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1. CHAPTER 1: THE GEOMETRY OF EUCLIDEAN SPACE

1.1. Definitions.
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Definition 1.1 (Equation of a line). The line going through the point
−→
P in the direction

−→v is the set of all points (x1, . . . , xn) such that

(x1, . . . , xn) =
−→
P + t−→v .

In three dimensions, we have

(x, y, z) =
−→
P + t−→v .

If −→v = (v1, v2, v3) and
−→
P = (P1, P2, P3), this is equivalent to the system of equations

x = P1 + tv1

y = P2 + tv2

z = P3 + tv3.

If we have two points on the line but not the direction, we may find the direction by
subtracting one point from the other.

Definition 1.2 (Equation of a plane). The plane going through the point
−→
P with direc-

tions −→v and −→w is all points (x, y, z) satisfying

(x, y, z) =
−→
P + t−→v + s−→w .

If instead we are given a normal direction −→n , then the plane going through
−→
P with

normal in the direction −→n is the set of all points (x, y, z) such that(
(x, y, z)−

−→
P
)
⋅ −→n = 0.

Definition 1.3 (Determinants). The determinant of two vectors represents the signed
area of the parallelogram generated by the two vectors (for three vectors it is the signed
volume). If

A =

(
a b
c d

)
then

det(A) = ∣A∣ = ad− bc.
If

B =

⎛⎝ a b c
d e f
g ℎ i

⎞⎠
then

det(B) = ∣B∣ = aei+ bfg + cdℎ− gec− ℎfa− idb.

One can remember the definition of the determinant in the 3× 3 case by copying the
first two columns of the matrix and looking at the three diagonals from upper left to
lower right and the three diagonals from the lower left to the upper right. The first three
are all added while the last three are all subtracted.
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Definition 1.4 (Dot Product). If −→v = (v1, . . . , vn) and −→w = (w1, . . . , wn) then the dot
(or inner) product is defined by

−→v ⋅ −→w = v1w1 + ⋅ ⋅ ⋅+ vnwn =
n∑
i=1

viwi.

For example, if −→v = (1, 2, 3) and −→w = (3, 2, 1) then
−→v ⋅ −→w = 1 ⋅ 3 + 2 ⋅ 2 + 3 ⋅ 1 = 10.

Definition 1.5 (Cross product). If −→v = (v1, v2, v3) and −→w = (w1, w2, w3) then the
cross product is defined by

−→v ×−→w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

One can remember this by abusing notation and computing∣∣∣∣∣∣
−→
i
−→
j
−→
k

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Definition 1.6 (Cylindrical coordinates). We have

x = r cos �, y = r sin �,

with � ∈ [0, 2�) and r ≥ 0. We may invert these relations, and find

r =
√
x2 + y2, � = arctan(y/x).

1.2. Theorems.

Theorem 1.7 (Pythagorean Theorem). If we have a right triangle with sides a and b
and hypotenuse c, then

c2 = a2 + b2.

Theorem 1.8 (Law of Cosines). Consider a triangle with sides a, b, c and angle � op-
posite of the side of length c. Then

c2 = a2 + b2 − 2ab cos �.

Theorem 1.9 (Length of a vector). If −→v = (v1, . . . , vn) then

∣∣−→v ∣∣ =
√
v21 + ⋅ ⋅ ⋅+ v2n.

If we want to normalize a vector, that means constructing a new vector of the same
direction but of unit length. If −→v is not the zero vector, then

−→u =
−→v
∣∣−→v ∣∣

is a unit vector in the direction of −→v .

Theorem 1.10 (Angle formula). If � denotes the angle between vectors−→v and−→w , then
−→v ⋅ −→w = ∣∣v∣∣ ∣∣w∣∣ cos �.
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Theorem 1.11 (Cross product interpretation). The vector−→v ×−→w is a vector perpendic-
ular to −→v and −→w such that its length is the signed area of the parallelogram generated
by −→v and −→w .

Theorem 1.12 (Cauchy-Schwarz Inequality). For any two vectors −→v and −→w we have

∣−→v ⋅ −→w ∣ ≤ ∣∣−→v ∣∣ ∣∣−→w ∣∣.
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FIGURE 1. Plot of sin(x+ y) and then the level sets of sin(x+ y).

FIGURE 2. Plot of sin(xy) and then the level sets of sin(xy).

2. CHAPTER 2: DIFFERENTIATION

2.1. Definitions. Just because a quantity does not have an arrow over it should not
be construed as implying it cannot be a vector. Many of the concepts have the same
definition for scalars and vectors, and for brevity we typically give just one.

Definition 2.1 (Function terminology). The domain is the set of inputs for the function,
while the range is the set of possible outputs. When we write f : ℝn → ℝm we mean
the function takes n inputs and gives m outputs. We typically denote this

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .

An example of an f : ℝ3 → ℝ2 is

f(x, y, z) = (xy cos(y2z) + ez, 3 + 4x+ 5y2 + 6z3).

Definition 2.2 (Level sets). The level set of value c of a function is the set of all inputs
where the function takes on the value c. Specifically, if f : ℝ2 → ℝ then the level set of
value c is

{(x, y) : f(x, y) = c}.

