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ABSTRACT. Below is a summary of definitions and some key lemmas, theorems and
concepts from multivariable calculus. I have removed .eps images as several people
have had difficulty downloading and viewing the file when the images are included; if
you want these let me know.

Note: you are responsible for making sure all items be-
low are correct; if you find any mistakes please let me
know for extra credit.

These notes were begun for the Spring 2010 version of
the class. That year the textbook used parentheses and
not angular brackets for vectors, and so in the text below
vectors are displayed with parentheses.
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1. PART 1: VECTORS, CURVES AND SURFACES IN SPACE

1.1. Definitions.

Definition 1.1 (Equation of a line). The line going through the point
−→
P in the direction

−→v is the set of all points(x1, . . . , xn) such that

(x1, . . . , xn) =
−→
P + t−→v .

In three dimensions, we have

(x, y, z) =
−→
P + t−→v .

If −→v = (v1, v2, v3) and
−→
P = (P1, P2, P3), this is equivalent to the system of equations

x = P1 + tv1

y = P2 + tv2

z = P3 + tv3.

If we have two points on the line but not the direction, we may find the direction by
subtracting one point from the other.

Definition 1.2 (Equation of a plane). The plane going through the point
−→
P with direc-

tions−→v and−→w is all points(x, y, z) satisfying

(x, y, z) =
−→
P + t−→v + s−→w .

If instead we are given a normal direction−→n , then the plane going through
−→
P with

normal in the direction−→n is the set of all points(x, y, z) such that
(
(x, y, z)−

−→
P
)
⋅ −→n = 0.

Remark 1.3. A common mistake is that if we are given three points
−→
P ,

−→
Q,

−→
R and asked

for the plane containing them to write
−→
P + t

−→
Q + s

−→
R ; the reason this is wrong is that

−→
Q and

−→
R are not the two directions. To find the directions, we choose one of the three

points, say
−→
P , as the base point, and then look at each of the other two minusthat for

the two directions, or say−→v =
−→
Q −

−→
P , −→w =

−→
R −

−→
P .

Definition 1.4 (Determinants). The determinant of two vectors represents the signed
area of the parallelogram generated by the two vectors (for three vectors it is the signed
volume). If

A =

(
a b
c d

)

then

det(A) = ad− bc.
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We often write∣A∣ for the determinant ofA. If

B =

⎛
⎝

a b c
d e f
g ℎ i

⎞
⎠

then

det(B) = ∣B∣ = aei+ bfg + cdℎ− gec− ℎfa− idb.

One can remember the definition of the determinant in the3× 3 case by copying the
first two columns of the matrix and looking at the three diagonals from upper left to
lower right and the three diagonals from the lower left to theupper right. The first three
are all added while the last three are all subtracted.

Definition 1.5 (Dot Product). If −→v = (v1, . . . , vn) and−→w = (w1, . . . , wn) then the dot
(or inner) product is defined by

−→v ⋅ −→w = v1w1 + ⋅ ⋅ ⋅+ vnwn =
n∑

i=1

viwi.

For example, if−→v = (1, 2, 3) and−→w = (3, 2, 1) then
−→v ⋅ −→w = 1 ⋅ 3 + 2 ⋅ 2 + 3 ⋅ 1 = 10.

Remark 1.6. A common mistake with the dot product is to forget the result is a scalar
(i.e., a number) and have the result a vector. Remember to addthe sum of the product
of the components; do not form a new vector whoseith component is the product of the
two ith components.

Definition 1.7 (Cross product). If −→v = (v1, v2, v3) and−→w = (w1, w2, w3) then the
cross product is defined by

−→v ×−→w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

One can remember this by abusing notation and computing
∣∣∣∣∣∣

−→
i

−→
j

−→
k

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
.

Definition 1.8 (Polar coordinates). We have

x = r cos �, y = r sin �,

with � ∈ [0, 2�) andr ≥ 0. We may invert these relations, and find

r =
√
x2 + y2, � = arctan(y/x).

Definition 1.9 (Cylindrical coordinates). We have

x = r cos �, y = r sin �, z = z

with � ∈ [0, 2�) andr ≥ 0. We may invert these relations, and find

r =
√
x2 + y2, � = arctan(y/x), z = z.
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Definition 1.10 (Spherical coordinates). We have

x = � sin � cos �, y = � sin� sin �, z = � cos�,

where0 ≤ � ≤ � and0 ≤ � < 2�. We may invert these relations, and find

� = x2 + y2 + z2, � = arccos(z/�), � = arctan(y/x).

1.2. Theorems.

Theorem 1.11(Pythagorean Theorem). If we have a right triangle with sidesa andb
and hypotenusec, then

c2 = a2 + b2.

Theorem 1.12(Law of Cosines). Consider a triangle with sidesa, b, c and angle�
opposite of the side of lengthc. Then

c2 = a2 + b2 − 2ab cos �.

Key steps in proof: draw good auxiliary lines to reduce to right triangles, and use the
Pythagorean Theorem.

Theorem 1.13(Length of a vector). If −→v = (v1, . . . , vn) then

∣∣−→v ∣∣ =
√
v21 + ⋅ ⋅ ⋅+ v2n.

The key to the proof is repeated applications of the Pythagorean Theorem.

If we want to normalize a vector, that means constructing a new vector of the same
direction but of unit length. If−→v is not the zero vector, then

−→u =
−→v

∣∣−→v ∣∣

is a unit vector in the direction of−→v .

Theorem 1.14(Angle formula). If � denotes the angle between vectors−→v and−→w , then

−→v ⋅ −→w = ∣∣v∣∣ ∣∣w∣∣ cos �.

Key ideas in proof: write the sides of the triangle as vectorsin terms of the coordi-
nates, and then apply the Law of Cosines to these lengths.

Theorem 1.15(Cross product interpretation). The vector−→v ×−→w is a vector perpendic-
ular to−→v and−→w such that its length is the signed area of the parallelogram generated
by−→v and−→w .

Theorem 1.16(Cauchy-Schwarz Inequality). For any two vectors−→v and−→w we have

∣−→v ⋅ −→w ∣ ≤ ∣∣−→v ∣∣ ∣∣−→w ∣∣.
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Did not do the Cauchy-Schwarz inequality in class. Will not be on any exam, but with
knowing.

The cross product and the dot product have many nice relations, such as
−→
P ⋅ (

−→
Q +

−→
R ) =

−→
P ⋅

−→
Q +

−→
P ⋅

−→
R

−→
P × (

−→
Q +

−→
R ) =

−→
P ×

−→
Q +

−→
P ×

−→
R.

While the dot product is commutative,
−→
P ⋅

−→
Q =

−→
Q ⋅

−→
P , the cross product is not:

−→
P ×

−→
Q = −

−→
Q ×

−→
P .
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FIGURE 1. Plot ofsin(x+ y) and then the level sets ofsin(x+ y).

