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ABSTRACT. Below is a summary of definitions and some key lemmas, times@nd
concepts from multivariable calculus. | have removed .epsgies as several people
have had difficulty downloading and viewing the file when thrages are included; if
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Note: you are responsible for making sure all items be-
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These notes were begun for the Spring 2010 version of
the class. That year the textbook used parentheses and
not angular brackets for vectors, and so in the text below
vectors are displayed with parentheses.
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6.3. Examples of divergent and convergent series 24

1. PART 1: VECTORS CURVES AND SURFACES IN SPACE

1.1. Definitions.

Definition 1.1 (Equation of a line) The line going through the pOilﬁ in the direction
7 is the set of all points$zy, . . ., z,,) such that

(X1, ., 2p) = B+t7.

In three dimensions, we have

(r,y,2) = ?+t7.
If ¥ = (v1, Vg, v3) and? = (P, P», P3), this is equivalent to the system of equations
r = P +ty
= P2 + tUg
z = P3+tus.

If we have two points on the line but not the direction, we may fihe direction by
subtracting one point from the other.

Definition 1.2 (Equation of a plane)The plane going through the poiﬁ with direc-
tions v and ' is all points(z, y, z) satisfying

(x,y,2) = ?+t7+sﬁ.

If instead we are given a normal directionf, then the plane going througﬁ with
normal in the directiorii7 is the set of all point$z, y, z) such that

((x,y,z)—?) .7 = 0.

Remark 1.3. A common mistake is that if we are given three poﬁtﬁ, ﬁ and asked
for the plane containing them to Wri§ + ta + s R; the reason this is wrong is that

andﬁ are notthe two directions. To find the directions, we choose oneeoftttee
points, say?, as the base point, and then look at each of the other two ntivaigor
the two directions, or sayf = () — B, @ = B —

Definition 1.4 (Determinants) The determinant of two vectors represents the signed
area of the parallelogram generated by the two vectors (icge vectors it is the signed

volume). If
a b
= (0h)

det(A) = ad — be.

then
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We often writg A| for the determinant ofl. If

a b c
B = d e f
g h 1
then
det(B) = |B| = aei+bfg+ cdh — gec— hfa — idb.

One can remember the definition of the determinant ir8tke3 case by copying the
first two columns of the matrix and looking at the three diaagsrirom upper left to
lower right and the three diagonals from the lower left todpeer right. The first three
are all added while the last three are all subtracted.

Definition 1.5 (Dot Product) If ¥ = (vy,...,v,) and@ = (wy, . .., w,) then the dot
(or inner) product is defined by

n

7? = Ny + -+ VW, = Zviwi.

i=1
For example, ift’ = (1,2,3) and @ = (3,2, 1) then
VoW =1-34+2-2+3-1 = 10.
Remark 1.6. A common mistake with the dot product is to forget the reswdt$calar
(i.e., a number) and have the result a vector. Remember tdreddum of the product

of the components; do not form a new vector whseomponent is the product of the
two ™" components.

Definition 1.7 (Cross product)If ¥ = (v1,vs,v3) and @ = (wy, ws, ws) then the
cross product is defined by

TUxW = (Vw3 — V3Wa, V3W1 — VW3, V1We — VoW1 ).

One can remember this by abusing notation and computing

- = =
i j K

v1 V2 U3
w1, Wy W3

Definition 1.8 (Polar coordinates)We have
xr = rcosf, y = rsind,
with 6 € [0, 27) andr > 0. We may invert these relations, and find
r = 22 +y2, 0 = arctan(y/z).
Definition 1.9 (Cylindrical coordinates)We have
xr = rcosf, y = rsinf, z = z

with 6 € [0,27) andr > 0. We may invert these relations, and find

r = Va2+y? 0 = arctan(y/z), z = =z
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Definition 1.10(Spherical coordinates)Ve have
xr = psingcosl, y = psingsinf, z = pcosa,
where0 < ¢ < 7 and0 < 6 < 27. We may invert these relations, and find
p =2 +y*+2% ¢ = arccos(z/p), 0 = arctan(y/z).
1.2. Theorems.

Theorem 1.11(Pythagorean Theorem]f we have a right triangle with sides and b
and hypotenuse, then

= a+ b

Theorem 1.12(Law of Cosines) Consider a triangle with sides, b, c and angled

opposite of the side of length Then
A = a*+b* — 2abcosH.

Key steps in proof: draw good auxiliary lines to reduce tdtigriangles, and use the
Pythagorean Theorem.

Theorem 1.13(Length of a vector)If ¥ = (v,...,v,) then

T = v} +--+ 0l

The key to the proof is repeated applications of the PythegyoiTheorem.

If we want to normalize a vector, that means constructingva vector of the same
direction but of unit length. If7 is not the zero vector, then

=
7 =
1171l

is a unit vector in the direction oF .
Theorem 1.14(Angle formula) If 6 denotes the angle between vectorand @, then
VW = ||| ||w]| cos.

Key ideas in proof: write the sides of the triangle as vectarterms of the coordi-
nates, and then apply the Law of Cosines to these lengths.

Theorem 1.15(Cross product interpretatianfhe vectof’ x 0 is a vector perpendic-
ular to & and i such that its length is the signed area of the parallelogrameyated
by v and .

Theorem 1.16(Cauchy-Schwarz InequalityJor any two vectorsy’ and @ we have

7@ < ([T (W]
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Did not do the Cauchy-Schwarz inequality in class. Will r@bl any exam, but with
knowing.
The cross product and the dot product have many nice refatsach as

P.(J+H) = P.d+P 7
?x(a%—ﬁ) = ?xajt?xﬁ.

While the dot product is commutativ?é . 5 = 5 . ? the cross product is not:
X = — X
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FIGURE 1. Plot ofsin(z + y) and then the level sets aifa(x + y).

FIGURE 2. Plot ofsin(zy) and then the level sets gifa(zy).