For example, see the plots of sin(x+ y) in Figure 1 and sin(xy) in Figure 2. We also
show their level sets (which is frequently called a contour plot).

Definition 2.3 (Limit of a sequence). We say a sequence {an}∞n=0 has L as a limit if as
n tends to infinity we have an tends to L. We denote this as limn→∞ an = L.

For example, consider the sequence {an}∞n=1 where an = (−1)n/n; thus our se-
quence is {−1, 1/2,−1/3, 1/4, . . . } and its limit exists, which is 0. The sequence
{bn}∞n=1 given by bn = (−1)n has no limit, as its terms oscillate between -1 and 1.

Definition 2.4 (Limit of a function). A function f(x) has L as a limit at x0 if however
x approaches x0 we have f(x) approaches L. We denote this by limx→x0 f(x) = L.
NOTE: we never have a term in any of our sequence equal to x0; the goal is to under-
stand what happens as x approaches x0.

For the above definition, what we are essentially saying is that given any sequence
xn which approaches x0 we have f(xn) approaching f(x0). For example, consider the
function

f(x) =

{
sin(1/x) if x ∕= 0

0 if x = 0.
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FIGURE 3. Plot of x sin(1/x).

FIGURE 4. Plot of ∣y∣ < x union the origin.

This function does not have a limit at the point x0 = 0. To see this, consider the
sequence xn = 1

2�n
and x̃n = 1

(2�+ 1
2
)n

. Note f(xn) = 0 for every term in this sequence,
but f(x̃n) = 1 for every term in this sequence. Thus there are two sequences with two
different limits, and thus the function does not have a limit at 0.

Definition 2.5 (Continuity of a function). A function f(x) is continuous at x0 if the limit
exists as x→ x0 and that limit is f(x0). This means limx→x0 f(x) = f(x0).

For example, consider

g(x) =

{
x sin(1/x) if x ∕= 0

0 if x = 0.

This function is continuous at 0; see Figure 3.

Definition 2.6 (Ball or Disk). The ball or disk of radius r about a point −→x0 is the set of
all points that are less than r units from −→x0. We assume r > 0 as otherwise the ball is
empty. We denote this set by

Dr(
−→x0) = {−→x such that ∣∣−→x −−→x0∣∣ < r}.

Definition 2.7 (Open Set). A set U is open if for any −→x0 ∈ U we can always find an r
(which may depend on the point −→x0 such that Dr(

−→x0) ⊂ U . This means that, no matter
what point we take in U , we can find a very small ball (or disk) centered at that point
and entirely contained in U .

The following sets are open: {(x, y) : y > 0}, {(x, y, z) : x2 + 4y2 + 9z2 < 1}. The
following sets are not open: {(x, y) : y ≥ 0} and {(x, y, z) : x2 + 4y2 + 9z2 ≤ 1}. For
another set that is not open, consider {(x, y) : ∣y∣ < x} ∪ {(0, 0)}; this is the set of all
points between the lines y = x and y = −x and the origin. See Figure 4.

Definition 2.8 (Derivative). Let f : ℝ→ ℝ be a function. We say f is differentiable at
x0, and denote this by f ′(x0) or df/dx, if the following limit exists:

lim
ℎ→0

f(x0 + ℎ)− f(x0)
ℎ

.

We may also write this limit by

lim
x→x0

f(x0 + ℎ)− f(x0)
ℎ

,

or as

lim
x→x0

f(x0 + ℎ)− f(x0)− f ′(x0)ℎ
ℎ

= 0.
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Definition 2.9 (Partial derivatives). Let f : ℝn → ℝ be a function of n variables
x1, . . . , xn. We say the partial derivative with respect to xi exists at the point a =
(a1, . . . , an) if

lim
ℎ→0

f(−→a + ℎ−→e i)− f(−→a )
ℎ

exists, where
−→a + ℎ−→e i = (a1, . . . , ai−1, ai + ℎ, ai+1, . . . , an).

For example, if f(x, y, z) = 3x2y + x cos(y), then
∂f

∂x
= 6xy + cos(y),

∂f

∂y
= 3x2 − x sin(y), ∂f

∂z
= 0.

Note that to take a partial derivative with respect to x, we treat all the other variables
as constants. A good way to test your answer at the end is to go back to the original
equation and replace all variables with constants, and then see if your answer agrees
with the derivative of this (when you put in constants). For example, in our case if we set
y = 3 and z = 5 we get g(x) = f(x, 3, 5) = 9x2+x cos(3), and dg/dx = 18x+cos(3),
which is exactly ∂f

∂x
(x, 3, 5).

Definition 2.10 (Tangent plane approximation). Let f : ℝ2 → ℝ. The tangent plane
approximation to f at (x0, y0) is given by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0),

provided of course the two partial derivatives exist.

In one variable, we write y = f(x) and we write the tangent line as y = f(x0) +
f ′(x0)(x− x0). The above is the natural generalization, with now z = f(x, y).

Definition 2.11 (Differentiability: two variables). Let f : ℝ2 → ℝ. We say f is differ-
entiable at (x0, y0) if the tangent plane approximation tends to zero significantly more
rapidly than ∣∣(x, y)− (x0, y0)∣∣ tends to 0 as (x, y)→ (x0, y0). Specifically, f is differ-
entiable if

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)− ∂f
∂x
(x0, y0)(x− x0)− ∂f

∂y
(x0, y0)(y − y0)

∣∣(x, y)− (x0, y0)∣∣
= 0.

