
MATH 105: PRACTICE PROBLEMS AND SOLUTIONS
FOR CHAPTER 12: SPRING 2011

INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU)

Question 1: These problems deal with open sets. Open sets were covered in
Spring 2010 but not that much in Spring 2011, so do not worry about these
problems if you’re in 105 in Spring 2011.

(1) Let S = {(x, y, z) : 3x2 + 4y2 + 5z2 < 6}. Is S open?
Solution: Yes: This is an ellipsoid where we do not include the boundary as we

have strictly less than 6. Given any point in the interior, we can find a sufficiently
small radius.

(2) Let S = {(x, y) : x2 − y2 = 1}. Is S open?
Solution: No: The set is the two branches of a hyperbola. These are one-

dimensional curve, and if we draw a ball about any point on either branch, most
of the points in the ball will not be on the branch.

(3) Let S = {(x1, . . . , xn) : x
2
1 + ⋅ ⋅ ⋅+ x2

n < 1}. Is S open?
Solution: Yes: This set is open, and in fact is just the n-dimensional sphere.

(4) Let S = {(x, y, z) : x2 + y2 ≤ z}. Is S open?
Solution: No: This is a paraboloid where we include the boundary. If we take

any point (x, y, z) such that x2 + y2 − z, then we see that any ball centered at such a
point hits both points inside and outside our region.

(5) Let S = {(x, y) : xy = 1}. Is S open?
Solution: No: The reason is essentially the same as the reasoning in part (2). We

have a two-dimensional object in the plane; if we draw a ball about any point on
either branch of the hyperbola, we’ll find many points not on the curve,

(6) Let S = {(x, y) : x2 + y2 > 1}. Is S open?
Solution: This set is open. It is all points more than 1 unit from the origin.

Date: February 28, 2011.
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Question 2: Compute the following limits (if they exist), or prove they do not.
Remember log x means the logarithm of x base e.

(1) limx→1(x
4 − 2x3 + 3x2 + 4x− 5).

Solution: As x → 1, the expression is just 1 − 2 + 3 + 4 − 5 = 1, where we used
the rules for limits of suns, differences and constant multiples.

(2) limx→2 sin(3x
2 − 12).

Solution: As f(x) = sin(3x2 − 12) is continuous (the sine function is continuous),
the limit is just f(2), which is sin(12− 12) = 0.

(3) limx→2
sin(3x2

−12)
x−2

.
Solution: As we have 0/0, we must resort to other methods than simply substi-

tuting. Using L’Hopital’s rule, we find the limit is just limx→2
6x(cos(3x2

−12)
1

, which is
12. This is because the denominator is always 1, and as x → 2 the numerator tends
to 6 ⋅ 2 ⋅ cos 0, and cos 0 = 1.

(4) limx→0
logx
x

.
Solution: It is natural to want to use L’Hopital’s rule. Taking the derivatives, we

would find it equals limx→0
1/x
1
, which is undefined. Unfortunately, we don’t have 0/0

or ∞/∞. As x → 0, log x → −∞. Thus as x → 0 through positive values, we have a
very large negative number divided by a small positive number, which is an extremely
large negative number. Thus the limit tends to −∞ (or does not exist).

(5) limx→0
x

logx
.

Solution: This is the reciprocal of the previous problem, and hence tends to 0.

(6) lim(x,y)→(0,0)(4xy cos(xy) + x2 − y3).
Solution: As each function is continuous, the limit is obtained by substituting

(0, 0) for (x, y); we may do this as we don’t have 0/0 or infinity anywhere. We find
the limit equals 0 cos 0 + 0− 0, which is 0.

(7) lim(x,y)→(0,0)
x2y2−1
xy−1

.

Solution: As the limit of the numerator is -1 and the limit of the denominator
is -1, we may use the limit of a quotient is the quotient of the limits, and hence the
answer is −1/− 1 or 1.

(8) lim(x,y)→(1,1)
x2y2−1
xy−1

.