2. PART 2: DERIVATIVES AND PARTIAL DERIVATIVES

2.1. Definitions. Just because a quantity does not have an arrow over it shoutd n
be construed as implying it cannot be a vector. Many of the cepts have the same
definition for scalars and vectors, and for brevity we typilyegive just one.

Definition 2.1 (Function terminology) Thedomainis the set of inputs for the function,
while therangeis the set of possible outputs. When we wfiteR” — R™ we mean
the function takes inputs and givesn outputs. We typically denote this

f(xla"'vxn) = (fl(xla"'7xn)v'~~>fm(xla~“>xn))'
An example of arf : R?® — R?is
f(z,y,2) = (zycos(y®2) + €*,3 + 4x + 5y° + 62°).

Remark 2.2. When determining the domain of a function, the two most conttanger
points are dividing by zero and taking a square-root of a rieganumber (both not
allowed!).

Definition 2.3 (Level sets) The level set of valueof a function is the set of all inputs
where the function takes on the valueSpecifically, iff : R? — R then the level set of
valuec is

{(z,y) : flw,y) = c}.

For example, see the plotsfi(x + y) in Figure 1 andin(zy) in Figure 2. We also
show their level sets (which is frequently called a contdat)p

Definition 2.4 (Limit of a sequence)We say a sequende,, }>° , hasL as a limit if as
n tends to infinity we have, tends toL. We denote this d$m,, ., a,, = L.

For example, consider the sequereg }°>° , wherea,, = (—1)"/n; thus our se-
quence is{—1,1/2,—-1/3,1/4,...} and its limit exists, which is 0. The sequence
{b,}52, given byb,, = (—1)" has no limit, as its terms oscillate between -1 and 1.

Definition 2.5 (Limit of a function). A functionf(z) hasL as a limit atz, if however
x approachesy, we havef(z) approached.. We denote this biim,_,,, f(z) = L.
NOTE: we never have a term in any of our sequence equaj;tthe goal is to under-
stand what happens asapproaches,.

For the above definition, what we are essentially sayingas givenany sequence
x, which approaches, we havef(x, ) approachingf(z,). For example, consider the
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FIGURE 3. Plotofzsin(1/x).

FIGURE 4. Plot of|y| < = union the origin.

function
_Jsin(l/z) ifx#0
f@)_{o if = 0.
This function does not have a limit at the poirg = 0. To see this, consider the
sequence,, = ;- andz, = m Note f(x, ) = 0 for every term in this sequence,
2

but f(z,) = 1 for every term in this sequence. Thus there are two sequevitesvo
different limits, and thus the function does not have a liai®.

Definition 2.6 (Continuity of a function) A functionf () is continuous at,, if the limit
exists ast — zo and that limitisf(z,). This mean$im,_,,, f(z) = f(zo).

For example, consider

_ Jwsin(l/z) ifz#0
9(z) = {o if 2 = 0.

This function is continuous & see Figure 3.

Definition 2.7 (Ball or Disk (not really covered in 2011, included for corafgness /
future reference))The ball or disk of radius about a pointzj is the set of all points
that are less tham units fromz;. We assume > 0 as otherwise the ball is empty. We
denote this set by

D,(z5) = {7 suchthat ||Z — Z3|| < r}.

Definition 2.8 (Open Set (not really covered in 2011, included for compless / future
reference)) A setU is open if for anyz} € U we can always find an (which may
depend on the poin&, such thatDT(?o) C U. This means that, no matter what point
we take inU, we can find a very small ball (or disk) centered at that poimd &ntirely
contained inU.

The following sets are open (not really covered in 2011 udeb for completeness /
future reference){(z,y) : v > 0}, {(z,y,2) : 2* + 4y* + 92% < 1}. The following
sets are not oper(x,y) : y > 0} and{(z,y, 2) : 2? + 4y* + 922 < 1}. For another
set that is not open, considéfz,y) : |y| < =} U {(0,0)}; this is the set of all points
between the lineg = » andy = —x andthe origin. See Figure 4.

Definition 2.9 (Derivative) Let f : R — R be a function. We say is differentiable at
xo, and denote this by’ (x) or df /dz, if the following limit exists:

lim f(xo+h) — f(xo)

h—0 h
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We may also write this limit by

f(xo+h) — f(xo)

i
ngclo h ’
or as
lim f(zo+h) — f(xo) — f'(zo)h — 0
T—rT0 h,

Definition 2.10 (Partial derivatives)Let f : R® — R be a function ofn variables

x1,...,2,. We say the partial derivative with respect g exists at the point =
(Cl,l, c. ,Cl,n) if
= = e
i L@ 120 — £(@)
h—0 h

exists, where

E) -+ h?l = (CLl, ey Qi1, Q4 —+ h,CLZ’_H, . ,CLn);
here @, is the unit vector in the direction of th# coordinate axis, which means all of
its entries are 0 save th&, which is 1.

For example, iff (z, y, z) = 32%y + x cos(y), then

g—i = 6xy + cos(y), Z—g = 32 — zsin(y), g—‘z = 0.

Note that to take a partial derivative with respect:tove treat all the other variables
as constants. A good way to test your answer at the end is t@agotb the original
equation and replace all variables with constants, and skenf your answer agrees
with the derivative of this (when you put in constants). Baraple, in our case if we set
y = 3andz = 5we getg(z) = f(z,3,5) = 922 +x cos(3), anddg/dx = 18z +cos(3),
which is exactly2! (z, 3, 5).

Remark 2.11. It is very important to use the write notation; we us@nd notd or a
prime for a partial derivative.

Definition 2.12 (Tangent plane approximatianlet f : R? — R. The tangent plane
approximation tof at (xg, yo) is given by

0 0
2 = Flao,0) + 2 (@0, 10) (& — 20) + 2L (20, 90) (5 — o).
ox dy
provided of course the two partial derivatives exist.

In one variable, we writey = f(x) and we write the tangent line @s= f(zo) +
f'(x0)(z — x9). The above is the natural generalization, with now f(x,y).