Note the above is truly the generalization of the derivative in one variable. The dis-
tance x− x0 is replaced with ∣∣(x, y)− (x0, y0)∣∣; while this is always positive, the fact
that the limit must equal zero for the function to be differentiable means we could have
used ∣x−x0∣ in the denominator in the definition of the derivative of one variable. Also
note that the last two parts of the tangent plane approximation can be written as a dot
product of two vectors:
∂f

∂x
(x0, y0)(x−x0)+

∂f

∂y
(x0, y0)(y−y0) =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
⋅(x−x0, y−y0).

Definition 2.12 (Gradient). The gradient of a function f : ℝn → ℝ is the vector of the
partial derivatives with respect to each variable. We write

grad(f) = ∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.
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If f(x, y, z) = 3x2y + x cos(y), then∇f = (6xy + cos(y), 3x2 − x sin(y), 0).

Definition 2.13 (Differentiability: several variables (but only one output)). Let f :
ℝn → ℝ. We say f is differentiable at −→a if the tangent hyperplane approximation
tends to zero significantly more rapidly than ∣∣−→x −−→a ∣∣ tends to 0 as −→x → −→a . Specifi-
cally, f is differentiable if

lim−→x→−→a

f(x, y)− f(−→a )− (∇f)(−→a ) ⋅ (−→x −−→a )
∣∣−→x −−→a ∣∣

= 0.

For example, if f is a function of two variables then f is differentiable at (0, 0) if

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− ∂f
∂x
(0, 0)(x− 0)− ∂f

∂y
(0, 0)(y − 0)

∣∣(x, y)− (0, 0)∣∣
= 0.

Definition 2.14 (Derivative notation). Let f : ℝn → ℝm; we may write

f(−→x ) = (f1(
−→x , . . . , fm(−→x )) .

By (Df)(−→x0) we mean the matrix whose first row is (∇f1)(−→x ), whose second row is
(∇f)(−→x ), and so on until the last row, which is (∇fm)(−→x ). In full glory, we have

(Df)(x0) =

⎛⎜⎝
∂f1
∂x1

(−→x ) ⋅ ⋅ ⋅ ∂f1
∂xn

(−→x )
... . . . ...

∂fm
∂x1

(−→x ) ⋅ ⋅ ⋅ ∂fm
∂xn

(−→x )

⎞⎟⎠ .

Note (Df)(−→x ) is a matrix with m rows and n columns.

Definition 2.15 (Differentiability: several variables (and several outputs)). Let f :
ℝn → ℝm. We say f is differentiable at −→a if the tangent hyperplane approximation for
each component tends to zero significantly more rapidly than ∣∣−→x − −→a ∣∣ tends to 0 as
−→x → −→a . Specifically, f is differentiable if

lim−→x→−→a

f(−→x )− f(−→a )− (Df)(−→a ) ⋅ (−→x −−→a )
∣∣−→x −−→a ∣∣

=
−→
0 ,

where we regard −→x −−→a as a column vector being acted on by the matrix (Df)(−→a ).

Definition 2.16 (C1). A function is said to be C1 (or of class C1) if all of its partial
derivatives exist and if these partial derivatives are continuous.

While all the partial derivatives of the function f(x, y) = (xy)1/3 exist, this function
is not C1 as the partial derivatives are not continuous at the origin.

Definition 2.17 (Parametrization of paths / curves). A map c from an interval to ℝn

traces out a path or curve in space. If c : [a, b] → ℝn then c(a) is the initial point
of the path and c(b) is the endpoint. If c(a) = c(b) then the path is closed. It is a
path in the plane if n = 2 and a path in space if n = 3. When n = 2 we often write
c(t) = (x(t), y(t)), and if n = 3 we write c(t) = (x(t), y(t), z(t)). The vector c′(t)
is the velocity vector, and the instantaneous speed at time t is given by ∣∣c′(t)∣∣. The
tangent line at time t0 is given by (x, y, z) = c(t0) + c′(t0)t.
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Remark 2.18. Note that (Dc)(t) is a column vector. The reason this is so is that c :
ℝn → ℝ in general, so c(t) = (c1(t), . . . , cn(t)). The derivative matrix Dc has as its
first row Dc1 = ∇c1, ..., and its last row is Dcn = ∇cn. As there is only one variable,
Dc1 = ∇c1 = dc1/dt, and thus (Dc)(t) is a column vector. This is needed so that the
multiplication of matrices in the chain rule is well-defined.

Definition 2.19 (Directional derivatives). The directional derivative of f in the direction
of −→v at −→x is defined by

lim
ℎ→0

f(−→x + ℎ−→v )− f(−→x )
ℎ

.

We typically take −→v to be a vector of unit length. One way to compute the directional
derivative is (∇f)(−→x ) ⋅ −→v .

Definition 2.20 (Tangent plane from the gradient). Let S be the level set of value k for
the function f . The tangent plane at −→x 0 ∈ S is defined by

(∇f)(−→x 0) ⋅ (−→x −−→x 0) = 0.