FIGURE 2. Plot ofsin(xy) and then the level sets ofsin(xy).

2. PART 2: DERIVATIVES AND PARTIAL DERIVATIVES

2.1. Definitions. Just because a quantity does not have an arrow over it should not
be construed as implying it cannot be a vector. Many of the concepts have the same
definition for scalars and vectors, and for brevity we typically give just one.

Definition 2.1 (Function terminology). Thedomainis the set of inputs for the function,
while therangeis the set of possible outputs. When we writef : ℝn → ℝ

m we mean
the function takesn inputs and givesm outputs. We typically denote this

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .

An example of anf : ℝ3 → ℝ
2 is

f(x, y, z) = (xy cos(y2z) + ez, 3 + 4x+ 5y2 + 6z3).

Remark 2.2. When determining the domain of a function, the two most common danger
points are dividing by zero and taking a square-root of a negative number (both not
allowed!).

Definition 2.3 (Level sets). The level set of valuec of a function is the set of all inputs
where the function takes on the valuec. Specifically, iff : ℝ2 → ℝ then the level set of
valuec is

{(x, y) : f(x, y) = c}.

For example, see the plots ofsin(x+ y) in Figure 1 andsin(xy) in Figure 2. We also
show their level sets (which is frequently called a contour plot).

Definition 2.4 (Limit of a sequence). We say a sequence{an}∞n=0 hasL as a limit if as
n tends to infinity we havean tends toL. We denote this aslimn→∞ an = L.

For example, consider the sequence{an}
∞

n=1 wherean = (−1)n/n; thus our se-
quence is{−1, 1/2,−1/3, 1/4, . . .} and its limit exists, which is 0. The sequence
{bn}

∞

n=1 given bybn = (−1)n has no limit, as its terms oscillate between -1 and 1.

Definition 2.5 (Limit of a function). A functionf(x) hasL as a limit atx0 if however
x approachesx0 we havef(x) approachesL. We denote this bylimx→x0

f(x) = L.
NOTE: we never have a term in any of our sequence equal tox0; the goal is to under-
stand what happens asx approachesx0.

For the above definition, what we are essentially saying is that givenany sequence
xn which approachesx0 we havef(xn) approachingf(x0). For example, consider the
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FIGURE 3. Plot ofx sin(1/x).

FIGURE 4. Plot of∣y∣ < x union the origin.

function

f(x) =

{
sin(1/x) if x ∕= 0

0 if x = 0.

This function does not have a limit at the pointx0 = 0. To see this, consider the
sequencexn = 1

2�n
andx̃n = 1

(2�+ 1

2
)n

. Notef(xn) = 0 for every term in this sequence,

but f(x̃n) = 1 for every term in this sequence. Thus there are two sequenceswith two
different limits, and thus the function does not have a limitat 0.

Definition 2.6 (Continuity of a function). A functionf(x) is continuous atx0 if the limit
exists asx→ x0 and that limit isf(x0). This meanslimx→x0

f(x) = f(x0).

For example, consider

g(x) =

{
x sin(1/x) if x ∕= 0

0 if x = 0.

This function is continuous at0; see Figure 3.

Definition 2.7 (Ball or Disk (not really covered in 2011, included for completeness /
future reference)). The ball or disk of radiusr about a point−→x0 is the set of all points
that are less thanr units from−→x0. We assumer > 0 as otherwise the ball is empty. We
denote this set by

Dr(
−→x0) = {−→x such that ∣∣−→x −−→x0∣∣ < r}.

Definition 2.8 (Open Set (not really covered in 2011, included for completeness / future
reference)). A setU is open if for any−→x0 ∈ U we can always find anr (which may
depend on the point−→x0 such thatDr(

−→x0) ⊂ U . This means that, no matter what point
we take inU , we can find a very small ball (or disk) centered at that point and entirely
contained inU .

The following sets are open (not really covered in 2011, included for completeness /
future reference):{(x, y) : y > 0}, {(x, y, z) : x2 + 4y2 + 9z2 < 1}. The following
sets are not open:{(x, y) : y ≥ 0} and{(x, y, z) : x2 + 4y2 + 9z2 ≤ 1}. For another
set that is not open, consider{(x, y) : ∣y∣ < x} ∪ {(0, 0)}; this is the set of all points
between the linesy = x andy = −x and the origin. See Figure 4.

Definition 2.9 (Derivative). Let f : ℝ → ℝ be a function. We sayf is differentiable at
x0, and denote this byf ′(x0) or df/dx, if the following limit exists:

lim
ℎ→0

f(x0 + ℎ)− f(x0)

ℎ
.
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We may also write this limit by

lim
x→x0

f(x0 + ℎ)− f(x0)

ℎ
,

or as

lim
x→x0

f(x0 + ℎ)− f(x0)− f ′(x0)ℎ

ℎ
= 0.

Definition 2.10 (Partial derivatives). Let f : ℝ
n → ℝ be a function ofn variables

x1, . . . , xn. We say the partial derivative with respect toxi exists at the pointa =
(a1, . . . , an) if

lim
ℎ→0

f(−→a + ℎ−→e i)− f(−→a )

ℎ
exists, where

−→a + ℎ−→e i = (a1, . . . , ai−1, ai + ℎ, ai+1, . . . , an);

here−→e i is the unit vector in the direction of theith coordinate axis, which means all of
its entries are 0 save theith, which is 1.

For example, iff(x, y, z) = 3x2y + x cos(y), then

∂f

∂x
= 6xy + cos(y),

∂f

∂y
= 3x2 − x sin(y),

∂f

∂z
= 0.

Note that to take a partial derivative with respect tox, we treat all the other variables
as constants. A good way to test your answer at the end is to go back to the original
equation and replace all variables with constants, and thensee if your answer agrees
with the derivative of this (when you put in constants). For example, in our case if we set
y = 3 andz = 5 we getg(x) = f(x, 3, 5) = 9x2+x cos(3), anddg/dx = 18x+cos(3),
which is exactly∂f

∂x
(x, 3, 5).

Remark 2.11. It is very important to use the write notation; we use∂ and notd or a
prime for a partial derivative.

Definition 2.12 (Tangent plane approximation). Let f : ℝ2 → ℝ. The tangent plane
approximation tof at (x0, y0) is given by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0),

provided of course the two partial derivatives exist.

In one variable, we writey = f(x) and we write the tangent line asy = f(x0) +
f ′(x0)(x− x0). The above is the natural generalization, with nowz = f(x, y).