Definition 2.13 (Differentiability: two variables (not really covered if®21, included
for completeness / future referencelet f : R? — R. We sayf is differentiable at
(z0, y0) if the tangent plane approximation tends to zero signifiyembore rapidly than
||(z,y) — (z0,y0)|| tends to 0 asz,y) — (xo, yo). Specifically,f is differentiable if

- F(a,y) = f(wo,90) — G (w0, y0) (x — x0) — 5L (20, 50) (¥ — v0)

= 0.
()~ (o.w0) [(z,y) — (20, yo)|
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Note the above is truly the generalization of the derivaitivene variable. The dis-
tancer — z, is replaced with|(x, y) — (zo, yo)||; while this is always positive, the fact
that the limit must equal zero for the function to be différable means we could have
used|z — z,| in the denominator in the definition of the derivative of oreiable. Also
note that the last two parts of the tangent plane approxanaian be written as a dot
product of two vectors:

%(mo,yo)(x—xo)jt%(xo,yo)(y—yo) = (%(xo,yo),%(%,yo))-(x—xo,y—yo).

Definition 2.14 (Gradient) The gradient of a functiori : R™ — R is the vector of the
partial derivatives with respect to each variable. We write

gad(f) = Vf = Df = (af af).

a—xl, ceey axn
If f(x,y,2) = 3z% + xcos(y), thenV f = (6zy + cos(y), 3z% — xsin(y), 0).

Definition 2.15 (Differentiability: several variables but only one outgnbt really cov-
ered in 2011, included for completeness / future refergnee) f : R* — R. We sayf
is differentiable afa if the tangent hyperplane approximation tends to zero §iganitly
more rapidly than|2” — || tends to 0 as? — . Specificallyf is differentiable if
b F@y) —f(@) - (VH@) (@ -F) _
ESTd 17— ||

—a

For example, iff is a function of two variables thefiis differentiable at0, 0) if
f(a,y) = £(0,0) = 5£(0,0)(z — 0) — §£(0,0)(y - 0)

lim =0
(2:4)-(0,0) [z, y) — (0,0)]]
Definition 2.16 (Derivative notation (not really covered in 2011, includedcomplete-
ness / future reference)let f : R” — R™; we may write

J(@) = (LT fal@)).
By (DQ(:):_)O) we mean the matrix whose first row(i¥ f,)( '), whose second row is
(Vf)(), and so on until the last row, which {& f,,,)(Z’). In full glory, we have

G(T) e ()

(Df)(xo) = :

Yo (@) o Y@

Note(Df)() is a matrix withm rows andn columns.

Definition 2.17 (Differentiability: several variables and several ougp{rot really cov-
ered in 2011, included for completeness / future refergndast f : R* — R™. We
say f is differentiable afa if the tangent hyperplane approximation for each compo-
nent tends to zero significantly more rapidly théw — @’|| tends to 0 as?’ — .
Specifically,f is differentiable if

f(@) = (@) = (DA(@) (¥ =) _ 3

lim -
Toa |7 — | ’

where we regard? — @ as a column vector being acted on by the matfixf)(@).
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Definition 2.18 (C* (not really covered in 2011, included for completeness urut
reference)) A function is said to b€ (or of classC?) if all of its partial derivatives
exist and if these partial derivatives are continuous.

While all the partial derivatives of the functigfi{z, i) = (xy)'/? exist, this function
is notC' as the partial derivatives are not continuous at the origin.

Definition 2.19 (Parametrization of paths / curves (not really covered il2@hcluded
for completeness / future reference}) mapc from an interval taR™ traces out a path
or curve in space. I : [a,b] — R™ thenc(a) is the initial point of the path and(b) is
the endpoint. I:(a) = ¢(b) then the path is closed. It is a path in the plane i& 2
and a path in space i, = 3. Whenn = 2 we often writec(t) = (z(¢),y(¢)), and if
n = 3 we writec(t) = (x(t), y(t), 2(t)). The vector’(¢) is the velocity vector, and the
instantaneous speed at times given by||c/(¢)||. The tangent line at timg is given by
(x,y,2) = c(to) + (to)t.

Remark 2.20 ((Not really covered in 2011, included for completenessturke refer-
ence)) Note that(Dc)(t) is a column vector. The reason this is so is thatR” — R

in general, soc(t) = (ci(t),...,cu(t)). The derivative matrixDc has as its first
row Dc¢; = Ve, ..., and its last row isD¢,, = Ve¢,. As there is only one variable,
D¢y = Ve, = dey/dt, and thus(Dc)(t) is a column vector. This is needed so that the
multiplication of matrices in the chain rule is well-defined

Definition 2.21(Directional derivatives)The directional derivative of in the direction
of ¥ at 7 is defined by

@) - D)
h—0 h )

We typically takev’ to be a vector of unit length. One way to compute the direation
derivative is(V f)(Z) - @/, which ismuchbetter than having to take the limit.

Definition 2.22 (Tangent plane from the gradient)et S be the level set of valuefor
the functionf. The tangent plane aF , € S is defined by

(V@) - (2 = To) = 0.
2.2. Theorems.

Theorem 2.23(Limit Properties for sequences and functiorBjovided all limits are
finite,
e The limit of a constant times our sequence is that constarggiour sequence:
lim,,_, o cx, = clim,_, x,.
e The limit of a sum is the sum of the limits.
e The limit of a difference is the difference of the limits.
e The limit of a product is the product of the limits.
e The limit of a quotient is the quotient of the limits, prowddedditionally that
the limit of the denominator is non-zero.
e Sandwich Theorem: i&, < b, < ¢, andlim,_,. a, = lim,_ c,, then
lim,,_,~ b,, also equals this common value.
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These limit laws imply corresponding results for continsidunctions, namely the
sum, difference or product of continuous functions is cargus, as well as the quotient
(provided the denominator is non-zero). We also have thegosition of continuous
functions is continuous.

We have to avoid undefined expressiars: oo, 00-0, 0/0, co/oco; other expressions,
such asx + oo are okay.