2.2. Theorems.

Theorem 2.21 (Limit Properties for sequences and functions). Provided all limits are
finite,

∙ The limit of a constant times our sequence is that constant times our sequence:
limn→∞ cxn = c limn→∞ xn.
∙ The limit of a sum is the sum of the limits.
∙ The limit of a difference is the difference of the limits.
∙ The limit of a product is the product of the limits.
∙ The limit of a quotient is the quotient of the limits, provided additionally that

the limit of the denominator is non-zero.
These limit laws imply corresponding results for continuous functions, namely the

sum, difference or product of continuous functions is continuous, as well as the quotient
(provided the denominator is non-zero). We also have the composition of continuous
functions is continuous.

It is essential that the limits are finite. For example, consider the three limits below:

lim
x→0

(
x ⋅ 1

x

)
, lim

x→0

(
x ⋅ 1

x2

)
, lim

x→0

(
x3 ⋅ 1

x2

)
.

All of these limits are of the form 0 ⋅ ∞; the first is 1, the second is undefined and the
third is zero. We can make 0 ⋅∞,∞/∞,∞−∞ and 0/0 equal anything we want. More
care is thus needed whenever one of these is encountered. As the fundamental limit of
calculus involves 0/0, the quotient rule is not applicable and we need more powerful
arguments.

Theorem 2.22 (Main Theorem on Differentiation). The following implications hold:
(1) implies (2) implies (3), where

(1) The partial derivatives of f are continuous.
(2) The function f is differentiable.
(3) The partial derivatives of f exist.
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Each reverse implication may fail.

Note that (2) trivially implies (3) and (1) trivially implies (3); the meat of the ar-
gument is proving that (1) implies (2). The proof uses the Mean Value Theorem and
adding zero.

Theorem 2.23 (Differentiation rules). Let f, g : ℝn → ℝ be differentiable functions,
and let c be a constant. Then

∙ Constant rule: The derivative of cf(−→x ) is c(Df)(−→x ).
∙ Sum rule: The derivative of f(−→x ) + g(−→x ) is (Df)(−→x ) + (Dg)(−→x ).
∙ Difference rule: The derivative of f(−→x )− g(−→x ) is (Df)(−→x )− (Dg)(−→x ).
∙ Product rule: The derivative of f(−→x )g(−→x ) is (Df)(−→x )g(−→x )+f(−→x )(Dg)(−→x ).
∙ Quotient rule: The derivative of f(−→x )/g(−→x ) is

(Df)(−→x )g(−→x )− f(−→x )(Dg)(−→x )
g(−→x )2

.

Theorem 2.24 (Chain Rule). Let g : ℝn → ℝm and f : ℝm → ℝp be differentiable
functions, and set ℎ = f ∘ g (the composition). Then

(Dℎ)(−→x ) = (Df)(g(−→x ))(Dg)(−→x ).

Important special cases are:

∙ Let c : ℝ→ ℝ3 and f : ℝ3 → ℝ, and set ℎ(t) = f(c(t)). Then

dℎ

dt
= (∇f)(c(t)) ⋅ c′(t) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
.

Note that we could have written ∂f/∂x for df/dx.

∙ Let g(x1, . . . , xn) = (u1(x1, . . . , xn), . . . , um(x1, . . . , xn) and set ℎ(x1, . . . , xn) =
f(g(x1, . . . , xn)), where f : ℝm → ℝ. Then

∂ℎ

∂xi
=

∂f

∂u1

∂u1
∂xi

+
∂f

∂u2

∂u2
∂xi

+ ⋅ ⋅ ⋅+ ∂f

∂um

∂um
∂xi

.

Theorem 2.25 (Computing Directional Derivatives). The directional derivative of f at
−→x in the direction −→v is (∇f)(−→x ) ⋅ −→v .

Theorem 2.26 (Geometric interpretation of the gradient). If (∇f)(−→x ) ∕= −→
0 then

(∇f)(−→x ) points in the direction of fastest increase of f .

Theorem 2.27 (Gradients and level sets). Let S be the level set of value k for a function
f : ℝn → ℝ. Then (∇f)(−→x ) is perpendicular to any tangent vector on S. More
explicitly, if c(t) is a path in S such that c(0) = −→x and c′(0) = −→v is the tangent vector
at time 0, then (∇f)(−→x ) ⋅ −→v = 0.
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3. CHAPTER 3: HIGHER ORDER DERIVATIVES: MAXIMA AND MINIMA

3.1. Definitions.

Definition 3.1 (Higher partial derivatives). We write

∂2f

∂y∂x

for
∂

∂y

(
∂f

∂x

)
;

note that we read the variables from right to left. In other words, the variable furthest
to the right is what we differentiate with respect to first, while the one furthest to the
left is the last one. This is similar to composition of functions, where in f(g(x)) we first
apply g and then f , reading from right to left. If y = x we write

∂2f

∂x2
.

Definition 3.2 (Degree or order of a partial derivative). We say the number of partial
derivatives taken in an expression is the order or degree of the term. For example, ∂3f

∂x2∂y

and ∂3f
∂x∂z∂y

are all degree 3, while ∂2f
∂y2

and ∂2f
∂x∂y

are of degree 2.