Definition 2.13 (Differentiability: two variables (not really covered in 2011, included
for completeness / future reference)). Let f : ℝ2 → ℝ. We sayf is differentiable at
(x0, y0) if the tangent plane approximation tends to zero significantly more rapidly than
∣∣(x, y)− (x0, y0)∣∣ tends to 0 as(x, y) → (x0, y0). Specifically,f is differentiable if

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)−
∂f
∂x
(x0, y0)(x− x0)−

∂f
∂y
(x0, y0)(y − y0)

∣∣(x, y)− (x0, y0)∣∣
= 0.
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Note the above is truly the generalization of the derivativein one variable. The dis-
tancex− x0 is replaced with∣∣(x, y)− (x0, y0)∣∣; while this is always positive, the fact
that the limit must equal zero for the function to be differentiable means we could have
used∣x−x0∣ in the denominator in the definition of the derivative of one variable. Also
note that the last two parts of the tangent plane approximation can be written as a dot
product of two vectors:

∂f

∂x
(x0, y0)(x−x0)+

∂f

∂y
(x0, y0)(y−y0) =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
⋅(x−x0, y−y0).

Definition 2.14 (Gradient). The gradient of a functionf : ℝn → ℝ is the vector of the
partial derivatives with respect to each variable. We write

grad(f) = ∇f = Df =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

If f(x, y, z) = 3x2y + x cos(y), then∇f = (6xy + cos(y), 3x2 − x sin(y), 0).

Definition 2.15(Differentiability: several variables but only one output(not really cov-
ered in 2011, included for completeness / future reference)). Letf : ℝn → ℝ. We sayf
is differentiable at−→a if the tangent hyperplane approximation tends to zero significantly
more rapidly than∣∣−→x −−→a ∣∣ tends to 0 as−→x → −→a . Specifically,f is differentiable if

lim
−→x→

−→a

f(x, y)− f(−→a )− (∇f)(−→a ) ⋅ (−→x −−→a )

∣∣−→x −−→a ∣∣
= 0.

For example, iff is a function of two variables thenf is differentiable at(0, 0) if

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− ∂f
∂x
(0, 0)(x− 0)− ∂f

∂y
(0, 0)(y − 0)

∣∣(x, y)− (0, 0)∣∣
= 0.

Definition 2.16(Derivative notation (not really covered in 2011, includedfor complete-
ness / future reference)). Letf : ℝn → ℝ

m; we may write

f(−→x ) = (f1(
−→x , . . . , fm(

−→x )) .

By (Df)(−→x0) we mean the matrix whose first row is(∇f1)(
−→x ), whose second row is

(∇f)(−→x ), and so on until the last row, which is(∇fm)(
−→x ). In full glory, we have

(Df)(x0) =

⎛
⎜⎝

∂f1
∂x1

(−→x ) ⋅ ⋅ ⋅ ∂f1
∂xn

(−→x )
...

. . .
...

∂fm
∂x1

(−→x ) ⋅ ⋅ ⋅ ∂fm
∂xn

(−→x )

⎞
⎟⎠ .

Note(Df)(−→x ) is a matrix withm rows andn columns.

Definition 2.17 (Differentiability: several variables and several outputs (not really cov-
ered in 2011, included for completeness / future reference)). Let f : ℝn → ℝ

m. We
sayf is differentiable at−→a if the tangent hyperplane approximation for each compo-
nent tends to zero significantly more rapidly than∣∣−→x − −→a ∣∣ tends to 0 as−→x → −→a .
Specifically,f is differentiable if

lim
−→x→

−→a

f(−→x )− f(−→a )− (Df)(−→a ) ⋅ (−→x −−→a )

∣∣−→x −−→a ∣∣
=

−→
0 ,

where we regard−→x −−→a as a column vector being acted on by the matrix(Df)(−→a ).
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Definition 2.18 (C1 (not really covered in 2011, included for completeness / future
reference)). A function is said to beC1 (or of classC1) if all of its partial derivatives
exist and if these partial derivatives are continuous.

While all the partial derivatives of the functionf(x, y) = (xy)1/3 exist, this function
is notC1 as the partial derivatives are not continuous at the origin.

Definition 2.19(Parametrization of paths / curves (not really covered in 2011, included
for completeness / future reference)). A mapc from an interval toℝn traces out a path
or curve in space. Ifc : [a, b] → ℝ

n thenc(a) is the initial point of the path andc(b) is
the endpoint. Ifc(a) = c(b) then the path is closed. It is a path in the plane ifn = 2
and a path in space ifn = 3. Whenn = 2 we often writec(t) = (x(t), y(t)), and if
n = 3 we writec(t) = (x(t), y(t), z(t)). The vectorc′(t) is the velocity vector, and the
instantaneous speed at timet is given by∣∣c′(t)∣∣. The tangent line at timet0 is given by
(x, y, z) = c(t0) + c′(t0)t.

Remark 2.20 ((Not really covered in 2011, included for completeness / future refer-
ence)). Note that(Dc)(t) is a column vector. The reason this is so is thatc : ℝn → ℝ

in general, soc(t) = (c1(t), . . . , cn(t)). The derivative matrixDc has as its first
row Dc1 = ∇c1, ..., and its last row isDcn = ∇cn. As there is only one variable,
Dc1 = ∇c1 = dc1/dt, and thus(Dc)(t) is a column vector. This is needed so that the
multiplication of matrices in the chain rule is well-defined.

Definition 2.21(Directional derivatives). The directional derivative off in the direction
of −→v at −→x is defined by

lim
ℎ→0

f(−→x + ℎ−→v )− f(−→x )

ℎ
.

We typically take−→v to be a vector of unit length. One way to compute the directional
derivative is(∇f)(−→x ) ⋅ −→v , which ismuchbetter than having to take the limit.

Definition 2.22 (Tangent plane from the gradient). LetS be the level set of valuek for
the functionf . The tangent plane at−→x 0 ∈ S is defined by

(∇f)(−→x 0) ⋅ (
−→x −−→x 0) = 0.

2.2. Theorems.

Theorem 2.23(Limit Properties for sequences and functions). Provided all limits are
finite,

∙ The limit of a constant times our sequence is that constant times our sequence:
limn→∞ cxn = c limn→∞ xn.

∙ The limit of a sum is the sum of the limits.
∙ The limit of a difference is the difference of the limits.
∙ The limit of a product is the product of the limits.
∙ The limit of a quotient is the quotient of the limits, provided additionally that

the limit of the denominator is non-zero.
∙ Sandwich Theorem: ifan ≤ bn ≤ cn and limn→∞ an = limn→∞ cn, then
limn→∞ bn also equals this common value.
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These limit laws imply corresponding results for continuous functions, namely the
sum, difference or product of continuous functions is continuous, as well as the quotient
(provided the denominator is non-zero). We also have the composition of continuous
functions is continuous.

We have to avoid undefined expressions:∞−∞,∞⋅0, 0/0,∞/∞; other expressions,
such as∞+∞ are okay.