Remark 2.24. To compute limits involving several variables, do not ugddgital’s
rule! That only works if you have a function of one variabl@uhould try simple
paths first — if two give a different value, then the limit doesxist. Good paths to
tryarex =0,y =0,x =y, x = —y or z = my for somem # 0. Of course, just
because the limit exists along all of these paths does nohrtiealimit exists. If the
limits are the same, though, it becomes more likely thatithi¢ oes exist. One way to
investigate is to switch to polar (in two variables) or spicaf (in three). In polar, we
setr = rcosf andy = rsinf. If (z,y) — (0,0) then this is the same as— 0 andd
is free. One frequently tries this if we have terms such®as 3 in the denominator.

It is essential that the limits are finite. For example, cdesthe three limits below:

. 1 . 1 . 53 1
lim(z-—), lim|lz-— ), lim(|(2° - — ).
z—0 x z—0 ,’L‘2 z—0 ,’L‘2

All of these limits are of the fornd - oo; the first is 1, the second is undefined and the
third is zero. We can maki oo, 0o /00, oo —oo and0/0 equal anything we want. More
care is thus needed whenever one of these is encounteretle Asnidamental limit of
calculus involved)/0, the quotient rule is not applicable and we need more powerfu
arguments.
For example, considdim, ;.0 (z* + y°)/(2? + y*)%. If we takez = 0 we
havelim, 0 y%/y* = lim, 0 y? = 0; if we takez = 0 then we havéim, o z*/z =
1. As two paths give different values, the limit does not exi#t instead we had
lim; )00y (2% + 4°)/(2* + y?)?, then both the path = 0 and the patly = 0 give a
limit of 0. More generally, ify = mx we get
. 2% 4+ mOab ) 1+mb 2 1+mb . 9 0
This suggests the limit might be zero, but is not a proof. &uwitg to polar coordinates
gives
6 6 6 o340

im % i t risin’f = lim 7?(cos® @ + sin® f).

0 tree r 0 tree
As | cost|,|sint| < 1, the sum of the sixth powers always lies between -2 and 2 (ac-
tually, between 0 and 2). As — 0 the product tends to zero since it is sandwiched
betweerD and2r2, both of which tend to zero.

Theorem 2.25(Main Theorem on Differentiation (not really covered in 2Qincluded
for completeness / future referencehe following implications hold: (1) implies (2)
implies (3), where

(1) The partial derivatives of are continuous.

(2) The functionf is differentiable.
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(3) The partial derivatives of exist.
Each reverse implication may fail.
Note that (2) trivially implies (3) and (1) trivially impl (3); the meat of the ar-

gument is proving that (1) implies (2). The proof uses the M¥alue Theorem and
adding zero.

Theorem 2.26(Differentiation rules) Let f, g : R* — R be differentiable functions,
and letc be a constant. Then

« Constant rule: The derivative eff () isc(Df) (7).
[

« Difference rule: The derivative of(@) — g(7)is (Df)(T) - (Dé)(?).
e Productrule: The derivative of(7’)g
e Quotient rule: The derivative of(7’) /g(7) is

(Df)(T)g(T) — f(T)(Dg)(T)
g(2)? '

Theorem 2.27(Chain Rule (we only did one output in 2011; the rest is ineldidor
completeness))Letg : R® — R™ and f : R™ — RP be differentiable functions, and
seth = f o g (the composition). Then

(DR)(T) = (Df)(9(T))(Dg)(T).
Important special cases are:
o Letc: R — R3andf: R® — R, and seth(t) = f(c(t)). Then

dh , ofde Ofdy 0Ofdz
o~ VW) <) = 5o+ 5w Yo ar

Note that we could have writtehf /Ox for df /dzx.

o
)
B~
=
o
2
o
+
=
o
o
s
o

o Letg(xy,...,x,) = (ur(z1,. .-, Tpn)s -y U (T, ..., x,) AN SEH(21, ..., 2,) =
f(g(xy,...,x,)), wheref : R™ — R. Then
oh _ 8f8u1+8f8uz+”. ﬁ@um‘
ox; Oou; Ox;  Oug Ox; o, 0x;
The situation we saw the most isifu, v) = f(z(u,v), y(u,v), z(u, v)) then

ow of ox of oy of 0z

Ol wow) 0% | (woworz0) O (o) OY | (worgonzo) Ol (uoswe) | 02 | wossorz0) OU | (uoyv0)

where
(70, Y0, 20) = (@(uo, vo), y(uo, v0), 2(uo, vo))-

Remark 2.28. The key step in proving the chain rule is multiplying by 1. \Wechto
do this to recognize terms as derivatives; in particulanrtake sure we are dividing by
the right quantity.
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Theorem 2.29(Intermediate Value Theorem)et f be a continuous function on an
interval [, b]. If C'is any value betweeyfi(a) and f(b), then there is a: in [a, b] such
that f(c) = C.

The key idea in the proof is using Divide and Conquer. For eaamif f(a) < 0,
f(b) > 0andC = 0, look at f(%£?); if that is negative we look for the root ifa, %£°]
while if it is positive we look for the root iftt2, b].

Theorem 2.30(Mean Value Theorem)Let f be a continuous, differentiable function.
Then there is & in [a, b] such that

f(b) = f(a)
b—a

or, equivalentlyf(b) — f(a) = f'(¢)(b — a).

Informally this means that at some point in time the instaetas speed equals the
average speed. The key idea in the proof is to use the Intéateedalue Theorem.
For example, if the average speed is 50mph and we are alwayditrg faster than
50mph, this is clearly impossible; similarly we cannot kavéling less than 50mph at
every instant. We are thus either always traveling at 50mmpit@ome point we exceed
50mph and at another point we are less than 50mph (and nowweisg¢rmediate Value
Theorem, applied tg’).

= f'(o),

Theorem 2.31(Very Important: Continuity of Partial Derivatives, the Tan gent
Plane and Differentiability). If the partial derivatives are continuodisenthe tangent
plane is an excellent approximation to the function (we alisibthe simpler case of the
tangent line being an excellent approximation to the fuorgti

The key idea in the proof is to use the Mean Value Theoremitoastthe difference
of the function at various arguments with partial derivasvat various arguments. The
Mean Value Theorem is used to reduce the problem to theetfterof partial deriva-
tives at very close points, which is small by the assumedrotyt of the partial deriva-
tives.