Definition 3.3 (Class C2). A function f is of class C2 if all of its partial derivatives up
to order 2 exist and are continuous. For f : ℝ2 → ℝ, this implies that ∂f

∂x
, ∂f
∂y

, ∂
2f
∂x2

, ∂
2f
∂y2

,
∂2f
∂x∂y

and ∂2f
∂y∂x

all exist and are continuous.

Definition 3.4 (Hessian matrix). Let f be a twice-differentiable function. The Hessian
of f is the matrix of second partial derivatives:

Hf =

⎛⎜⎝
∂2f

∂x1∂x1
⋅ ⋅ ⋅ ∂2f

∂xn∂x1
... . . . ...
∂2f

∂x1∂xn
⋅ ⋅ ⋅ ∂2f

∂xn∂xn

⎞⎟⎠ .

One easy way to remember what the order of derivatives is for the Hessian is the
following:

Df = ∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The Hessian is the derivative of this, and so the first row of Hf = D(Df) is∇ ∂f
∂x1

, and
we continue in this manner until the last row, which is∇ ∂f

∂xn
.

Definition 3.5 (Local extrema). A function f has a local maximum at −→x 0 if there is a
ball B about −→x 0 such that f(−→x 0) ≥ f(−→x ) for all −→x ∈ B; the definition for minimum
is similar.

Definition 3.6 (Critical point). A point −→x 0 is a critical point of f if (Df)(−→x 0) =
−→
0 .
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3.2. Theorems.

Theorem 3.7 (Equality of Mixed Partial Derivatives). Let f : ℝn → ℝ be a function of
class C2 (which means that all the partial derivatives of order at most 2 exist and are
continuous). Then for any two variables xi and xj we have

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

Theorem 3.8 (Taylor’s Theorem (One Variable)). The Taylor Series approximation to
f of order n at the point x0 is

f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + ⋅ ⋅ ⋅+

f (n)(x0)

n!
(x− x0)n,

where f (n)(x0) denotes the nth derivative of f at x0.

Common examples are

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ ⋅ ⋅ ⋅

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+
x4

4!
− ⋅ ⋅ ⋅

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− ⋅ ⋅ ⋅

log(1− x) = −
∞∑
n=1

xn

n
= −

(
x+

x2

2
+
x3

3
+ ⋅ ⋅ ⋅

)

log(1 + x) =
∞∑
n=1

(−1)n+1xn

n
= x− x2

2
+
x3

3
− ⋅ ⋅ ⋅

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + ⋅ ⋅ ⋅ .

Theorem 3.9 (Taylor’s Theorem (Several Variables)). We have

f(−→x0 +
−→
ℎ ) = f(−→x0) + (∇f)(−→x0) ⋅

−→
ℎ +

1

2

−→
ℎ T(Hf)(−→x0)

−→
ℎ + ⋅ ⋅ ⋅ ,

where Hf is the Hessian of f and
−→
ℎ T is a row vector and

−→
ℎ is a column vector.

Theorem 3.10 (Tricks for Taylor Series Expansions). We give a few examples of some
powerful tricks to find Taylor series expansions.

(1) cos(x+ y) = 1− (x+y)2

2! + (x+y)4

4! − ⋅ ⋅ ⋅ .
(2) cosx sin y = (1− x2

2! + ⋅ ⋅ ⋅ )(y −
y3

3! + ⋅ ⋅ ⋅ ).
(3) ex−y cos(x+ y) = (1 + (x− y) + (x−y)2

2! + ⋅ ⋅ ⋅ )(1− (x+y)2

2! + ⋅ ⋅ ⋅ ).
To obtain a Taylor expansion of a given order, we just need to take enough terms

above and expand.
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Theorem 3.11 (First derivative test for local extremum). Let f be a differentiable func-
tion on an open set U . If −→x 0 ∈ U is a local extremum, then (Df)(−→x 0) =

−→
0 .

The following is an advanced theorem that is proved in an analysis class.

Theorem 3.12. Let f be a continuous function on a closed and bounded set. Then f
attains its maximum and minimum on this set.

Remark 3.13. The corresponding result fails for open sets. Consider, for example,
f(x) = 1

x
+ 1

x−1 . This function does not attain a maximum or minimum value; as x→ 0
the function diverges to∞, while as x→ 1 the function diverges to −∞.

Theorem 3.14 (Method of Lagrange Multipliers). Let f, g : U → ℝ, where U is an
open subset of ℝn. Let S be the level set of value c for the function g, and let f ∣S be
the function f restricted to S (in other words, we only evaluate f at −→x ∈ U ). Assume
(∇g)(−→x 0) ∕=

−→
0 . Then f ∣S has an extremum at −→x 0 if and only if there is a � such that

(∇f)(−→x 0) = �(∇g)(−→x 0).

Theorem 3.15 (Method of Least Squares). Given a set of observations

(x1, y1), (x2, y2), . . . , (xN , yN)

and a proposed linear relationship between x and y, namely

y = ax+ b,

then the best fit values of a and b (according to the Method of Least Squares) are given
by minimizing the error function given by

E(a, b) =
N∑
n=1

(yn − (axn + b))2 .