Solution: As we have 0/0, we must be careful. We cannot use L’Hopital’s rule as
that is for one variable problems, and this has two. The easiest way to attack it is
Thoreau it. Explicitly, notice that the numerator factors as (xy − 1)(xy + 1), as it is
a difference of two squares. We can thus cancel the factor xy − 1 in the numerator
and the denominator, and our problem is the same as evaluating lim(x,y)→(1,1)(xy+1),
which is just 2. Note we could also have attacked the previous problem this way as well.

(9) lim(x,y)→(0,0)
x4

−x2y2+y4

x2+y2+x4y4
.
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Solution: We have 0/0, so we have to be careful. If we use polar coordinates, we
replace x with r cos �, y with r sin �, and then (x, y) → (0, 0) becomes r → 0 and �
does whatever it wants. Note that each term in the numerator is a multiple of r4,
while the denominator is r2 + r8 cos4 � sin4 �. Specifically, we have

lim
r→0

r4(cos4 � − cos2 � sin2 � + sin4 �)

r2(1 + r6 cos4 � sin4 �)
= lim

r→0

r2(cos4 � − cos2 � sin2 � + sin4 �)

1 + r6 cos4 � sin4 �
= 0.

The reason the limit is zero is that we can now use the quotient rule – the limit of a
quotient is the quotient of the limits, as the denominator tends to 1 as r → 0. What
is nice is that using polar coordinates allows us to check all possible paths of (x, y)
tending to (0, 0).

(10) lim(x,y)→(0,0) x
2y3 cos

(

1
x2+y2

)

.

Solution: Remember that when we take limits, the point (x, y) is never (0, 0);
thus the cosine term is always well defined, as we are never evaluating it at 1/0. The
simplest way to determine the answer is to use the squeeze theorem. Note that for all
choices of input, the absolute value of cosine is at most 1; however, as (x, y) → (0, 0)
we have x2y3 rapidly tending to 0. Thus we are taking the limit of a product, one
term tending to zero and the other at most 1 in absolute value. Thus the product
tends to 0.
Note that we cannot use the limit of a product is the product of the limits, as both

limits do not exist (the cosine piece fluctuates between -1 and 1); however, we do not
need the limit of each piece to exist, only the limit of the product.

(11) lim(x,y)→(0,0)

x2y3 cos
(

1

x2+y2

)

x2+y2
.

Solution: This problem is very similar to the previous. The only difference is that
we now divide by x2+y2. The cosine piece is still at most 1 in absolute value; we now
analyze the x2y3/(x2 + y2) term. Using polar coordinates, we find this piece is just
r5 cos2 � sin3 �/r2, which is just r3 cos2 � sin3 �. As (x, y) → (0, 0), r → 0 and hence
this term tends to 0 as well. Thus, arguing similarly as the previous problem, we see
that this limit is 0 as well.

(12) lim(x,y,z)→(0,0,0)
x3+y3+z3

x2+y2+z2
.

Solution: This problem requires spherical coordinates, which are discussed in Sec-
tion 1.4 (page 69). Sometimes physicists and mathematicians have different conven-
tions for spherical coordinates. Using the book’s convention, we have

x = � sin� cos �, y = � sin � sin �, z = � cos�.

As (x, y, z) → (0, 0, 0) we have � → 0 and �, � vary however they want. Thus our
limit becomes

lim
�→0

�3 sin3 � cos3 � + �3 sin3 � sin3 � + �3 cos3 �

�2 sin2 � cos2 � + �2 sin2 � sin2 � + �2 cos2 �
.
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A little algebra shows the denominator is just �2, while the numerator is a multiple
of �3. We thus factor out a �2 and find our limit equals

lim
�→0

�
(

sin3 � cos3 � + sin3 � sin3 � + cos3 �
)

.

As the trig piece is at most 3 in absolute value (each term is at most 1) and � → 0,
the product tends to 0 and thus the limit is 0.
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Question 3: Plot the level sets of value c for each function below (do enough
values of c so you can recognize the result).