Remark 2.24. To compute limits involving several variables, do not use L’Hopital’s
rule! That only works if you have a function of one variable. You should try simple
paths first – if two give a different value, then the limit doesn’t exist. Good paths to
try are x = 0, y = 0, x = y, x = −y or x = my for somem ∕= 0. Of course, just
because the limit exists along all of these paths does not mean the limit exists. If the
limits are the same, though, it becomes more likely that the limit does exist. One way to
investigate is to switch to polar (in two variables) or spherical (in three). In polar, we
setx = r cos � andy = r sin �. If (x, y) → (0, 0) then this is the same asr → 0 and�
is free. One frequently tries this if we have terms such asx2 + y2 in the denominator.

It is essential that the limits are finite. For example, consider the three limits below:

lim
x→0

(
x ⋅

1

x

)
, lim

x→0

(
x ⋅

1

x2

)
, lim

x→0

(
x3 ⋅

1

x2

)
.

All of these limits are of the form0 ⋅ ∞; the first is 1, the second is undefined and the
third is zero. We can make0 ⋅∞,∞/∞,∞−∞ and0/0 equal anything we want. More
care is thus needed whenever one of these is encountered. As the fundamental limit of
calculus involves0/0, the quotient rule is not applicable and we need more powerful
arguments.

For example, considerlim(x,y)→(0,0)(x
4 + y6)/(x2 + y2)2. If we takex = 0 we

havelimy→0 y
6/y4 = limy→0 y

2 = 0; if we takex = 0 then we havelimx→0 x
4/x =

1. As two paths give different values, the limit does not exist. If instead we had
lim(x,y)→(0,0)(x

6 + y6)/(x2 + y2)2, then both the pathx = 0 and the pathy = 0 give a
limit of 0. More generally, ify = mx we get

lim
x→0

x6 +m6x6

(x2 +m2x2)2
= lim

x→0

1 +m6

(1 +m2)2
x6

x4
=

1 +m6

(1 +m2)2
lim
x→0

x2 = 0.

This suggests the limit might be zero, but is not a proof. Switching to polar coordinates
gives

lim
r→0

� free

r6 cos6 � + r6 sin6 �

r4
= lim

r→0

� free

r2(cos6 � + sin6 �).

As ∣ cos t∣, ∣ sin t∣ ≤ 1, the sum of the sixth powers always lies between -2 and 2 (ac-
tually, between 0 and 2). Asr → 0 the product tends to zero since it is sandwiched
between0 and2r2, both of which tend to zero.

Theorem 2.25(Main Theorem on Differentiation (not really covered in 2011, included
for completeness / future reference)). The following implications hold: (1) implies (2)
implies (3), where

(1) The partial derivatives off are continuous.
(2) The functionf is differentiable.
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(3) The partial derivatives off exist.

Each reverse implication may fail.

Note that (2) trivially implies (3) and (1) trivially implies (3); the meat of the ar-
gument is proving that (1) implies (2). The proof uses the Mean Value Theorem and
adding zero.

Theorem 2.26(Differentiation rules). Let f, g : ℝn → ℝ be differentiable functions,
and letc be a constant. Then

∙ Constant rule: The derivative ofcf(−→x ) is c(Df)(−→x ).
∙ Sum rule: The derivative off(−→x ) + g(−→x ) is (Df)(−→x ) + (Dg)(−→x ).
∙ Difference rule: The derivative off(−→x )− g(−→x ) is (Df)(−→x )− (Dg)(−→x ).
∙ Product rule: The derivative off(−→x )g(−→x ) is (Df)(−→x )g(−→x )+f(−→x )(Dg)(−→x ).
∙ Quotient rule: The derivative off(−→x )/g(−→x ) is

(Df)(−→x )g(−→x )− f(−→x )(Dg)(−→x )

g(−→x )2
.

Theorem 2.27(Chain Rule (we only did one output in 2011; the rest is included for
completeness)). Let g : ℝn → ℝ

m andf : ℝm → ℝ
p be differentiable functions, and

setℎ = f ∘ g (the composition). Then

(Dℎ)(−→x ) = (Df)(g(−→x ))(Dg)(−→x ).

Important special cases are:

∙ Let c : ℝ → ℝ
3 andf : ℝ3 → ℝ, and setℎ(t) = f(c(t)). Then

dℎ

dt
= (∇f)(c(t)) ⋅ c′(t) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
.

Note that we could have written∂f/∂x for df/dx.

∙ Letg(x1, . . . , xn) = (u1(x1, . . . , xn), . . . , um(x1, . . . , xn) and setℎ(x1, . . . , xn) =
f(g(x1, . . . , xn)), wheref : ℝm → ℝ. Then

∂ℎ

∂xi
=

∂f

∂u1

∂u1
∂xi

+
∂f

∂u2

∂u2
∂xi

+ ⋅ ⋅ ⋅+
∂f

∂um

∂um
∂xi

.

The situation we saw the most is ifw(u, v) = f(x(u, v), y(u, v), z(u, v)) then

∂w

∂u

∣∣∣
(u0,v0)

=
∂f

∂x

∣∣∣
(x0,y0,z0)

∂x

∂u

∣∣∣
(u0,v0)

+
∂f

∂y

∣∣∣
(x0,y0,z0)

∂y

∂u

∣∣∣
(u0,v0)

+
∂f

∂z

∣∣∣
(x0,y0,z0)

∂z

∂u

∣∣∣
(u0,v0)

,

where

(x0, y0, z0) = (x(u0, v0), y(u0, v0), z(u0, v0)).

Remark 2.28. The key step in proving the chain rule is multiplying by 1. We need to
do this to recognize terms as derivatives; in particular, tomake sure we are dividing by
the right quantity.
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Theorem 2.29(Intermediate Value Theorem). Let f be a continuous function on an
interval [a, b]. If C is any value betweenf(a) andf(b), then there is ac in [a, b] such
thatf(c) = C.

The key idea in the proof is using Divide and Conquer. For example, if f(a) < 0,
f(b) > 0 andC = 0, look atf(a+b

2
); if that is negative we look for the root in[a, a+b

2
]

while if it is positive we look for the root in[a+b
2
, b].

Theorem 2.30(Mean Value Theorem). Let f be a continuous, differentiable function.
Then there is ac in [a, b] such that

f(b)− f(a)

b− a
= f ′(c),

or, equivalently,f(b)− f(a) = f ′(c)(b− a).

Informally this means that at some point in time the instantaneous speed equals the
average speed. The key idea in the proof is to use the Intermediate Value Theorem.
For example, if the average speed is 50mph and we are always traveling faster than
50mph, this is clearly impossible; similarly we cannot be traveling less than 50mph at
every instant. We are thus either always traveling at 50mph or, at some point we exceed
50mph and at another point we are less than 50mph (and now use the Intermediate Value
Theorem, applied tof ′).