You do not need to know this for an exam, but the best fit values are

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn∑N

n=1 1
∑N

n=1 x
2
n −

∑N
n=1 xn

∑N
n=1 xn

b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x

2
n

∑N
n=1 yn∑N

n=1 xn
∑N

n=1 xn −
∑N

n=1 x
2
n

∑N
n=1 1

. (3.1)

Remark 3.16. In the Method of Least Squares, we measure error by looking at the
sum of the squares of the errors between the observed values and the predicted values.
There are other measurements of error possible, such as summing the absolute values
of the errors or just summing the signed errors. The advantage of measuring errors by
squaring is that it is not a signed quantity and calculus is applicable; the disadvantage
is that larger errors are given greater weight. Using absolute values weighs all errors
equally, but as the absolute value function is not differentiable the tools of calculus are
unaccessible. If we just summed signed errors, then positive errors could cancel with
negative errors, which is quite bad.
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4. CHAPTER 4: VECTOR VALUED FUNCTIONS

5. CHAPTER 5: DOUBLE AND TRIPLE INTEGRALS

5.1. Definitions.

Definition 5.1 (Iterated Integral). The notation∫ b

a

∫ d

c

f(x, y)dydx

means ∫ b

a

[∫ d

c

f(x, y)dy

]
dx.

Definition 5.2 (Bounded function). A real-valued function f is bounded by B if for any
−→x in the domain of f we have

−B ≤ f(−→x ) ≤ B;

equivalently,
∣f(−→x )∣ ≤ B.

Definition 5.3 (Rectangle). The rectangle [a, b]× [c, d] is the set of all (x, y) such that
a ≤ x ≤ b and c ≤ y ≤ d.

Definition 5.4 (Integral over an interval). The integral of a continuous function f over
an interval [a, b] is the limit of the upper or lower sum as the partition becomes finer
and finer (this means that the length of each subinterval used in partitioning the interval
[a, b] tends to 0).

Definition 5.5 (Integral over a rectangle). The integral of a continuous function f over
a rectangle R = [a, b] × [c, d] is the limit of the upper or lower sum as the partition
becomes finer and finer (this means that the length and width of each sub-rectangle in
the partition of the rectangle [a, b]× [c, d] tends to 0). We denote this by∫ ∫

R

f(x, y)dA,

where we use dA to denote area.

Definition 5.6 (x-simple, y-simple, simple). A region D ⊂ ℝ2 is x-simple if there are
continuous  1 and  2 defined on [c, d] such that

 1(y) ≤  2(y)

and
D = {(x, y) :  1(y) ≤ x ≤  2(y) and c ≤ y ≤ d};

similarly, D is y-simple if there are continuous functions �1(x) and �2(x) such that

�1(x) ≤ �2(x)

and
D = {(x, y) : �1(x) ≤ y ≤ �2(x) and a ≤ x ≤ b}.

If D is both x-simple and y-simple then we say D is simple.
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Definition 5.7 (Elementary region). A region that is either x-simple, y-simple or simple
is frequently called an elementary region.

Definition 5.8 (Probability distribution). A random variable X has a continuous prob-
ability distribution p if

(1) p(x) ≥ 0 for all x;
(2)
∫∞
infty

p(x)dx = 1;

(3) the probability X takes on a value between a and b is
∫ b
a
p(x)dx.

Definition 5.9 (Uniform distribution). If p(x) = 1
b−a for a ≤ x ≤ b and 0 otherwise,

then p is the uniform distribution on [a, b]. We often consider the special case when
a = 0 and b = 1. Note that for the uniform distribution on [0, 1], the probability we
take a value in an interval is just the length of the interval.

Definition 5.10 (Mean, Variance). The mean or expected value of a random variable is∫∞
−∞ xp(x)dx. We typically denote the mean by �. The variance is defined by

∫∞
−∞(x−

�)2p(x)dx, and measures how spread out a distribution is (the larger the variance, the
more spread out it is). We typically denote the variance by �2 and the standard deviation
by �. Note that �, � and x all have the same units, while the variance hs units equal to
the square of this.

5.2. Theorems.

Theorem 5.11 (Fubini’s Theorem). Let f be a continuous, bounded function on a rec-
tangle [a, b]× [c, d]. Then∫ ∫

R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy.

Theorem 5.12 (Integral over elementary regions). LetD ⊂ ℝ2 be an elementary region
and f : D → ℝ be continuous on D. Let R be a rectangle containing D and extend f
to a function f ∗ by

f ∗(x, y) =

{
f(x, y) if (x, y) ∈ D
0 otherwise.

Then ∫ ∫
D

f(x, y)dA =

∫ ∫
R

f ∗(x, y)dA.

Theorem 5.13 (Reduction to iterated integrals). Let D be a y-simple region given by
continuous functions �1(x) ≤ �2(x) for a ≤ x ≤ b. Then∫ ∫

D

f(x, y)dA =

∫ b

a

∫ �2(x)

�1(x)

f(x, y)dydx.

