Math 140: Calculus II: Spring '22 (Williams) Professor Steven J Miller: sjm1@williams.edu

Homepage:

https://web.williams.edu/Mathematics/sjmiller/
public html/140Sp22/

Lecture 6: 2-16-22:
https://youtu.be/HOvHoX8UtLw (sitides hered
Logarithms: watch https://www.youtube.com/watch?v=-SsbkPaB6j8 (22 minutes)

Plan for the day: Lecture 4: February 11, 2022:

Review Exponential Function and Logarithm
Applications
Compound interest definition, series definition

Log Laws

Why do we care about Logarithms

- Discuss objects across many orders of magnitude.
- Linearize many non-linear functions (calculus becomes available).

Plot of 100 most populous cities

Definition of Logarithms

- If $x=b^{y}$ then $\log _{b} x=y$.
- Read as the logarithm of x base b is y.
- Often use base 10, and some authors suppress the subscript 10.
- Other popular bases are 2 for computers, and e for calculus; many sources write $\ln x$ for the natural logarithm of x, which is its logarithm base e (e is approximately 2.71828).
- Examples: $\log _{b} x=y$ means we need y powers of b to get x.
- $100=10^{2}$ becomes $\log _{10} 100=2$.

In base e it is about 4.6.

- $1=10^{0}$ becomes $\log _{10} 1=0$.

In base e it is still 0 .
$\cdot .001=10^{-3}$ becomes $\log _{10} .001=-3$. In base e it is about -6.9.

Examples of Logarithms

| Order of Magnitude of some Lengths |
| :--- | :---: |
| $\left.$LENGTH meters
 radius of proton 10^{-15}
 radius of atom 10^{-10}
 radius of virus 10^{-7}
 radius of amoeba 10^{-4}
 height of human being 10^{0}
 radius of earth 10^{7}
 radius of sun 10^{9}
 earth-sun distance 10^{11}
 radius of solar system 10^{13}
 distance of sun to nearest star 10^{16}
 radius of milky way galaxy 10^{21}
 radius of visible Universe 10^{26} $\mathbf{\|} \right\rvert\,$ |

Examples of Logarithms

Earthquake frequency and destructive power

The left side of the chart shows the magnitude of the earthquake and the right side represents the amount of high explosive required to produce the energy released by the earthquake. The middle of the chart shows the relative frequencles.

Energy release

Examples of Logarithms

. Ill NoISE LEVELS

[^0]Heavy traffic,
window air conditioner,
noisy restaurant,
power lawn Boom box, ATV, mower 1
soft music, whisper

Vacuum deaner, average radio

Normal conversation, background music
office noise, inside car at 60 mph

Chainsaw, leaf blower, Stock car snowmobile

School dance

ports crowd, Gun shot, rock concert, siren at loud symphony 100 feet

Sounds above 85 dB are harmful

Examples of Logarithms

The pH Scale

shutterstock.com • 1216954318

Recall: Definition of Logarithms

- If $x=b^{y}$ then $\log _{b} x=y$.
- Read as the logarithm of x base b is y.
- Often use base 10 , and some authors suppress the subscript 10.
- Other popular bases are 2 for computers, and e for calculus; many sources write $\ln x$ for the natural logarithm of x, which is its logarithm base e (e is approximately 2.71828).
- Examples: $\log _{b} x=y$ means we need y powers of b to get \boldsymbol{x}.
- $100=10^{2}$ becomes $\log _{10} 100=2$.

In base e it is about 4.6.

- $1=10^{0}$ becomes $\log _{10} 1=0$.

In base e it is still 0 .
$\cdot .001=10^{-3}$ becomes $\log _{10} .001=-3$. In base e it is about -6.9.

Plots of Exponentiation and Logarithms

- If $x=b^{y}$ then $\log _{b} x=y$.
- Read as the logarithm of x base b is y.

Why do we care about Logarithms

- Discuss objects across many orders of magnitude.
- Linearize many non-linear functions (calculus becomes available).

Plot of 100 most populous cities

Why do we care about Logarithms

- Linearize many non-linear functions (calculus becomes available).

Notice that even on a small range, from 1 to 10, the polynomial of highest degree drowns out the others and can barely see.

Why do we care about Logarithms

- Linearize many non-linear functions (calculus becomes available).

Plot of $\log _{-} 10\left(x^{\wedge} r\right)$ for r in $\{1 / 4,1 / 2,2,4\}$

Log-Log Plot: $y=x^{\wedge} r$, or $\log _10(y)=\log _{_} 10\left(x^{\wedge} r\right)$ or $\log _{_} 10(y)=r \log _10(x)$

Left: Semi-log plot: $y=\log x^{r}$. Right: $\log -\log$ plot: $\log y=\log x^{r}$. Note that we can now see the four functions on one plot, and the log-log plot now has linear relations.