Theorem 2.31(Very Important: Continuity of Partial Derivatives, the Tan gent
Plane and Differentiability ). If the partial derivatives are continuousthenthe tangent
plane is an excellent approximation to the function (we alsodid the simpler case of the
tangent line being an excellent approximation to the function).

The key idea in the proof is to use the Mean Value Theorem to estimate the difference
of the function at various arguments with partial derivatives at various arguments. The
Mean Value Theorem is used to reduce the problem to the difference of partial deriva-
tives at very close points, which is small by the assumed continuity of the partial deriva-
tives.

Theorem 2.32(Computing Directional Derivatives). The directional derivative off at
−→x in the direction−→v is (∇f)(−→x ) ⋅ −→v .

Theorem 2.33 (Geometric interpretation of the gradient). If (∇f)(−→x ) ∕=
−→
0 then

(∇f)(−→x ) points in the direction of fastest increase off .

Theorem 2.34(Gradients and level sets). LetS be the level set of valuek for a function
f : ℝ

n → ℝ. Then(∇f)(−→x ) is perpendicular to any tangent vector onS. More
explicitly, if c(t) is a path inS such thatc(0) = −→x andc′(0) = −→v is the tangent vector
at time 0, then(∇f)(−→x ) ⋅ −→v = 0.

3. PART 3: HIGHER ORDER DERIVATIVES: MAXIMA AND M INIMA

Some of this material involves Taylor Series, and will be covered later in the
semester.
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3.1. Definitions.

Definition 3.1 (Higher partial derivatives). We write

∂2f

∂y∂x

for
∂

∂y

(
∂f

∂x

)
;

note that we read the variables from right to left. In other words, the variable furthest
to the right is what we differentiate with respect to first, while the one furthest to the
left is the last one. This is similar to composition of functions, where inf(g(x)) we first
applyg and thenf , reading from right to left. Ify = x we write

∂2f

∂x2
.

We often writefx for ∂f/∂x andfxy for ∂2f/∂y∂x.

Definition 3.2 (Degree or order of a partial derivative). We say the number of partial
derivatives taken in an expression is the order or degree of the term. For example,∂

3f
∂x2∂y

and ∂3f
∂x∂z∂y

are all degree 3, while∂
2f

∂y2
and ∂2f

∂x∂y
are of degree 2.

Definition 3.3 (ClassC2). A functionf is of classC2 if all of its partial derivatives up
to order 2 exist and are continuous. Forf : ℝ2 → ℝ, this implies that∂f

∂x
, ∂f
∂y

, ∂2f
∂x2 , ∂2f

∂y2
,

∂2f
∂x∂y

and ∂2f
∂y∂x

all exist and are continuous.

Definition 3.4 (Hessian matrix). Let f be a twice-differentiable function. The Hessian
of f is the matrix of second partial derivatives:

Hf =

⎛
⎜⎝

∂2f
∂x1∂x1

⋅ ⋅ ⋅ ∂2f
∂xn∂x1

...
. . .

...
∂2f

∂x1∂xn
⋅ ⋅ ⋅ ∂2f

∂xn∂xn

⎞
⎟⎠ .

The Hessian is very useful in Taylor series expansions and indetermining if a critical
point is a maximum or a minimum (the actual mechanism makes more sense after taking
linear algebra).

One easy way to remember what the order of derivatives is for the Hessian is the
following:

Df = ∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The Hessian is the derivative of this, and so the first row ofHf = D(Df) is∇ ∂f
∂x1

, and

we continue in this manner until the last row, which is∇ ∂f
∂xn

.

Definition 3.5 (Local extrema). A functionf has a local maximum at−→x 0 if there is a
ball B about−→x 0 such thatf(−→x 0) ≥ f(−→x ) for all −→x ∈ B; the definition for minimum
is similar. Equivalently, there is a local maximum at−→x0 if for all −→x sufficiently close to
−→x 0 we havef(−→x ) ≤ f(−→x 0).

Definition 3.6 (Critical point). A point−→x 0 is a critical point off if (Df)(−→x 0) =
−→
0 .
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3.2. Theorems.

Theorem 3.7(Equality of Mixed Partial Derivatives). Letf : ℝn → ℝ be a function of
classC2 (which means that all the partial derivatives of order at most 2 exist and are
continuous). Then for any two variablesxi andxj we have

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

Theorem 3.8(Taylor’s Theorem (One Variable)). The Taylor Series approximation to
f of ordern at the pointx0 is

f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + ⋅ ⋅ ⋅+
f (n)(x0)

n!
(x− x0)

n,

wheref (n)(x0) denotes thenth derivative off at x0.

Common examples are

ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+ ⋅ ⋅ ⋅

cos x =
∞∑

n=0

(−1)nx2n

(2n)!
= 1−

x2

2!
+
x4

4!
− ⋅ ⋅ ⋅

sin x =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
= x−

x3

3!
+
x5

5!
− ⋅ ⋅ ⋅

log(1− x) = −
∞∑

n=1

xn

n
= −

(
x+

x2

2
+
x3

3
+ ⋅ ⋅ ⋅

)

log(1 + x) =
∞∑

n=1

(−1)n+1xn

n
= x−

x2

2
+
x3

3
− ⋅ ⋅ ⋅

1

1− x
=

∞∑

n=0

xn = 1 + x+ x2 + x3 + ⋅ ⋅ ⋅ .

Theorem 3.9(Taylor’s Theorem (Several Variables)). We have

f(−→x0 +
−→
ℎ ) = f(−→x0) + (∇f)(−→x0) ⋅

−→
ℎ +

1

2

−→
ℎ T(Hf)(−→x0)

−→
ℎ + ⋅ ⋅ ⋅ ,

whereHf is the Hessian off and
−→
ℎ T is a row vector and

−→
ℎ is a column vector.

Theorem 3.10(Tricks for Taylor Series Expansions). We give a few examples of some
powerful tricks to find Taylor series expansions.

(1) cos(x+ y) = 1− (x+y)2

2! + (x+y)4

4! − ⋅ ⋅ ⋅ .

(2) cosx sin y = (1− x
2

2! + ⋅ ⋅ ⋅ )(y − y
3

3! + ⋅ ⋅ ⋅ ).

(3) ex−y cos(x+ y) = (1 + (x− y) + (x−y)2

2! + ⋅ ⋅ ⋅ )(1− (x+y)2

2! + ⋅ ⋅ ⋅ ).
To obtain a Taylor expansion of a given order, we just need to take enough terms

above and expand.
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Theorem 3.11(First derivative test for local extremum). Letf be a differentiable func-
tion on an open setU . If −→x 0 ∈ U is a local extremum, then(Df)(−→x 0) =

−→
0 .

The following is an advanced theorem that is proved in an analysis class.