Theorem 2.32(Computing Directional Derivatives)he directional derivative of at

Z in the direction @ is (Vf)(7') - 7.

Theorem 2.33(Geometric interpretation of the gradientj (Vf)(2) # U then
(Vf)() points in the direction of fastest increasefof

Theorem 2.34(Gradients and level setd)et S be the level set of valuefor a function
f : R* — R. Then(V/f)(7) is perpendicular to any tangent vector ¢h More
explicitly, if ¢(t) is a path inS such that:(0) = 7 and¢(0) = 7/ is the tangent vector
attime 0, then(Vf)(Z) - ¥ = 0.

3. PART 3: HIGHER ORDER DERIVATIVES: MAXIMA AND MINIMA

Some of this material involves Taylor Series, and will be cared later in the
semester.
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3.1. Definitions.

Definition 3.1 (Higher partial derivatives)We write
0% f
Oyox

o (0f\
7 ()

note that we read the variables from right to left. In otherrdlg the variable furthest
to the right is what we differentiate with respect to first,iletihe one furthest to the
left is the last one. This is similar to composition of fuans, where inf(g(x)) we first
apply g and thenf, reading from right to left. Ify = x we write

of

ox?’
We often writef,, for df/0x and f,, for 8*f /0yox.
Definition 3.2 (Degree or order of a partial derivativé)Ve say the number of partial
derivatives taken in an expression is the order or degrekeférm. For examplea%

an . 2f azf
and -5 are all degree 3, wh|I§F and ;-5 are of degree 2.

Definition 3.3 (ClassC?). A functionf is of classC? if all of its partial derivatives up
to order 2 exist and are continuous. Fér: R? — R, this implies tha% of o°f 1

) ay) Ox2? ay2|
2 2 . .
1 and 2L all exist and are continuous.
Y yozx

Definition 3.4 (Hessian matrix) Let f be a twice-differentiable function. The Hessian
of f is the matrix of second partial derivatives:

for

o’y ... _Of
0x10x1 Oxn 01
Hf = | =+ -
orf ... _Of
0x10xn O0xnO0xn

The Hessian is very useful in Taylor series expansions a@t@rmining if a critical
point is a maximum or a minimum (the actual mechanism makessease after taking
linear algebra).

One easy way to remember what the order of derivatives ishrmHessian is the

following:
of of
Df =Vf =[=—,... .
;= vy (&Cl, ,axn)
The Hessian is the derivative of this, and so the first rod ¢f= D(Df) is V{f—i, and
we continue in this manner until the last row, Whicm%%.

Definition 3.5 (Local extrema) A functionf has a local maximum af’, if there is a
ball B about™’, such thatf(7’y) > f(7’) forall 7 € B; the definition for minimum
is similar. Equivalently, there is a local maximumzgif for all = sufficiently close to
7o we havef (7) < f(T).

Definition 3.6 (Critical point). A point@, is a critical point of f if (D f)(Z) = 0
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3.2. Theorems.

Theorem 3.7(Equality of Mixed Partial Derivatives)Let f : R" — R be a function of
classC? (which means that all the partial derivatives of order at m@®xist and are
continuous). Then for any two variablesandz; we have
orf 0f
8@-8% B 61’383}2 )
Theorem 3.8(Taylor's Theorem (One Variable))'he Taylor Series approximation to
f of ordern at the pointz is

" T (n) T
Flao) + £ o) — o) + L @ g T e
wheref (™ (x,) denotes the™" derivative off at .
Common examples are
> _n 2
- A o
e = ;H = l+a+ o+
B 0 (_l)ann B 2 4
COS T = ;W—l—a—i—J—
' B o (_1)nx2n+1 B .133 .T5
x .n 2 3
log(1-z) = - % :—(:c+—+—+ )
n=1
& (_1)n+1xn .TZ 1’3
log(1 — = 4T ...
og(1l+x) nz::l - T -3 + 3
1 - n 2 3
= Zx =l1+ao+2°+2°+---.

n=0
Theorem 3.9(Taylor's Theorem (Several Variables))Ve have

— lﬁT

F@+B) = [@)+(VH@) - B += R HH@) T+,

. . — — .
whereH f is the Hessian of and h ' is a row vector andh is a column vector.

Theorem 3.10(Tricks for Taylor Series Expansions)Ve give a few examples of some
powerful tricks to find Taylor series expansions.

x 2 x 4
(1)Cos(x+y):1—(;!y) —1—(2@/) — .

(2)Cosxsiny:(1—“’5—?4—---)@_%_?4_...)_
(3) ex_ycos(x+y):(1+(x_y)+%+...)(1__(“’;y) ).

To obtain a Taylor expansion of a given order, we just needake enough terms
above and expand.
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Theorem 3.11(First derivative test for local extremumlet f be a dlﬁerentlable func-
tion on an open sdt’. If @, € U is a local extremum, thefD f)(7,) = 0.

The following is an advanced theorem that is proved in anysialclass.

Theorem 3.12.Let f be a continuous function on a closed and bounded set. Fhen
attains its maximum and minimum on this set.

Remark 3.13. The corresponding result fails for open sets. Consider,efcample,
f(z) = £+ -1, This function does not attain a maximum or minimum value; as 0
the function diverges teo, while asz — 1 the function diverges te-cc. It may also
fail for unbounded sets; the functigitz) = 22 /(1+|z|?) has no maximum or minimum
if the input is all ofR; the reason is that as — oo, f(xz) — 1 while asz — —o¢,

f(z) —» —1.

Theorem 3.14(Method of Lagrange Multipliers)Let f,g : U — R, whereU is an

open subset dR™. Let S be the level set of valuefor the functiong, and let f|s be

the functlonf restricted toS (in other words, we only evaluateat @ € U). Assume
(Vg)(To) # 0. Thenf|s has an extremum &t if and only if there is a\ such that
(V) (T o) = AM(Vg)(To).

