (x + 1)^3 y$$
 and $(x_0, y_0) = (0, 0)$.

$$sin(u) = u - \frac{u^3}{3} + \cdots = u + Higher \text{ Order Terms.}$$
$$(v+1)^3 = 1 + 3v + 3v^2 + v^3 = 1 + 3v + 3v^2 + Higher \text{ Order Terms.}$$
Take $u = x + y$, $v = x$ and find

$$\sin(x+y) + (x+1)^{3}y = (x+y+\cdots) + (1+3x+3x^{2}+\cdots)y$$

We now multiply out, keeping only terms of degree 2:

$$x+y+y+3xy = x+2y+3xy.$$

Note recover previous answer with less work!

Daily	Summary

Critical Points and Extrema

Daily Summary	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers
		00000	

Consequences of the Definition of the Derivative:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

If $f'(x_0) > 0$ then *f* is increasing to the right and decreasing to the left; while if $f'(x_0) < 0$ then *f* is decreasing to the right and increasing to the left.

Candidates for Extrema

Let $f : [a, b] \to \mathbb{R}$. If *f* has an extrema at *c* then either f'(c) = 0 (so *c* is a critical point) or c = a or c = b.

Note: Major real analysis theorem that any continuous function on a closed, bounded set attains its maxima and minima; can fail for functions on open sets: $f(x) = \frac{1}{x} + \frac{1}{x-1}$.

Daily Summary o	Fast Taylor Series	Critical Points and Extrema ●●●●●●	Lagrange Multipliers
Definitions			
Definitions			

Local extrema

A function *f* has a local maximum at \vec{x}_0 if there is a ball *B* about \vec{x}_0 such that

$$f(\overrightarrow{x}_0) \geq f(\overrightarrow{x})$$

for all $\overrightarrow{x} \in B$; the definition for minimum is similar.

Critical point

A point \overrightarrow{x}_0 is a critical point of *f* if

$$(Df)(\overrightarrow{x}_0) = (\nabla f)(\overrightarrow{x}_0) = \overrightarrow{0}.$$

Daily Summary o	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers
Example			

Find the critical points of $f(x, y) = x^2 + y^2 + 3xy$. Soln: Solve $\nabla f = \overrightarrow{0}$. We have

$$(\nabla f) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x + 3y, 2y + 3x).$$

Daily Summary o	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers
Example			

Find the critical points of $f(x, y) = x^2 + y^2 + 3xy$. Soln: Solve $\nabla f = \overrightarrow{0}$. We have

$$(\nabla f) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x + 3y, 2y + 3x).$$

Thus an extremum occurs when

$$2x + 3y = 0$$
, $3x + 2y = 0$.

Daily Summary o	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers
Example			

Find the critical points of $f(x, y) = x^2 + y^2 + 3xy$. Soln: Solve $\nabla f = \overrightarrow{0}$. We have

$$(\nabla f) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x + 3y, 2y + 3x).$$

Thus an extremum occurs when

$$2x + 3y = 0$$
, $3x + 2y = 0$.

We thus have y = -2x/3 from the first equation and y = -3x/2 from the second. Thus the only solution is x = y = 0. Alternatively, note 5x + 5y = 0 so x = -y and then -2y + 3y = 0 yields y = 0.

Critical Points and Extrema

Lagrange Multipliers

Example

Find the critical points of

$$f(x, y) = x^2 - 3xy + 5x - 2y + 6y^2 + 8.$$

Soln: Solve $\nabla f = 0$. Have

$$(\nabla f)(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x - 3y + 5, -3x - 2 + 12y),$$

so to equal the zero vector must have

$$2x - 3y + 5 = 0$$
, and $-3x + 12y - 2 = 0$.

Two equations in two unknowns. We have

$$2x - 3y = -5$$
, $-3x + 12y = 2$.

Many ways to solve. We could multiply the first equation by 4 and add it to the second. Cancels all *y* terms, leaves us with 8x - 3x = -20 + 2, or 5x = -18 or x = -18/5. As $y = \frac{2x+5}{3}$, this implies $y = -\frac{11}{15}$. Another way is to isolate *y* as a function of *x* using the first equation, and substitute this into the second. We find 2x - 3y = -5, so $y = \frac{2x+5}{3}$. Substituting this into the second equation yields

$$-3x - 2 + 12\frac{2x + 5}{3} = 0,$$

which implies

$$-3x - 2 + 8x + 20 = 0,$$

or

$$x = -\frac{18}{5},$$

exactly as before.

15

Critical Points and Extrema

Lagrange Multipliers

First Derivative Test

First Derivative Test for Local Extrema

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable on an open set $U \subset \mathbb{R}^n$. If $\overrightarrow{x}_0 \in U$ is a local extremum then $(\nabla f)(\overrightarrow{x}_0) = \overrightarrow{0}$.

Proof: Reduce to 1-dimension.