(1) f(x, y) = sin(x+ y).
Solution: The level sets are where x + y is constant. If we want to find the level

set of value c, we must find all (x, y) such that sin(x + y) = c, or equivalently all
(x, y) such that x + y = arcsin(c). Note that this is the equation of a line, namely
y = −x + arcsin(c). Of course, not all c are permissible; as the sine of any quantity
is between −1 and 1, the only values of c leading to non-empty level sets are when
−1 ≤ c ≤ 1. Note that the level sets are periodic. For example, for c = 0 we
have arcsin(0) = 0,±�,±2�, . . . ; for c =

√
2/2 we have arcsin(

√
2/2) = �/4, �/4 ±

2�, �/4± 4� as well as 3�/4, 3�/4± 2�, 3�/4± 4�, . . . . See Figure 1.

(2) f(x, y) = (x+ y) sin(x+ y).
Solution: This problem is similar to the previous; we will still have the function

constant whenever x+ y is constant.

(3) f(x, y) = x2 − 4y2.
Solution: The level sets are hyperbolas. See Figure 2.

(4) f(x, y) = x2 + 4y.
Solution: The level sets are parabolas. We have x2 + 4y = c, which implies

y = −x2

4
+ c

4
. Thus the level set of value c is a downward pointing parabola with

y-intercept c/4. See Figure 3.

(5) f(x, y) = ecos x.
Solution: Note there is no y-dependence in the function. We want ecos x = c, which

means cosx = log c, or x = arccos(log c). Of course, we need to be careful and see
which values of c are permissible. As the exponential of any number is positive, the
level set is empty if c ≤ 0. Further, we know that the cosine is always between -1 and
1, and thus we only have non-empty level sets for 1/e ≤ c ≤ e. The answer will be a
series of parallel lines. Specifically, y is arbitrary, which gives us a line. The reason
we have a series of parallel lines is that if we increase x by 2� we do not change the
value of its cosine. See Figure 4.
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Figure 1. Level sets and plot of f(x, y) = sin(x+ y).

Question 4: Find the gradients of the following functions:

(1) f(x, y, z) = xy + yz + zx.
Solution: As

grad(f) = ∇f =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

,

we have

∇f = (y + z, x+ z, x+ y) .
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Figure 2. Level sets of f(x, y) = x2 − 4y2.
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Figure 3. Level sets of f(x, y) = x2 + 4y.

(2) f(x, y) = x cos(y) + y cos(x).
Solution: As f : ℝ2 → ℝ, now the gradient is

grad(f) = ∇f =

(

∂f

∂x
,
∂f

∂y

)

.
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Figure 4. Level sets of f(x, y) = ecos x.

Differentiating our function yields

∇f = (cos y − y sin x,−x sin y + cos x).

(3) f(x1, . . . , xn) = x1x2 ⋅ ⋅ ⋅xn.
Solution: As f : ℝn → ℝ, now the gradient is

grad(f) = ∇f =

(

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)

.

Differentiating yields

∇f = (x2x3 ⋅ ⋅ ⋅xn, x1x3 ⋅ ⋅ ⋅xn, . . . , x1 ⋅ ⋅ ⋅xn−1).

A particularly nice way of writing this is to note that

∂f

∂xi
= x1 ⋅ ⋅ ⋅xi−1xi+1 ⋅ ⋅ ⋅xn =

x1 ⋅ ⋅ ⋅xn

xi
=

f(x1, . . . , xn)

xi
.

Thus

∇f = f(x1, . . . , xn)

(

1

x1
, . . . ,

1

xn

)

.

(4) f(x, y, z) = 1701x24601 log(1793x5y4).
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Solution: We could differentiate directly, but it is much easier to Thoreau the
problem first and simplify Note

f(x, y, z) = 1701x24601 (log 1793 + 5 log x+ 4 log y)

= (1701 log 1793)x24601 + 8505x24601 log x+ 6804x24601 log y.

There is no z dependence, so ∂f
∂z

= 0. To find ∂f
∂x
, it is best not to completely expand.