General comments: These problems are all done the same \e#ig.shy we have
functions of three variables, y, z. Find the function to maximizé, find the constraint
function g, and then solv&/ f(x,y, z) = AVg(z,y, z) andg(x,y, z) = c. Explicitly,
solve:

0 0
Vo) = Al(y2)
0 8
e = AGKwe)
0 0
Loy = 2wy
g(x,y,z) = c

For example, if we want to maximize,?z3 subjecttar +y + z = 4, thenf(z,y, 2) =
ry?z3 andg(z,y, z) = x+y+ 2 = 4. The hardest part is the algebra to solve the system
of equationsRemember to be on the lookout for dividing by zero. That ismaiowed,

and thus you need to deal with those cases separately. $p#ygjfif the quantity you
want to divide by can be zero, you have to consider as a sepaeste what happens
when it is zero, and as another case what happens when it zenot

Remark 3.15. There are lots of ways of doing the algebra. Remember thagahéis
to find the point. It might help to first fing, but if you can find the point without finding
A, that’s fine. A common approach is to take ratios of equatibnsthis runs the risk
of dividing by zero, which can lead to extra cases to chetkstill not a bad idea to do
this, as in each case we now know a lot, and those extra assamatequently make it
easy to handle a case.

Theorem 3.16(Finding extrema) To find the extrema (maximum and minima) of a
function f, the candidates are the critical points (the points whéx¢ vanishes) and
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then look for candidates on the boundary (which can ofterobad by Lagrange mul-
tipliers).

IMPORTANT: Why does the Method of Lagrange Multipliers Woikhe key idea
is directional derivatives. If we are looking @t and our input is constrained to sat-
isfy sayg(z1,...,z,) = ¢, we look at the directional derivative gfin any direction
tangent to the level set(xy, ..., z,) = c. To be a max or a min, the directional deriv-
ative must be zero. As the directional derivative in thediom o/ at (21, ..., z,) is
(Vf)(x1,...,2,) -, this forces the gradient of, (zy,...,2,) is (Vf)(x1,...,zn),
to be perpendicular to each possible tangent direction. dihlg direction left for the
gradient of f is perpendicular to all the tangent vectors, whic is the diien of the
normal to the surface; however, we kn¢Wg)(z1, ..., x,) is in the same direction as
the normal to the surface. Thus the two gradients must beeirséime direction. This
forces these two vectors to be parallel, so one is a multipteeother.

Theorem 3.17(Method of Least Squares§iven a set of observations

($1>y1)7 ($2>y2)7 BRI (xvaN)
and a proposed linear relationship betweeandy, namely
y = ar + b,

then the best fit values afandb (according to the Method of Least Squares) are given
by minimizing the error function given by

N

E(a,b) = Y (yn — (az, +1))*.

n=1

You do not need to know this for an exam, but the best fit valees a

25:1 1 25:1 TnYn — 25:1 Ln ZnNzl Yn
N N N N
Zn:l 1 En:l x?L - En:l Tn En:l Tn

b S ot T Do Tl — Doy T2 Yn
25:1 Tn 25:1 Ln — ZnN:I , nN=1 1

Remark 3.18. In the Method of Least Squares, we measure error by lookirteat
sum of the squares of the errors between the observed vahgetha predicted values.
There are other measurements of error possible, such as gunihe absolute values
of the errors or just summing the signed errors. The advantzgneasuring errors by
squaring is that it is not a signed quantity and calculus iplagable; the disadvantage
is that larger errors are given greater weight. Using abgelvalues weighs all errors
equally, but as the absolute value function is not diffeadié the tools of calculus are
unaccessible. If we just summed signed errors, then pestinors could cancel with
negative errors, which is quite bad.

(3.1)

Remark 3.19. The Method of Least Squares is applicable to far more thanlijusar
relationships, and gives a great application of logarithnifswe believe the variables
P andV are related byP = C'V" for some constant§’ and », we cannot use the
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Method of Least Squares to find the best fit valugs ahdr as we do not have a linear
relation. If, however, we take logarithms, we're in bussdsetP = log P, ¢ = log C,
andV =logV. ThenP = CV" become$ = rV + ¢, and now we can use the Method
of Least Squares to findandc.

4. PART 4: DOUBLE AND TRIPLE INTEGRALS
4.1. Definitions.

Definition 4.1 (Iterated Integral) The notation

/a b / " fay)dyda
/a b [ / df(:c,y)dy} di

Definition 4.2 (Bounded function) A real-valued functiorf is bounded by if for any
7 in the domain off we have

~-B < f(7) < B

means

equivalently,
f(T)] < B.

Definition 4.3 (Rectangle) The rectangléa, b] x [c, d] is the set of al(z, y) such that
a<z<bandc<y<d.

Definition 4.4 (Integral over an interval)The integral of a continuous functighover
an interval[a, b] is the limit of the upper or lower sum as the partition becorinesr
and finer (this means that the length of each subinterval urspdrtitioning the interval
[a, b] tends to 0).

Definition 4.5 (Integral over a rectangle)he integral of a continuous functighover

a rectangleR = [a,b] x [c,d] is the limit of the upper or lower sum as the partition
becomes finer and finer (this means that the length and widtadi sub-rectangle in
the partition of the rectanglg:, b] x [c, d] tends to 0). We denote this by

f

where we usé@ A to denote area.
Definition 4.6 (z-simple,y-simple, simple) A regionD c R? is z-simple if there are
continuous); andv, defined orjc, d| such that
U1 (y) < Pa(y)
and
D = {(v,y) : 1(y) <z < ip(y) and e <y < d};
similarly, D is y-simple if there are continuous functiops(x) and ¢,(x) such that

¢1(x) < @)
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and
D = {(z,y): p1(z) <y < ¢o(x) and a < z < b}.
If D is bothz-simple andy-simple then we sa is simple.