Theorem 3.12.Let f be a continuous function on a closed and bounded set. Thenf
attains its maximum and minimum on this set.

Remark 3.13. The corresponding result fails for open sets. Consider, forexample,
f(x) = 1

x
+ 1

x−1
. This function does not attain a maximum or minimum value; asx → 0

the function diverges to∞, while asx → 1 the function diverges to−∞. It may also
fail for unbounded sets; the functionf(x) = x3/(1+∣x∣3) has no maximum or minimum
if the input is all ofℝ; the reason is that asx → ∞, f(x) → 1 while asx → −∞,
f(x) → −1.

Theorem 3.14(Method of Lagrange Multipliers). Let f, g : U → ℝ, whereU is an
open subset ofℝn. LetS be the level set of valuec for the functiong, and letf ∣S be
the functionf restricted toS (in other words, we only evaluatef at −→x ∈ U). Assume
(∇g)(−→x 0) ∕=

−→
0 . Thenf ∣S has an extremum at−→x 0 if and only if there is a� such that

(∇f)(−→x 0) = �(∇g)(−→x 0).

General comments: These problems are all done the same way. Let’s say we have
functions of three variables,x, y, z. Find the function to maximizef , find the constraint
functiong, and then solve∇f(x, y, z) = �∇g(x, y, z) andg(x, y, z) = c. Explicitly,
solve:

∂f

∂x
(x, y, z) = �

∂g

∂x
(x, y, z)

∂f

∂y
(x, y, z) = �

∂g

∂y
(x, y, z)

∂f

∂z
(x, y, z) = �

∂g

∂z
(x, y, z)

g(x, y, z) = c.

For example, if we want to maximizexy2z3 subject tox+ y+ z = 4, thenf(x, y, z) =
xy2z3 andg(x, y, z) = x+y+z = 4. The hardest part is the algebra to solve the system
of equations.Remember to be on the lookout for dividing by zero. That is never allowed,
and thus you need to deal with those cases separately. Specifically, if the quantity you
want to divide by can be zero, you have to consider as a separate case what happens
when it is zero, and as another case what happens when it is notzero.

Remark 3.15. There are lots of ways of doing the algebra. Remember that thegoal is
to find the point. It might help to first find�, but if you can find the point without finding
�, that’s fine. A common approach is to take ratios of equations, but this runs the risk
of dividing by zero, which can lead to extra cases to check. It’s still not a bad idea to do
this, as in each case we now know a lot, and those extra assumptions frequently make it
easy to handle a case.

Theorem 3.16(Finding extrema). To find the extrema (maximum and minima) of a
functionf , the candidates are the critical points (the points whereDf vanishes) and
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then look for candidates on the boundary (which can often be found by Lagrange mul-
tipliers).

IMPORTANT: Why does the Method of Lagrange Multipliers work? The key idea
is directional derivatives. If we are looking atf and our input is constrained to sat-
isfy sayg(x1, . . . , xn) = c, we look at the directional derivative off in any direction
tangent to the level setg(x1, . . . , xn) = c. To be a max or a min, the directional deriv-
ative must be zero. As the directional derivative in the direction−→v at (x1, . . . , xn) is
(∇f)(x1, . . . , xn) ⋅

−→v , this forces the gradient off , (x1, . . . , xn) is (∇f)(x1, . . . , xn),
to be perpendicular to each possible tangent direction. Theonly direction left for the
gradient off is perpendicular to all the tangent vectors, whic is the direction of the
normal to the surface; however, we know(∇g)(x1, . . . , xn) is in the same direction as
the normal to the surface. Thus the two gradients must be in the same direction. This
forces these two vectors to be parallel, so one is a multiple of the other.

Theorem 3.17(Method of Least Squares). Given a set of observations

(x1, y1), (x2, y2), . . . , (xN , yN)

and a proposed linear relationship betweenx andy, namely

y = ax+ b,

then the best fit values ofa andb (according to the Method of Least Squares) are given
by minimizing the error function given by

E(a, b) =
N∑

n=1

(yn − (axn + b))2 .

You do not need to know this for an exam, but the best fit values are

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn∑N

n=1 1
∑N

n=1 x
2
n −

∑N
n=1 xn

∑N
n=1 xn

b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x

2
n

∑N
n=1 yn∑N

n=1 xn
∑N

n=1 xn −
∑N

n=1 x
2
n

∑N
n=1 1

. (3.1)

Remark 3.18. In the Method of Least Squares, we measure error by looking atthe
sum of the squares of the errors between the observed values and the predicted values.
There are other measurements of error possible, such as summing the absolute values
of the errors or just summing the signed errors. The advantage of measuring errors by
squaring is that it is not a signed quantity and calculus is applicable; the disadvantage
is that larger errors are given greater weight. Using absolute values weighs all errors
equally, but as the absolute value function is not differentiable the tools of calculus are
unaccessible. If we just summed signed errors, then positive errors could cancel with
negative errors, which is quite bad.

Remark 3.19. The Method of Least Squares is applicable to far more than just linear
relationships, and gives a great application of logarithms. If we believe the variables
P and V are related byP = CV r for some constantsC and r, we cannot use the
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Method of Least Squares to find the best fit values ofC andr as we do not have a linear
relation. If, however, we take logarithms, we’re in business. LetP = logP , c = logC,
andV = log V . ThenP = CV r becomesP = rV + c, and now we can use the Method
of Least Squares to findr andc.

4. PART 4: DOUBLE AND TRIPLE INTEGRALS

4.1. Definitions.

Definition 4.1 (Iterated Integral). The notation
∫ b

a

∫ d

c

f(x, y)dydx

means ∫ b

a

[∫ d

c

f(x, y)dy

]
dx.

Definition 4.2 (Bounded function). A real-valued functionf is bounded byB if for any
−→x in the domain off we have

−B ≤ f(−→x ) ≤ B;

equivalently,
∣f(−→x )∣ ≤ B.

Definition 4.3 (Rectangle). The rectangle[a, b] × [c, d] is the set of all(x, y) such that
a ≤ x ≤ b andc ≤ y ≤ d.

Definition 4.4 (Integral over an interval). The integral of a continuous functionf over
an interval[a, b] is the limit of the upper or lower sum as the partition becomesfiner
and finer (this means that the length of each subinterval usedin partitioning the interval
[a, b] tends to 0).

Definition 4.5 (Integral over a rectangle). The integral of a continuous functionf over
a rectangleR = [a, b] × [c, d] is the limit of the upper or lower sum as the partition
becomes finer and finer (this means that the length and width ofeach sub-rectangle in
the partition of the rectangle[a, b]× [c, d] tends to 0). We denote this by

∫ ∫

R

f(x, y)dA,

where we usedA to denote area.