It does help a bit to expand the logarithm term, but not to multiply everything out
(though of course it is not wrong to do so). We thus have

∇f =
(

1701 ⋅ 24601x24600 (log 1793 + 5 log x+ 4 log y) + 1701x24601 ⋅ 5
x
, 1701x24601 ⋅ 4

y
, 0

)

.

(5) f(x, y) = sin(x2 + y2).
Solution: Using the chain rule, we have

∇f =
(

cos(x2 + y2) ⋅ 2x, cos(x2 + y2) ⋅ 2y
)

= 2 cos(x2 + y2) (x, y) ;

of course there is no need to simplify, but by pulling out these pieces we see the gra-
dient is in the direction (x, y), which is hidden at first.
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Question 5: Determine which functions below are differentiable. Determine
which functions below are differentiable. To be differentiable the tangent plane is
supposed to do an excellent job approximating the function. A sufficient condition
to ensure the function is differentiable is that the partial derivatives all exist and
are continuous. This concept was covered more in Spring 2010 than Spring 2011,
so if you are taking this in Spring 2011 do not worry as much about this problem.

We constantly use the result that if the partial derivatives exist and are continuous then

the function is differentiable. Recall grad(f) = ∇f =
(

∂f
∂x1

, . . . , ∂f
∂xn

)

.

(1) f(x, y, z) = (xyz)4/3.
Solution: Taking the derivatives, we find

∇f =

(

4

3
x1/3(yz)4/3,

4

3
y1/3(xz)4/3,

4

3
z1/3(xy)4/3

)

.

Note the partial derivatives exist and are continuous, thus the function is differentiable.

(2) f(x, y) = (xy)2/3.
Solution: This is a slight modification of the problem from class, where we had

(xy)1/3. A similar calculation (using the definition of the derivative) gives

∂f

∂x
(0, 0) = 0,

∂f

∂y
(0, 0) = 0.

If x ∕= 0 we have ∂f
∂x

= 2
3
x−1/3y2/3, and if y ∕= 0 we have ∂f

∂y
= 2

3
x2/3y−1/3. Thus the

partial derivatives are not continuous, and we cannot just use our theorem above. It is
possible that our function could be differentiable even though the partial derivatives
are not continuous. We must go to the definition of the derivative. What is the
tangent plane at (0, 0)? It is

z = f(0, 0) +
∂f

∂x
(0, 0)(x− 0) +

∂f

∂y
(0, 0)(y − 0) = 0.

Thus the function is differentiable if

lim
(x,y)→(0,0)

(xy)2/3 − 0

∣∣(x, y)− (0, 0)∣∣
exists and equals zero. This limit does not exist.
To see this, let’s investigate several paths. Note the denominator is

√

x2 + y2. If
we take the path x = 0 we get 0, which we also see along the path y = 0 or y = x or
even y = mx. One might then be led to think the limit exists. If we try x = r cos �
and y = r sin �, we find

lim
r→0

(r2 cos � sin �)2/3

r
= lim

r→0
r1/3(cos � sin �)2/3 = 0.

Thus, it does seem as if the limit is zero; unfortunately, there is a slight technical
error in what we’ve done here and in class. It is a very subtle point,
something I am not going to hold you responsible for on exams, but for
completeness I will mention it here. Technically, we are not considering all
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paths when we use polar coordinates; we are only checking along paths (x, y) where
x2 + y2 = r → 0. For this problem, consider the path y = x1/6. Then

(xy)2/3 = (x ⋅ x1/6)2/3 = (x7/6)2/3 = x14/18;

the limit will not exist.
For exams, I will not give you a problem such as this, but I want you to

be aware of them.

(3) f(x1, . . . , xn) = (x1x2 ⋅ ⋅ ⋅xn)
2.

Solution: The partial derivatives are computed using the power rule (or the chain
rule). We have

∂f

∂x1

= 2(x1 ⋅ ⋅ ⋅xn)
2−1∂(x1x2 ⋅ ⋅ ⋅xn)

∂x1

= 2(x1 ⋅ ⋅ ⋅xn) ⋅ x2 ⋅ ⋅ ⋅xn.