Definition 4.7 (Elementary region)A region that is eithet:-simple,y-simple or simple
is frequently called an elementary region.

Definition 4.8 (Probability distribution) A random variableX has a continuous prob-
ability distributionp if

(1) p(z ) > 0 for all ;

(2) f x)dx = 1;

(3) the probabllltyX takes on a value betweerandb is fab p(z)dx

Definition 4.9 (Uniform distribution) If p(z) = ﬁ for a < x < b and 0 otherwise,
thenp is the uniform distribution ona, b]. We often consider the special case when
a = 0andb = 1. Note that for the uniform distribution of#, 1], the probability we
take a value in an interval is just the length of the interval.

Definition 4.10(Mean, Variance) The mean or expected value of a random variable is
J=5 xp(x)dx. We typically denote the mean by The variance is defined by (z —

w)?p(x)dx, and measures how spread out a distribution is (the largentériance, the
more spread out it is). We typically denote the variancebgnd the standard deviation
by o. Note thato, 1 andz all have the same units, while the variance hs units equal to
the square of this.

4.2. Theorems.

Theorem 4. 11(Fubini’s Theorem) Let f be a continuous, bounded function on a rec-
tanglefa, b] x [c,d]. Then

//fxy¢4_/ /fxy@mﬁ:/dffxyww

Theorem 4.12(Integral over elementary regiond)et D C R? be an elementary region
andf : D — R be continuous o). Let R be a rectangle containing and extendf
to a functionf* by

0 otherwise

/ /D fegaa = [ /R F*(z, y)dA

Theorem 4.13(Reduction to iterated integralset D be ay-simple region given by
continuous functionsg; (z) < ¢,(x) fora < x < b. Then

//f”dA_//w Fo.y)dyd.

Fay) = {f(:c,y) f (.)€ D

Then
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4.3. Special Topics. Mathematical modeling: In mathematical modeling there are
two competing factors. We want the model rich enough to captie key features of
the system, yet be mathematically tractable. In generahtbre complicated the system
is, the more involved the model will be and the harder it waltb isolate nice properties
of the solution. For example, in modeling baseball gamesssaraed runs scored and
allowed were independent random variables. This cleartyofbe true (the simplest
reason is that if a team scoresuns then they cannot allomruns, as games do not end
in ties). The hope is that simple models which clearly carrethe entire story can
nevertheless capture enough of the important propertigteeafystem that the resulting
solutions will provide some insight. This is somewhat saniio Taylor series, where
we replace complicated functions with polynomials; as weseen with the incredibly
fast convergence of Newton’s Method, it is possible to abteary useful information
from these approximations!

In Monte Carlo Integration we can use Chebyshev’s Theoreshmésv convergence.
We probably won't do this level of detail in the class; thisrisluded below for future
reference.

Theorem 4.14.Let X be a random variable with finite meanand finite variancer?.
Then for anyt > 0 we have

Prob(|X — pu| > ko) < %
Monte Carlo Integration: Let D be a nice region ifrR™, and assume for simplicity
that it is contained in the--dimensional unit hypercub, 1] x [0,1] x --- x [0, 1].
Assume further that it is easy to verify if a given poiat, ..., z,) isin D or not in
D. Draw N points from then-dimensional uniform distribution; in other words, each
of then coordinates of théV points is uniformly distributed ofv, 1]. Then asV — o~
then-dimensional volume oD is well approximated by the number of points inside
divided by the total number of points.

5. PART 5: CHANGE OF VARIABLES FORMULA
5.1. Change of Variable Formula in the Plane.

Theorem 5.1 (Change of Variables Formula in the Planggt S be an elementary
region in thexy-plane (such as a disk or parallelogram for example). TetR? — R?
be an invertible and differentiable mapping, and1&tS) be the image ob under7.

Then
//1-dxdy:// 1-
S T(S)

or more generally

/ /S fag)-dady = [ /T ST

Some notes on the above:

(1) We assumé& has an inverse function, denotéd!. ThusT(z,y) = (u,v) and
T4 (u,v) = (z,y).

Oxrdy Oxdy

oudv Ovou dudv,

ooy oroy)
oudv Ovou wav.
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(2) We assume for eacdhr, y) € S there is one and only orie, v) that it is mapped
to, and conversely eacdh, v) is mapped to one and only ofie, y).
(3) The derivative o~ (u,v) = (z(u,v),y(u,v))is

o1 u,0) = ( %: %: ).

and the absolute value of the determinant of the derivasive i

_ Jxrdy Ox dy
1 f— _— . — —
[det (DT (u,v))| = Oudv  Ovou|’
which implies the area element transforms as
_ |0z 0y Oz 0Oy
Y =\ 5uau ~ o ou|

(4) Note thatf takes as input andy, but when we change variables our new inputs
areu andv. The mapl'~! takesu andv and givesr andy, and thus we need to
evaluatef at7'(u,v). Remember that we are now integrating oveandv,
and thus the integrand must be a functioni@ndwv.

(5) Note that the formula requires an absolute value of therdenant. The reason
is that the determinant can be negative, and we want to seealsmall area
element transforms. Area is supposed to be positively eslinNote in one-
variable calculus thq,fcf’ f(z)dz = — [ f(z)dz; we need the absolute value to
take care of issues such as this.

(6) While we stated is a differentiable mapping, our assumptions imply* is
differentiable as well.

5.2. Change of Variable Formula: Special Cases.

Theorem 5.2(Change of Variables Theorem: Polar Coordinatés}
x = rcosf, y = rsinfd

with» > 0 and# € [0, 27); note the inverse functions are

r = 22+ y? 0 = arctan(y/x).