Definition 4.6 (x-simple,y-simple, simple). A regionD ⊂ ℝ
2 is x-simple if there are

continuous 1 and 2 defined on[c, d] such that

 1(y) ≤  2(y)

and
D = {(x, y) :  1(y) ≤ x ≤  2(y) and c ≤ y ≤ d};

similarly,D is y-simple if there are continuous functions�1(x) and�2(x) such that

�1(x) ≤ �2(x)
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and

D = {(x, y) : �1(x) ≤ y ≤ �2(x) and a ≤ x ≤ b}.

If D is bothx-simple andy-simple then we sayD is simple.

Definition 4.7 (Elementary region). A region that is eitherx-simple,y-simple or simple
is frequently called an elementary region.

Definition 4.8 (Probability distribution). A random variableX has a continuous prob-
ability distributionp if

(1) p(x) ≥ 0 for all x;
(2)

∫
∞

−∞
p(x)dx = 1;

(3) the probabilityX takes on a value betweena andb is
∫ b

a
p(x)dx.

Definition 4.9 (Uniform distribution). If p(x) = 1
b−a

for a ≤ x ≤ b and 0 otherwise,
thenp is the uniform distribution on[a, b]. We often consider the special case when
a = 0 and b = 1. Note that for the uniform distribution on[0, 1], the probability we
take a value in an interval is just the length of the interval.

Definition 4.10(Mean, Variance). The mean or expected value of a random variable is∫
∞

−∞
xp(x)dx. We typically denote the mean by�. The variance is defined by

∫
∞

−∞
(x−

�)2p(x)dx, and measures how spread out a distribution is (the larger the variance, the
more spread out it is). We typically denote the variance by�2 and the standard deviation
by�. Note that�, � andx all have the same units, while the variance hs units equal to
the square of this.

4.2. Theorems.

Theorem 4.11(Fubini’s Theorem). Let f be a continuous, bounded function on a rec-
tangle[a, b]× [c, d]. Then

∫ ∫

R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy.

Theorem 4.12(Integral over elementary regions). LetD ⊂ ℝ
2 be an elementary region

andf : D → ℝ be continuous onD. LetR be a rectangle containingD and extendf
to a functionf ∗ by

f ∗(x, y) =

{
f(x, y) if (x, y) ∈ D

0 otherwise.

Then ∫ ∫

D

f(x, y)dA =

∫ ∫

R

f ∗(x, y)dA.

Theorem 4.13(Reduction to iterated integrals). LetD be ay-simple region given by
continuous functions�1(x) ≤ �2(x) for a ≤ x ≤ b. Then

∫ ∫

D

f(x, y)dA =

∫ b

a

∫ �2(x)

�1(x)

f(x, y)dydx.
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4.3. Special Topics. Mathematical modeling: In mathematical modeling there are
two competing factors. We want the model rich enough to capture the key features of
the system, yet be mathematically tractable. In general themore complicated the system
is, the more involved the model will be and the harder it will be to isolate nice properties
of the solution. For example, in modeling baseball games we assumed runs scored and
allowed were independent random variables. This clearly cannot be true (the simplest
reason is that if a team scoresr runs then they cannot allowr runs, as games do not end
in ties). The hope is that simple models which clearly cannotbe the entire story can
nevertheless capture enough of the important properties ofthe system that the resulting
solutions will provide some insight. This is somewhat similar to Taylor series, where
we replace complicated functions with polynomials; as we’ve seen with the incredibly
fast convergence of Newton’s Method, it is possible to obtain very useful information
from these approximations!

In Monte Carlo Integration we can use Chebyshev’s Theorem toshow convergence.
We probably won’t do this level of detail in the class; this isincluded below for future
reference.

Theorem 4.14.LetX be a random variable with finite mean� and finite variance�2.
Then for anyk > 0 we have

Prob(∣X − �∣ ≥ k�) ≤
1

k2
.

Monte Carlo Integration: Let D be a nice region inℝn, and assume for simplicity
that it is contained in then-dimensional unit hypercube[0, 1] × [0, 1] × ⋅ ⋅ ⋅ × [0, 1].
Assume further that it is easy to verify if a given point(x1, . . . , xn) is in D or not in
D. DrawN points from then-dimensional uniform distribution; in other words, each
of then coordinates of theN points is uniformly distributed on[0, 1]. Then asN → ∞
then-dimensional volume ofD is well approximated by the number of points insideD
divided by the total number of points.

5. PART 5: CHANGE OF VARIABLES FORMULA

5.1. Change of Variable Formula in the Plane.

Theorem 5.1 (Change of Variables Formula in the Plane). Let S be an elementary
region in thexy-plane (such as a disk or parallelogram for example). LetT : ℝ2 → ℝ

2

be an invertible and differentiable mapping, and letT (S) be the image ofS underT .
Then ∫ ∫

S

1 ⋅ dxdy =

∫ ∫

T (S)

1 ⋅

∣∣∣∣
∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

∣∣∣∣ dudv,

or more generally
∫ ∫

S

f(x, y) ⋅ dxdy =

∫ ∫

T (S)

f
(
T−1(u, v)

)
⋅

∣∣∣∣
∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

∣∣∣∣ dudv.

Some notes on the above:
(1) We assumeT has an inverse function, denotedT−1. ThusT (x, y) = (u, v) and

T−1(u, v) = (x, y).
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(2) We assume for each(x, y) ∈ S there is one and only one(u, v) that it is mapped
to, and conversely each(u, v) is mapped to one and only one(x, y).

(3) The derivative ofT−1(u, v) = (x(u, v), y(u, v)) is

(DT−1)(u, v) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
,

and the absolute value of the determinant of the derivative is
∣∣det

(
DT−1)(u, v)

)∣∣ =

∣∣∣∣
∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

∣∣∣∣ ,

which implies the area element transforms as

dxdy =

∣∣∣∣
∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

∣∣∣∣ dudv.

(4) Note thatf takes as inputx andy, but when we change variables our new inputs
areu andv. The mapT−1 takesu andv and givesx andy, and thus we need to
evaluatef at T−1(u, v). Remember that we are now integrating overu andv,
and thus the integrand must be a function ofu andv.

(5) Note that the formula requires an absolute value of the determinant. The reason
is that the determinant can be negative, and we want to see howa small area
element transforms. Area is supposed to be positively counted. Note in one-
variable calculus that

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx; we need the absolute value to

take care of issues such as this.
(6) While we statedT is a differentiable mapping, our assumptions implyT−1 is

differentiable as well.

5.2. Change of Variable Formula: Special Cases.

Theorem 5.2(Change of Variables Theorem: Polar Coordinates). Let

x = r cos �, y = r sin �

with r ≥ 0 and� ∈ [0, 2�); note the inverse functions are

r =
√
x2 + y2, � = arctan(y/x).