5.3. Special Topics. Mathematical modeling: In mathematical modeling there are
two competing factors. We want the model rich enough to capture the key features of
the system, yet be mathematically tractable. In general the more complicated the system
is, the more involved the model will be and the harder it will be to isolate nice properties
of the solution. For example, in modeling baseball games we assumed runs scored and
allowed were independent random variables. This clearly cannot be true (the simplest
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reason is that if a team scores r runs then they cannot allow r runs, as games do not end
in ties). The hope is that simple models which clearly cannot be the entire story can
nevertheless capture enough of the important properties of the system that the resulting
solutions will provide some insight. This is somewhat similar to Taylor series, where
we replace complicated functions with polynomials; as we’ve seen with the incredibly
fast convergence of Newton’s Method, it is possible to obtain very useful information
from these approximations!

In Monte Carlo Integration we will use Chebyshev’s Theorem:

Theorem 5.14. Let X be a random variable with finite mean � and finite variance �2.
Then for any k > 0 we have

Prob(∣X − �∣ ≥ k�) ≤ 1

k2
.

Monte Carlo Integration: Let D be a nice region in ℝn, and assume for simplicity
that it is contained in the n-dimensional unit hypercube [0, 1] × [0, 1] × ⋅ ⋅ ⋅ × [0, 1].
Assume further that it is easy to verify if a given point (x1, . . . , xn) is in D or not in
D. Draw N points from the n-dimensional uniform distribution; in other words, each
of the n coordinates of the N points is uniformly distributed on [0, 1]. Then as N →∞
the n-dimensional volume of D is well approximated by the number of points inside D
divided by the total number of points.

6. CHANGE OF VARIABLES FORMULA

6.1. Change of Variable Formula in the Plane.

Theorem 6.1 (Change of Variables Formula in the Plane). Let S be an elementary
region in the xy-plane (such as a disk or parallelogram for example). Let T : ℝ2 → ℝ2

be an invertible and differentiable mapping, and let T (S) be the image of S under T .
Then ∫ ∫

S

1 ⋅ dxdy =

∫ ∫
T (S)

1 ⋅
∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣ dudv,
or more generally∫ ∫

S

f(x, y) ⋅ dxdy =

∫ ∫
T (S)

f
(
T−1(u, v)

)
⋅
∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣ dudv.
Some notes on the above:

(1) We assume T has an inverse function, denoted T−1. Thus T (x, y) = (u, v) and
T−1(u, v) = (x, y).

(2) We assume for each (x, y) ∈ S there is one and only one (u, v) that it is mapped
to, and conversely each (u, v) is mapped to one and only one (x, y).

(3) The derivative of T−1(u, v) = (x(u, v), y(u, v)) is

(DT−1)(u, v) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
,
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and the absolute value of the determinant of the derivative is∣∣det (DT−1)(u, v))∣∣ =

∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣ ,
which implies the area element transforms as

dxdy =

∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣ dudv.
(4) Note that f takes as input x and y, but when we change variables our new inputs

are u and v. The map T−1 takes u and v and gives x and y, and thus we need to
evaluate f at T−1(u, v). Remember that we are now integrating over u and v,
and thus the integrand must be a function of u and v.

(5) Note that the formula requires an absolute value of the determinant. The reason
is that the determinant can be negative, and we want to see how a small area
element transforms. Area is supposed to be positively counted. Note in one-
variable calculus that

∫ b
a
f(x)dx = −

∫ a
b
f(x)dx; we need the absolute value to

take care of issues such as this.
(6) While we stated T is a differentiable mapping, our assumptions imply T−1 is

differentiable as well.

6.2. Change of Variable Formula: Special Cases.

Theorem 6.2 (Change of Variables Theorem: Polar Coordinates). Let

x = r cos �, y = r sin �

with r ≥ 0 and � ∈ [0, 2�); note the inverse functions are

r =
√
x2 + y2, � = arctan(y/x).

Let D be an elementary region in the xy-plane, and let D∗ be the corresponding region
in the r�-plane. Then∫ ∫

D

f(x, y)dxdy =

∫ ∫
D∗
f(r cos �, r sin �)rdrd�.

For example, if D is the region x2 + y2 ≤ 1 in the xy-plane then D∗ is the rectangle
[0, 1]× [0, 2�] in the r�-plane.

Theorem 6.3 (Change of Variables Theorem: Cylindrical Coordinates). Let

x = r cos �, y = r sin �, z = z

with r ≥ 0, � ∈ [0, 2�) and z arbitrary; note the inverse functions are

r =
√
x2 + y2, � = arctan(y/x), z = z.

LetD be an elementary region in the xyz-plane, and letD∗ be the corresponding region
in the r�z-plane. Then∫ ∫ ∫

D

f(x, y, z)dxdydz =

∫ ∫ ∫
D∗
f(r cos �, r sin �, z)rdrd�dz.
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Theorem 6.4 (Change of Variables Theorem: Spherical Coordinates). Let

x = � sin� cos �, y = � sin� sin �, z = � cos�

with � ≥ 0, � ∈ [0, 2�] and � ∈ [0, �). Note that the angle � is the angle made with the
z-axis; many books (such as physics texts) interchange the role of � and �. Let D be
an elementary region in the xyz-plane, and let D∗ be the corresponding region in the
���-plane. Then∫ ∫ ∫

D

f(x, y, z)dxdydz

=

∫ ∫ ∫
D∗
f(� sin� cos �, � sin� sin �, � cos�)�2 sin(�)d�d�d�.