Review: Exponent Laws

Laws

- $b^{m} b^{n}=b^{m+n}$

$$
\begin{aligned}
& b^{2} b^{3}=(b \cdot b) \cdot(b \cdot b \cdot b)=b^{5} \\
& b^{3} / b^{2}=\frac{b \cdot b \cdot b}{b \cdot b}=b \\
& \left(b^{2}\right)^{3}=(b \cdot b) \cdot(b \cdot b) \cdot(b \cdot b)=b^{6}
\end{aligned}
$$

- $b^{m} / b^{n}=b^{m-n}$
- $\left(b^{m}\right)^{n}=b^{m n}$

Examples

- $10^{3} 10^{2}=(10 * 10 * 10) *(10 * 10)=10^{5}$
$\cdot 10^{3} / 10^{2}=(10 * 10 * 10) /(10 * 10)=10^{1}$
- $\left(10^{3}\right)^{2}=10^{3} * 10^{3}=(10 * 10 * 10) *(10 * 10 * 10)=10^{6}$

Logarithm Laws

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.
These allow us to simplify computations with logarithms.

THEOREM

$$
\log _{b}\left(x^{-1}\right)=-\log _{b}(x)
$$

- $\log _{b}\left(x^{n}\right)=\mathrm{n} \log _{b} x$.

Log of a power is that power times the log.

- $\log _{b}\left(x_{1} x_{2}\right)=\log _{b}\left(x_{1}\right)+\log _{b}\left(x_{2}\right)$. Log of a product is the sum of the logs.
- $\log _{b}\left(x_{1} / x_{2}\right)=\log _{b}\left(x_{1}\right)-\log _{b}\left(x_{2}\right)$. Log of a quotient is the difference of the logs.
$\cdot \log _{b} x=\log _{c} x / \log _{c} b$

OPTIONAL - PROOFS OF THE LOG LAWS

"I think you should be more explicit here in step two."

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x^{n}\right)=n \log _{b} x^{\prime}$, Log of a power is that power times the log.

Proof:

- $\log _{b} x=y$ means $x=b^{y}$.
- Thus $x^{n}=\left(b^{y}\right)^{n}=b^{n y}$.
- Taking logarithms: $\log _{b}\left(x^{n}\right)=n y=n \log _{b} x$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x_{1} x_{2}\right)=\log _{b}\left(x_{1}\right)+\log _{b}\left(x_{2}\right) \cdot$ tog of a product is the sum of the logs.

Proof:

- As $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$, we have $x_{1}=b^{y_{1}}$ and $x_{2}=b^{y_{2}}$.
-Thus $x_{1} x_{2}=b^{y_{1} b^{y_{2}}}=b^{y_{1}+y_{2}}$.
- Therefore $\log _{b}\left(x_{1} x_{2}\right)=y_{1}+y_{2}=\log _{b} x_{1}+\log _{b} x_{2}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{c} x=u$ (so $x=c^{u}$) and $\log _{c} b=v$ (so $b=c^{v}$).
$\cdot \log _{b} x=\log _{c} x / \log _{c} b \cdot$ Know logs in one base, know in all.

Proof:

- As $\log _{b} x=y$ have $x=b^{y}$. Similarly $x=c^{u}$ and $b=c^{v}$.
-Thus $x=b^{y}=\left(c^{v}\right)^{y}=c v^{y}$.
- As also have $x=c^{u}$ we have $u=v y$ or $y=u / v$.
- Substituting gives $\log _{b} x=\log _{c} x / \log _{c} b$.

Example: Factorial Function:

 Number ways to order \boldsymbol{n} objects when order matters:$$
n!=n *(n-1) * \bullet \bullet * 3 * 2 * 1 .
$$

```
list = {}; semiloglist = {}; logloglist = {};
For[n=1, n <= 200, n++,
{
    list = AppendTo[list, {n, n!}];
    semiloglist = AppendTo[semiloglist, {n, Log[n!]}];
    logloglist = AppendTo[logloglist, {Log[n], Log[n!]}];
    }];
Print[ListPlot[list]]; Print[ListPlot[semiloglist]]; Print[ListPlot[logloglist]];
```


Example: Factorial Function:

 Number ways to order \boldsymbol{n} objects when order matters:$$
n!=n *(n-1) * \bullet \bullet * 3 * 2 * 1 .
$$

Normal Plot

Semi-log Plot

Log-Log Plot

For large n, have $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}$, so $\log n \approx \frac{n}{e} \log n$ (plus a much smaller term).

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{1=0}^{\infty} \frac{x^{n}}{1!} \\
& n!=n(n-1) \cdots 3 \cdot 2 \cdot 1 \\
& \text { win } o!=1
\end{aligned}
$$

$$
\begin{aligned}
& \binom{5}{2}=\frac{5!}{2!3!}=\frac{5 \cdot 4 \cdot 3!}{2!3!}=\frac{5 \cdot 4}{2 \cdot 1}=10 \\
& \binom{2}{s}=0 \stackrel{?}{=} \frac{2!}{5!(2-5)!}=\frac{2!}{s!(-3)!} \begin{array}{l}
\text { so }(-3)!\text { is } \infty \\
\left(-\frac{1}{2}\right)!=\sqrt{\pi}
\end{array}
\end{aligned}
$$