LetD be an elementary region in thexy-plane, and letD∗ be the corresponding region
in ther�-plane. Then

∫ ∫

D

f(x, y)dxdy =

∫ ∫

D∗

f(r cos �, r sin �)rdrd�.

For example, ifD is the regionx2 + y2 ≤ 1 in thexy-plane thenD∗ is the rectangle
[0, 1]× [0, 2�] in ther�-plane.

Theorem 5.3(Change of Variables Theorem: Cylindrical Coordinates). Let

x = r cos �, y = r sin �, z = z

with r ≥ 0, � ∈ [0, 2�) andz arbitrary; note the inverse functions are

r =
√
x2 + y2, � = arctan(y/x), z = z.
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LetD be an elementary region in thexyz-plane, and letD∗ be the corresponding region
in ther�z-plane. Then

∫ ∫ ∫

D

f(x, y, z)dxdydz =

∫ ∫ ∫

D∗

f(r cos �, r sin �, z)rdrd�dz.

Theorem 5.4(Change of Variables Theorem: Spherical Coordinates). Let

x = � sin� cos �, y = � sin � sin �, z = � cos�

with � ≥ 0, � ∈ [0, 2�] and� ∈ [0, �). Note that the angle� is the angle made with the
z-axis; many books (such as physics texts) interchange the role of � and �. LetD be
an elementary region in thexyz-plane, and letD∗ be the corresponding region in the
���-plane. Then

∫ ∫ ∫

D

f(x, y, z)dxdydz

=

∫ ∫ ∫

D∗

f(� sin� cos �, � sin� sin �, � cos�)�2 sin(�)d�d�d�.

Note that the most common mistake is to have incorrect boundsof integration.

6. PART 6: SEQUENCES ANDSERIES

6.1. Definitions.

Definition 6.1 (Sequence). A sequence{an}∞n=1 is the collection{a0, a1, a2, . . . }. Note
sometimes the sequence starts witha0 and nota1.

For example, ifan = 1/n2 then the sequence is{1, 1/4, 1/9, 1/16, . . .}.

Definition 6.2 (Series). A series is the sum of the terms in a sequence. If we have
a sequence{an}∞n=0 then the partial sumsN is the sum of the firstN terms in the
sequence:sN =

∑N
n=1 an. We often denote the infinite sum bys:

s = lim
N→∞

sN = lim
N→∞

N∑

n=1

an.

Definition 6.3 (Alternating series). An alternating series is an infinite sum of a sequence
where the terms alternate in sign.

For example,an = (−1)n/2n leads to an alternating series.

Definition 6.4 (Geometric Sequence / Series). A geometric sequence with common ratio
r and initial valuea is the sequence{a, ar, ar2, ar3, . . . }. The partial sums are

sN =
a− arN+1

1− r

and the series sum (when∣r∣ < 1) is

s =
1

1− r
.
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Definition 6.5 (Absolutely convergent series). Consider the sequence{an}∞n=1. The
corresponding series is absolutely convergent (or converges absolutely) if the sum of
the absolute values of thean’s converges; explicitly,

lim
N→∞

N∑

n=1

∣an∣

exists. If the sequence is just non-negative terms, we oftensay the series converges.

Definition 6.6 (Conditionally convergent series). Consider the sequence{an}∞n=1. The
corresponding series is conditionally convergent (or converges conditionally) if

lim
N→∞

N∑

n=1

an

exists.

Note a series may be conditionally convergent but not absolutely convergent. For
example, consideran = (−1)n/n; the series converges conditionally but not absolutely.

Definition 6.7 (Diverges). If limN→∞

∑N
n=1 an does not converge, then we say the se-

ries diverges.

6.2. Tests.

Theorem 6.8(End-term test). Let {an}∞n=1 be a sequence. IflimN→∞ an ∕= 0 then the
series diverges.

Theorem 6.9(Comparison Test). Let{bn}∞n=1 be a sequence of non-negative terms (so
bn ≥ 0). Assume the series converges, and{an}

∞

n=1 is another sequence such that
∣an∣ ≤ bn for all n. Then the series attached to{an}∞n=1 also converges.

Theorem 6.10(p-Test). Let {an}∞n=1 be the sequence withan = 1/np for some fixed
p > 0; this is frequently called ap-series. Ifp > 1 then the series converges, while if
p ≤ 1 the series diverges.

Theorem 6.11(Ratio Test). Consider a sequence{an}∞n=1 of positive terms. Let

r = lim
n→∞

an+1

an
.

If r exists andr < 1 then the series converges, while ifr > 1 then the series diverges;
if r = 1 then this test provides no information on the convergence ordivergence of the
series.

For example, applying this test to the geometric series withan = rn we find the series
converges forr < 1 and diverges forr > 1. If we considerbn = 1/n andcn = 1/n2

then both of these have a corresponding value ofr equal to 1, but the first diverges while
the second converges.In fact, the proof in general uses the comparison test applied to
a related geometric series.

Theorem 6.12(Root Test). Consider a sequence{an}∞n=1 of positive terms. Let

� = lim
n→∞

a1/nn ,
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thenth root of an. If � < 1 then the series converges, while if� > 1 then the series
diverges; if� = 1 then the test does not provide any information.

The key idea in the proof is to use the comparison test with a related geometric series.

Theorem 6.13(Integral Test). Consider a sequence{an}∞n=1 of non-negative terms.
Assume there is some functionf such thatf(n) = an andf is non-increasing. Then the
series

∞∑

n=1

an

converges if and only if the integral∫
∞

1

f(x)dx

converges.

Theorem 6.14(Alternating Test). If {an}∞n=1 is an alternating sequence withlimn→∞ ∣an∣
= 0 then the series converges.

6.3. Examples of divergent and convergent series.We first list some convergent se-
ries. If {an}∞n=1 and{bn}∞n=1 are convergent series andc1, c2 are any constants, then
{c1an + c2bn}

∞

n=1 is a convergent series; i.e.,
∞∑

n=1

(c1an + c2bn)

converges.

Convergent series
∙ an = rn, ∣r∣ < 1.
∙ an = 1/np, p > 1.
∙ an = xn/n! for anyx.

Divergent series
∙ an = rn, ∣r∣ > 1.
∙ an = 1/np for p ≤ 1 (in particular,an = 1/n).
∙ If limn→∞ an ∕= 0 then the series cannot converge.

We have many tests – Comparison Test, Ratio Test, Root Test, Integral Test. If possi-
ble, I like to try to use the Comparison Test first. It is very simple, but has the significant
drawback that you need to be able to choose a good series to compare with. This is rem-
iniscent of finding the roots of a quadratic. If you can ‘see’ how to factor it then the
problem is easy; if not, you have to resort to the quadratic formula (whichwill solve the
problem after some work).

So too it is here. We first try to see if we can be clever and choose the right series to
compare with, but if we fail then we can resort to one of the other tests.