Note that the most common mistake is to have incorrect bounds of integration.

7. SEQUENCES AND SERIES

7.1. Definitions.

Definition 7.1 (Sequence). A sequence {an}∞n=1 is the collection {a0, a1, a2, . . . }. Note
sometimes the sequence starts with a0 and not a1.

For example, if an = 1/n2 then the sequence is {1, 1/4, 1/9, 1/16, . . . }.
Definition 7.2 (Series). A series is the sum of the terms in a sequence. If we have
a sequence {an}∞n=0 then the partial sum sN is the sum of the first N terms in the
sequence: sN =

∑N
n=1 an. We often denote the infinite sum by s:

s = lim
N→∞

sN = lim
N→∞

N∑
n=1

an.

Definition 7.3 (Alternating series). An alternating series is an infinite sum of a sequence
where the terms alternate in sign.

For example, an = (−1)n/2n leads to an alternating series.

Definition 7.4 (Geometric Sequence / Series). A geometric sequence with common ratio
r and initial value a is the sequence {a, ar, ar2, ar3, . . . }. The partial sums are

sN =
a− arN+1

1− r
and the series sum (when ∣r∣ < 1) is

s =
1

1− r
.

Definition 7.5 (Absolutely convergent series). Consider the sequence {an}∞n=1. The
corresponding series is absolutely convergent (or converges absolutely) if the sum of
the absolute values of the an’s converges; explicitly,

lim
N→∞

N∑
n=1

∣an∣

exists. If the sequence is just non-negative terms, we often say the series converges.



MATH 105: MULTIVARIABLE CALCULUS REVIEW SHEET 19

Definition 7.6 (Conditionally convergent series). Consider the sequence {an}∞n=1. The
corresponding series is conditionally convergent (or converges conditionally) if

lim
N→∞

N∑
n=1

an

exists.

Note a series may be conditionally convergent but not absolutely convergent. For
example, consider an = (−1)n/n; the series converges conditionally but not absolutely.

Definition 7.7 (Diverges). If limN→∞
∑N

n=1 an does not converge, then we say the se-
ries diverges.

7.2. Tests.

Theorem 7.8 (End-term test). Let {an}∞n=1 be a sequence. If limN→∞ an ∕= 0 then the
series diverges.

Theorem 7.9 (Comparison Test). Let {bn}∞n=1 be a sequence of non-negative terms (so
bn ≥ 0). Assume the series converges, and {an}∞n=1 is another sequence such that
∣an∣ ≤ bn for all n. Then the series attached to {an}∞n=1 also converges.

Theorem 7.10 (p-Test). Let {an}∞n=1 be the sequence with an = 1/np for some fixed
p > 0; this is frequently called a p-series. If p > 1 then the series converges, while if
p ≤ 1 the series diverges.

Theorem 7.11 (Ratio Test). Consider a sequence {an}∞n=1 of positive terms. Let

r = lim
n→∞

an+1

an
.

If r exists and r < 1 then the series converges, while if r > 1 then the series diverges;
if r = 1 then this test provides no information on the convergence or divergence of the
series.

For example, applying this test to the geometric series with an = rn we find the series
converges for r < 1 and diverges for r > 1. If we consider bn = 1/n and cn = 1/n2

then both of these have a corresponding value of r equal to 1, but the first diverges while
the second converges.

Theorem 7.12 (Root Test). Consider a sequence {an}∞n=1 of positive terms. Let

� = lim
n→∞

a1/nn ,

the nth root of an. If � < 1 then the series converges, while if � > 1 then the series
diverges; if � = 1 then the test does not provide any information.

Theorem 7.13 (Integral Test). Consider a sequence {an}∞n=1 of non-negative terms.
Assume there is some function f such that f(n) = an and f is non-increasing. Then the
series

∞∑
n=1

an
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converges if and only if the integral ∫ ∞
1

f(x)dx

converges.

Theorem 7.14 (Alternating Test). If {an}∞n=1 is an alternating sequence with limn→∞ ∣an∣ =
0 then the series converges.

7.3. Examples of divergent and convergent series. We first list some convergent se-
ries. If {an}∞n=1 and {bn}∞n=1 are convergent series and c1, c2 are any constants, then
{c1an + c2bn}∞n=1 is a convergent series; i.e.,

∞∑
n=1

(c1an + c2bn)

converges.

Convergent series
∙ an = rn, ∣r∣ < 1.
∙ an = 1/np, p > 1.
∙ an = xn/n! for any x.

Divergent series
∙ an = rn, ∣r∣ > 1.
∙ an = 1/np for p ≤ 1 (in particular, an = 1/n).
∙ If limn→∞ an ∕= 0 then the series cannot converge.

We have many tests – Comparison Test, Ratio Test, Root Test, Integral Test. If possi-
ble, I like to try to use the Comparison Test first. It is very simple, but has the significant
drawback that you need to be able to choose a good series to compare with. This is rem-
iniscent of finding the roots of a quadratic. If you can ‘see’ how to factor it then the
problem is easy; if not, you have to resort to the quadratic formula (which will solve the
problem after some work).

So too it is here. We first try to see if we can be clever and choose the right series to
compare with, but if we fail then we can resort to one of the other tests.