Note ∂f
∂x1

exists and is continuous; the other partial derivatives are calculated similarly,
and also seen to be continuous. Thus the function is differentiable.

(4) f(x, y, z) = 1701x24601 log(1793x5y4).
Solution: As the logarithm is only defined for positive inputs, we must have x > 0

and y ∕= 0. Note the partial derivatives exist and are continuous, and thus the function
is differentiable. If we needed to compute the derivatives, it might be worthwhile to
Thoreau the logarithm term, and note

log(1793x5y4) = log 1793 + 5 log x+ 4 log y.

(5) f(x, y) = sin(x2 + y2).
Solution: This function is clearly differentiable. We have

∇f =
(

cos(x2 + y2) ⋅ 2x, cos(x2 + y2) ⋅ 2y
)

= 2 cos(x2 + y2) (x, y) ;

the partial derivatives exist and are continuous.

(6) f(x, y, z) = x3 cos(x) + y3 cos(y).
Solution: This function is differentiable; the partial derivatives are

∇f = (3x2 cos x− x3 sin x, 3y2 cos y − y3 sin y),

and these functions are continuous.

(7) f(x, y) = xy cos(1/y).
Solution: If f is not defined at the origin, then it is clearly differentiable at every

point in its domain, as its partials exist and are continuous away from the origin.
What if the function is defined at the origin? What should its value be? Using the
squeeze theorem, we see that we may define the function at the origin (or, in fact, any
time y = 0) to be 0, and with such a definition our function is continuous. Thus our
definition is

f(x, y) =

{

xy cos(1/y) if y ∕= 0

0 if y = 0.
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If y ∕= 0, the partial derivatives are

∂f

∂x
= y cos(1/y),

∂f

∂y
= x cos(1/y) +

x sin(1/y)

y
,

while if y = 0 the partial derivatives are

∂f

∂x
= 0,

∂f

∂y
= 0.

The partial derivatives exist but are not continuous (while ∂f
∂x

is continuous when

y = 0, ∂f
∂y

is not). This does not prove that the function is not differentiable, though;

it just means that we cannot appeal to our theorem that says the partial derivatives
being continuous implies the function is differentiable. The tangent plane at (0, 0) is
just z = 0. To be differentiable, we would need

lim
(x,y)→(0,0)

f(x, y)− 0

∣∣(x, y)− (0, 0)∣∣
to exist and equal 0. This limit does exist, as it is either involves terms such as
xy cos(1/y)√

x2+y2
or 0√

x2+y2
. In both cases, we do get 0 as (x, y) → (0, 0). Thus our function

is differentiable, even though the partial derivatives are not continuous. In other
words, we have found an example of a function which is differentiable, but
whose partial derivatives, while existing, are not continuous.
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Question 6: Find the tangent plane approximation to f(x, y) = exy + 2 sin(x +
y) cos(x−y) at the point (x0, y0). Use the tangent plane plane to estimate f(−.01, .02)
by choosing (x0, y0) appropriately.

Solution: The tangent plane is given by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(y − y0).

To estimate the value at (−.01, .02), we take (x0, y0) = (0, 0). We have f(0, 0) = 1 and

∂f

∂x
= yexy + 2 cos(x+ y) cos(x− y)− 2 sin(x+ y) sin(x− y)

∂f

∂y
= xexy + 2 cos(x+ y) cos(x− y) + 2 sin(x+ y) sin(x+ y),

which implies
∂f

∂x
(0, 0) = 2,

∂f

∂y
(0, 0) = 2.

Therefore the tangent plane approximation to f(−.01, .02) is

f(0, 0) +
∂f

∂x
(0, 0)(−.01− 0) +

∂f

∂y
(0, 0)(.02− 0) = 1 + 2(−.01) + 2(.02) = 1.02,

which is quite close to f(−.01, .02), which is approximately 1.0198.