Let D be an elementary region in the/-plane, and letD* be the corresponding region
in therf-plane. Then

//f(x,y)dxdy :/ f(rcos@,rsin@)rdrdd.
D D*

For example, ifD is the regionz? + y? < 1 in thezy-plane thenD* is the rectangle
[0, 1] x [0, 27] in therd-plane.
Theorem 5.3(Change of Variables Theorem: Cylindrical Coordinatést
xr = rcosf, y = rsinf, z = z

withr > 0, 6 € [0, 27) andz arbitrary; note the inverse functions are

r = Va2+y? 0 = arctan(y/z), z = =z
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Let D be an elementary region in the z-plane, and letD* be the corresponding region
in therfz-plane. Then

///f(x,y,z)dxdydz = // f(rcos@,rsind, z)rdrdfd:z.
D D

Theorem 5.4(Change of Variables Theorem: Spherical Coordinates)
xr = psingcosf, y = psingsinf, z = pcoso

with p > 0, 6 € [0,27] and¢ € [0, 7). Note that the angle is the angle made with the
z-axis; many books (such as physics texts) interchange tkeof@ andf. Let D be
an elementary region in theyz-plane, and letD* be the corresponding region in the
pbo-plane. Then

/ / /D f(a,y, 2)dzdydz

= / / f(psin¢cos B, psin ¢sin b, pcos @) p? sin(¢)dpddde.
D*

Note that the most common mistake is to have incorrect boahiigegration.

6. PART 6: SEQUENCES ANDSERIES

6.1. Definitions.

Definition 6.1 (Sequence)A sequencéa,, }>° , is the collectior{ag, ay, as, ... }. Note
sometimes the sequence starts wiffand nota, .

For example, ifs, = 1/n? then the sequence {g,1/4,1/9,1/16,...}.
Definition 6.2 (Series) A series is the sum of the terms in a sequence. If we have

a sequencea, }o°, then the partial sunsy is the sum of the firsiv terms in the
sequencesy = >V a,. We often denote the infinite sumdy

n=1

N
s = lim sy = lim E Q.
N—oo N—oo i "

-

Definition 6.3 (Alternating series)An alternating series is an infinite sum of a sequence
where the terms alternate in sign.

For exampleg,, = (—1)"/2" leads to an alternating series.

Definition 6.4 (Geometric Sequence / Seriegd)geometric sequence with common ratio
r and initial valuea is the sequencga, ar, ar?, ar?, ... }. The partial sums are

a— arN+1

1—1r

SN =

and the series sum (wher| < 1) is
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Definition 6.5 (Absolutely convergent seriesfonsider the sequende:,}>°,. The
corresponding series is absolutely convergent (or coree@psolutely) if the sum of
the absolute values of thg's converges; explicitly,

N
lim a
NFMm§£:| H
n=1
exists. If the sequence is just non-negative terms, we sédethe series converges.

Definition 6.6 (Conditionally convergent seriestonsider the sequende,, }>° ;. The
corresponding series is conditionally convergent (or @ges conditionally) if
N
dim ) a

exists.

Note a series may be conditionally convergent but not absigleonvergent. For
example, consider,, = (—1)" /n; the series converges conditionally but not absolutely.

Definition 6.7 (Diverges) If limy_. ij:l a, does not converge, then we say the se-
ries diverges.

6.2. Tests.

Theorem 6.8(End-term test) Let {a,, }>° , be a sequence. lfmy_, a, # 0 then the
series diverges.

Theorem 6.9(Comparison Test)Let {b, }°° , be a sequence of non-negative terms (so
b, > 0). Assume the series converges, dug}°° , is another sequence such that
la,| < b, for all n. Then the series attached {a,, }°° , also converges.

Theorem 6.10(p-Test) Let{a,}°, be the sequence with, = 1/n? for some fixed
p > 0; this is frequently called a-series. Ifp > 1 then the series converges, while if
p < 1 the series diverges.

Theorem 6.11(Ratio Test) Consider a sequende:, }>° , of positive terms. Let

. Qp+1
lim

r =

n—oo @y,

If » exists and- < 1 then the series converges, while-if- 1 then the series diverges;
if » = 1 then this test provides no information on the convergenadivargence of the
series.

For example, applying this test to the geometric seriesayjtl »" we find the series
converges for < 1 and diverges for > 1. If we considet, = 1/n andc, = 1/n?
then both of these have a corresponding valueazfual to 1, but the first diverges while
the second convergeb fact, the proof in general uses the comparison test agpbe
a related geometric series.

Theorem 6.12(Root Test) Consider a sequendg:, };° , of positive terms. Let
1/n

p = lima,/",
n—o0
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the n'" root of a,,. If p < 1 then the series converges, whileif> 1 then the series
diverges; ifp = 1 then the test does not provide any information.
The key idea in the proof is to use the comparison test withader® geometric series.

Theorem 6.13(Integral Test) Consider a sequencfu, }°° , of non-negative terms.
Assume there is some functipsuch thatf(n) = a,, and f is non-increasing. Then the

series
o0
> an
n=1

converges if and only if the integral

/1 " Fa)de

Theorem 6.14(Alternating Test) If {a,, }°° , is an alternating sequence wilim,, , . |a,,|
= 0 then the series converges.

converges.

6.3. Examples of divergent and convergent seriesWe first list some convergent se-
ries. If {a,}22, and{b,}5°, are convergent series and c, are any constants, then
{c1a, + c2b,}22 | is a convergent series; i.e.,

[e.e]

Z (ClCLn + Cgbn)

n=1

converges.

Convergent series
o a,=r"|rl <1,
e a,=1/n",p>1.
e a, = z"/n! foranyz.

Divergent series
® a,=r"|r>1.
e a, = 1/n? for p <1 (in particular,a,, = 1/n).
e If lim,,_, a, # 0 then the series cannot converge.

We have many tests — Comparison Test, Ratio Test, Root Teésgral Test. If possi-
ble, I like to try to use the Comparison Test first. It is vemyple, but has the significant
drawback that you need to be able to choose a good series facenvith. This is rem-
iniscent of finding the roots of a quadratic. If you can ‘seewhto factor it then the
problem is easy; if not, you have to resort to the quadratiméda (whichwill solve the
problem after some work).

So too it is here. We first try to see if we can be clever and ohdlos right series to
compare with, but if we fail then we can resort to one of thespthsts.