$e^{x}=\lim _{n \rightarrow \infty}\left(l+\frac{x}{n}\right)^{n} \quad$ Compand internat
Sat worn P_{0} money, rate is $r \%$ per year (so 100% per year is $r=1$), compare n thees ayer.

$$
\begin{aligned}
& \text { (so } 100 \% \text { per sear is } r=1, P_{0}\left(1+\frac{r}{n}\right)^{n} \\
& \left.P_{0} \xrightarrow[\text { iperinat }]{ } P_{0}\left(1+\frac{r}{n}\right) \xrightarrow[\text { ipad }]{ } P_{0}\left(1+\frac{r}{n}\right)^{2} \rightarrow \cdots\right)^{n} \text { one yer }
\end{aligned}
$$

Gowby a factor of $\left(1+\frac{r}{n}\right)^{n}$ in one yea
once a sear, $p_{0}=1$

$$
1 \longrightarrow \quad 1+\Gamma
$$

twice a year, $P_{0}=1$

$$
1 \rightarrow\left(1+\frac{r}{2}\right) \rightarrow\left(1+\frac{r}{2}\right)^{2}=1+2 \cdot \frac{r}{2}+\frac{r^{2}}{4}=1+r+\frac{r^{2}}{4}
$$

thrice a yer, $P_{\delta}=1$

$$
\begin{aligned}
\text { thrice a yer, } r_{0} & =1 \\
1 \longrightarrow\left(1+\frac{r}{3}\right)^{3}= & 1^{3}+3 \cdot 1^{2} \frac{r}{3}+3 \cdot 1 \cdot\left(\frac{r}{3}\right)^{2}+1 \cdot\left(\frac{r}{3}\right)^{3} \\
& =1+r+\frac{r^{3}}{3}+\frac{r^{3}}{27}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=? \\
& \left(1+\frac{r}{n}\right)^{n}=1+\binom{n}{1}\left(\frac{r}{n}\right)+\binom{n}{2}\binom{r}{n}^{2}+\binom{n}{3}\left(\frac{r}{n}\right)^{3}+\cdots+\binom{n}{n}\binom{n}{n}^{n} \\
& \quad=1+n \cdot \frac{r}{n}+\frac{n(n-1)}{2!} \frac{r^{2}}{n^{2}}+\frac{n(n-1)(n-2)}{3!} \frac{r^{3}}{n^{3}}+\cdots \\
& \approx 1+r+\frac{r^{2}}{2!}+\frac{r^{3}}{3!}+\cdots \\
& \quad \text { lodks like } 1+r+\frac{r^{2}}{2!}+\frac{r^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{r^{n}}{m!}=e^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!} e^{\infty}\left(\sum_{n=0}^{\infty} \frac{y^{n}}{n_{n}^{\prime}}\right)^{\infty} e_{k=0}^{\infty}\right. \\
& \text { High level sketch } \\
& \sum_{k=0}^{\infty} \sqrt[\sum_{l=0}^{k} i k \frac{x^{l} y^{k-l} ; i(k-l)!}{l!}, i, i]{k!} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}: \sum_{i, k=0}^{i k}\binom{k}{l} x^{l} y^{k-i} ; \sum_{k=0}^{\infty} \frac{(x+y)^{k}}{k!} \\
& +\left(\frac{x^{3}}{3!}+\frac{x^{2} y}{2!1!}+\frac{x y^{2}}{1!2!}+\frac{y^{3}}{3!}\right) \\
& +(\quad) \in \cdots
\end{aligned}
$$

Recall free Cakuks

$$
\left(e^{x}\right)^{\prime}=e^{x}
$$

Sketch of prot:

$$
\begin{aligned}
& \text { Ketch of prot: } \\
& \begin{aligned}
\left(e^{x}\right)^{\prime} & =\left(1+x+x^{2} / 2!+x^{3} / 3!+\cdots\right)^{\prime} \\
& =0 \\
0 & \downarrow \\
& =1+\frac{2 \cdot x}{2 \cdot 1!}+\frac{3 \cdot x^{2}}{3 \cdot 2!}+\frac{4 \cdot x^{3}}{4 \cdot 3!}+\cdots \\
& =x+\frac{x^{2}}{2!}+x^{3} / 3!+\cdots=e^{x}
\end{aligned}
\end{aligned}
$$

$\log x=\ln x:(\log x)^{\prime}=1 / x$
The: if $f(g(x))=x$ Then $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$
Poos: Chan Rub: $f^{\prime}(g(x)) g^{\prime}(x)=1$ so solve for $g^{\prime}(x)$!
use 1+! $\exp (\log x)=x$
here $f(x)=e^{x} \quad g(x)=\log x$

$$
\begin{aligned}
& f^{\prime}(x)=e^{x} \\
& f^{\prime}(g(x))=e^{\log x}=x \\
& \text { so }(\log x)^{\prime}= \frac{1}{f^{\prime}(g(x))}=\frac{1}{x}
\end{aligned}
$$

[^0]: Source: www.webmdicom