Assume have local max at \overrightarrow{x}_0 , consider

$$c(t) := \overrightarrow{x}_0 + t \overrightarrow{v}, \quad A(t) := f(c(t)).$$

By the Chain Rule, have

$$A'(0) = (Df)(c(0))(Dc)(0) = (\nabla f)(\overrightarrow{x}_0) \cdot \overrightarrow{v}.$$

As function of one variable, max implies A'(0) = 0, thus $(\nabla f)(\overrightarrow{x}_0) \cdot \overrightarrow{v} = \overrightarrow{0}$ for all \overrightarrow{v} and hence $(\nabla f)(\overrightarrow{x}_0) = \overrightarrow{0}$ (take $\overrightarrow{v} = (\nabla f)(\overrightarrow{x}_0)$).

Daily Summary o	Fast Taylor Series	Critical Points and Extrema	Lagrange Multipliers
Second Derivative Test			

There is a second derivative test, but without linear algebra it looks like magic.

We'll discuss some special cases on Friday.

Daily	Summary

Constrained Extrema and Lagrange Multipliers

Lagrange Multipliers

Method of Lagrange Multipliers

Let $f, g: U \to \mathbb{R}$, where U is an open subset of \mathbb{R}^n . Let S be the level set of value c for the function g, and let $f|_S$ be the function f restricted to S (in other words, we only evaluate f at $\overrightarrow{x} \in U$). Assume $(\nabla g)(\overrightarrow{x}_0) \neq \overrightarrow{0}$. Then $f|_S$ has an extremum at \overrightarrow{x}_0 if and only if there is a λ such that $(\nabla f)(\overrightarrow{x}_0) = \lambda(\nabla g)(\overrightarrow{x}_0)$.

Critical Points and Extrema

Lagrange Multipliers

Proof of Lagrange Multipliers

Proof $(\nabla f)(\overrightarrow{x}_0) = \lambda(\nabla g)(\overrightarrow{x}_0)$ at extrema. S level set, path c(t) in S with $c(0) = \overrightarrow{x}_0$ and $c'(0) = \overrightarrow{v}$:

$$\frac{d}{dt}g(c(t))\Big|_{t=0} = (\nabla g)(c(0))c'(0) = (\nabla g)(\overrightarrow{x}_0) \cdot \overrightarrow{v} = 0,$$

where it vanishes as g(c(t)) is constant on *S*.

If f has extremum at \overrightarrow{x}_0 then

$$\frac{d}{dt}f(c(t))\Big|_{t=0} = (\nabla f)(c(0))c'(0) = (\nabla f)(\overrightarrow{x}_0) \cdot \overrightarrow{v} = 0.$$

Thus $(\nabla g)(\overrightarrow{x}_0)$ and $(\nabla f)(\overrightarrow{x}_0)$ perpendicular to all tangent directions, only one direction left and thus parallel!.

Interpretation: $(\nabla g)(\overrightarrow{x}_0)$ is normal to surface, says at max/min $(\nabla f)(\overrightarrow{x}_0)$ is normal to surface, else increases by flowing in appropriate direction.

Examples

Find the extrema of f(x, y, z) = x - y + z subject to $g(x, y, z) = x^2 + y^2 + z^2 = 2$. Soln: Need $(\nabla f)(x, y, z) = \lambda(\nabla g)(x, y, z)$ for (x, y, z) to be an extremum. Have

$$\nabla f = (1, -1, 1), \quad \nabla g = (2x, 2y, 2z).$$

Thus we are searching for a λ and a point (x, y, z) where

$$(1,-1,1) = \lambda(2x,2y,2z).$$

We find

$$2\lambda x = 1$$
, $2\lambda y = -1$, $2\lambda z = 1$.

As $\lambda \neq 0$, we have x = z = -y. We still have another equation to use, namely g(x, y, z) = 2. There are several ways to proceed. We can solve and find $x = z = 1/2\lambda$, $y = -1/2\lambda$, and thus

$$\frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} = 2,$$

which implies $3/4\lambda^2 = 2$ or $\lambda^2 = 3/8$, which yields $\lambda = \pm \sqrt{3/8}$ and points

$$(1/2\sqrt{3/8}, -1/2\sqrt{3/8}, 1/2\sqrt{3/8}), (-1/2\sqrt{3/8}, 1/2\sqrt{3/8}, -1/2\sqrt{3/8})$$

21

Lagrange Multipliers

Example

Find the extrema of f(x, y) = x subject to $g(x, y) = x^2 + 2y^2 = 3$. Soln: Have $\nabla f = (1, 0), \nabla g = (2x, 4y)$ and at an extremum

$$(1,0) = \lambda(2x,4y).$$

Implies $1 = 2\lambda x$ and $0 = 4\lambda y$. Thus y = 0, but don't know x and λ , only their product (which is 1/2). All is not lost as know $x^2 + 2y^2 = 3$. As y = 0, we find $x^2 = 3$ so $x = \pm \sqrt{3}$. We could now find λ (it is $\pm 1/2\sqrt{3}$); however, there is no need. Only care about λ b/c helps us find where f has an extremum. As know the x and y coordinates, have all the needed info. Thus the extrema occur at $x = \pm \sqrt{3}$. We could have predicted this. Function depends only on x and is constrained to lie on an ellipse. Want x-extension as large as possible, means taking y = 0 and being at the extremes of the major-axis.