Note one can avoid the product rule by recalling trig identities; in particular, as 2 sin(x +
y) cos(x− y) = sin 2x+ sin 2y, we can simplify the derivative.
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Question 7: Parametrize the following curves, and find the tangent line ap-
proximation at the given point

(1) A circle of radius 5 centered at (2, 3) going counter-clockwise starting at the point
(7, 3); find the tangent line at the point (7, 3).
Solution: The answer is c(t) = (2, 3) + (5 cos t, 5 sin t), or c(t) = (2 + 5 cos t, 3 +

5 sin t). Note that when t = 0 we have c(0) = (7, 3). The tangent line goes through
the point (7, 3) and is in the direction c′(0). As c′(t) = (−5 sin t, 5 cos t), we have
c′(0) = (0, 5), the tangent line is just

(x, y) = c(0) + tc′(0) = (7, 3) + t(0, 5) = (7, 3 + 5t).

To check that our curve c(t) correctly parametrizes our circle, we must show

(x(t)− 2)2 + (y(t)− 3)2 = 52,

which follows from straightforward algebra.

(2) A circle of radius 5 centered at (2, 3) going counter-clockwise starting at the point
(5, 7); find the tangent line at the point (5, 7).

Solution: This is similar to the previous problem; the difference is now we want
to start at the point (5, 7). Note that (5, 7)− (2, 3) = (3, 4); as

√
32 + 42 = 5, we do

see that the point (5, 7) is on the circle of radius 5 centered at (2, 3). Let’s consider
our curve from the previous part: c(t) = (2 + 5 cos t, 3 + 5 sin t). This traces out the
right path, but it starts at the wrong point. Thus, consider

c(t) = (2 + 5 cos(t + t0), 3 + 5 sin(t+ t0)) .

If we take t = 0, we now have c(0) = (2 + 5 cos t0, 3 + 5 sin t0); we just need to take
cos t0 = 3/5 and sin t0 = 4/5, which means tan t0 = 4/3 or t0 = arctan(4/3). The
tangent line is

(x, y) = c(0) + c′(0)t.

As c′(t) = (−5 sin(t+ t0), 5 cos(t+ t0)), we have

c′(0) = (−5 sin t0, 5 cos t0) = (−4, 3),

leading to a tangent line of

(x, y) = (5, 7) + (−4, 3)t = (5− 4t, 7 + 3t).

(3) The curve y = ex from x = 1 to x = 10; find the tangent line at the point (2, e2).
Solution: We may parametrize the curve by c(t) = (t, et) for 1 ≤ t ≤ 10. The point

(2, e2) corresponds to t = 2. We have c(2) = (2, e2) and c′(t) = (1, et) so c′(2) = (1, e2)
and hence the tangent line is

(x, y) = c(2) + c′(2)t = (2, e2) + (1, e2)t = (2 + t, e2 + e2t).
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Question 8: Consider the parametrized curve c(t) = (cos t, 2 sin t). What path
does this trace out in the plane? Is it periodic (i.e., does it repeat where it is),
and if so, what is the period? Does a particle whose position is given by c(t) move
at constant speed? If not, when is it moving fastest?

Solution: This path traces out an ellipse. Note that x(t) = cos t and y(t) = 2 sin t. Thus

4x(t)2 + y(t)2 = 4 cos2 t+ 4 sin2 t = 4.

It is periodic; every time t increases by 2� we return to the starting point. As

c′(t) = (− sin t, 2 cos t),

we have

∣∣c′(t)∣∣ =
√

sin2 t+ 4 cos2 t =
√
1 + 3 cos2 t.

Note the speed is not constant; the particle is traveling fastest when cos2 t = 1, or at time
0, �, 2�, . . . .

Question 9: Find the derivative of A(x, y, z) = (x3y+y2z+ex)(sin(x)+cos(y)−z+10).
Solution: There are two ways to do this. The fist is to multiply everything out and then

take the derivative directly. The problem with that is the first factor has three terms and the
second has four. Multiplying everything out would give 12 terms. It is thus better to use the
product rule. Let the first factor be f(x, y, z) and the second be g(x, y, z). Then

(DA)(x, y, z) = (Df)(x, y, z)g(x) + f(x)(Dg)(x, y, z).

