MATH 105: PRACTICE PROBLEMS FOR CHAPTER 13: SPRING 2011

INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU)

Question 1: Define the following terms:

- (1) What does it mean for a function $f: \mathbb{R}^2 \to \mathbb{R}$ to be bounded?
- (2) Define a simple region.

Question 2 : Compute

$$\int_{x=1}^{4} \int_{y=\sqrt{x}}^{x^2} y dy dx.$$

Interchange the order of integration. Write down what the new bounds of integration are, and compute the new double integral.

Question 3: Let f be a function of class C^2 . Must

$$\int_{x=0}^{\infty} \int_{y=0}^{\infty} f(x,y) dy dx = \int_{y=0}^{\infty} \int_{x=0}^{\infty} f(x,y) dx dy,$$

or could there be a function f such that this fails?

Question 4: Let D be the region in the plane where $x, y \ge 0$ and $3x \ge 2y \ge x$. Write down (but do not evaluate) the integral for the function e^{xy} over this region.

 ${\bf Question} \,\, {\bf 5} : {\bf Prove} \,\,$

$$2 \le \int_{x=0}^{1} \int_{y=0}^{2} e^{x+y} dy dx \le 2e^{3}.$$

Date: March 1, 2011.