We thus find

(Df)(x, y, z) =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

=
(

3x2y + ex, x3 + 2yz, y2
)

,

while

(Dg)(x, y, z) =

(

∂g

∂x
,
∂g

∂y
,
∂g

∂z

)

= (cos(x),− sin(y),−1) .

Putting all the pieces together, we find

(Dℎ)(x, y, z) =

(

∂ℎ

∂x
,
∂ℎ

∂y
,
∂ℎ

∂z

)

=
(

3x2y + ex, x3 + 2yz, y2
)

(sin(x) + cos(y)− z + 10)

+ (x3y + y2z + ex) (cos(x),− sin(y),−1) .

Question 10 : Let g(x, y, z) = (xy, yz, xz) and f(u, v, w) = u2 + v2. Set A(x, y, z) =
f(g(x, y, z)). Compute DA.

Solution: Setting g(x, y, z) = (g1(x, y, z), g2(x, y, z), g3(x, y, z)), we have

(Dg)(x, y, z) =

⎛

⎜

⎝

∂g1
∂x

∂g1
∂y

∂g1
∂z

∂g2
∂x

∂g2
∂y

∂g2
∂z

∂g3
∂x

∂g3
∂y

∂g3
∂z

⎞

⎟

⎠
=

⎛

⎝

y x 0
0 z y
z 0 x

⎞

⎠ .
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Similarly we find

(Df)(u, v, w) =

(

∂f

∂u
,
∂f

∂v
,
∂f

∂w

)

= (2u, 2v, 0),

which implies
(Df)(g(x, y, z)) = (Df)(xy, yz, xz) = (2xy, 2yz, 0).

The chain rule says (DA)(x, y, z) = (Df)(g(x, y, z))(Dg)(x, y, z), so

(DA)(x, y, z) = (2xy, 2yz, 0)

⎛

⎝

y x 0
0 z y
z 0 x

⎞

⎠ = (2xy2, 2x2y + 2yz2, 2y2z).

Question 11 : Let g(x, y, z) = xy2z3. Compute the directional derivative of g at (1, 1, 1)
in the direction −→v , where −→v is a unit vector in the direction (3, 4, 12). In what direction is
g increasing fastest?

Solution: The length of −→v is ∣∣−→v ∣∣ =
√
32 + 42 + 122 =

√
9 + 16 + 144 =

√
169 = 13;

thus a unit vector in this direction is −→u = (3/13, 4/13, 12/13). The gradient of g is simply

(∇g)(x, y, z) = (y2z3, 2xyz3, 3xy2z2),

so
(∇g)(1, 1, 1) = (1, 2, 3).

The directional derivative is thus

(∇g)(1, 1, 1)⋅(3/13, 4/13, 12/13) = (1, 2, 3)⋅(3/13, 4/13, 12/13) =
1 ⋅ 3 + 2 ⋅ 4 + 3 ⋅ 12

13
=

47

13
.

Our function g is increasing fastest in the direction of its gradient, i.e., in the direction (1, 2, 3).

Question 12 : Let g(x, y, z) = ex cos�y + z cos �x. If possible, find the tangent plane to
the level set of value 1 for g(x, y, z) at (x, y, z) = (1, 1, 1). If possible, find the tangent plane
to the level set of value 0 for g(x, y, z) at (x, y, z) = (0, 1, 1).

Solution: It is not possible to find the tangent plane in the first case, as the specified
point is not on the level set (specifically, g(1, 1, 1) = e(−1) + 1(−1) = −(e + 1) ∕= 1. For the
second, the point is on the level set as g(0, 1, 1) = 0. We have

∇g = (ex cos �y − �z sin �x,−�ex sin �y, cos�x)

which implies
(∇g)(0, 1, 1) = (−1, 0,−1).

The equation of the tangent plane is

(∇g)(0, 1, 1) ⋅ (x− 1, y − 1, z − 1) = 0,

or
(−1, 0,−1) ⋅ (x− 1, y − 1, z − 1) = 0,

which simplifies to
z = −x.


