Math 140: Calculus Il: Spring 22 (Williams)
Professor Steven J Miller: siml@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public html/140Sp22/

Lecture 6: 2-16-22:
https://youtu.be/HOVHOX8UtLW ides here)

Logarithms: watch https://www.youtube.com/watch?v=-SsbkPaB6j8 (22 minutes)
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Plan for the day: Lecture 4: February 11, 2022:

Review Exponential Function and Logarithm
Applications
Compound interest definition, series definition

Log Laws



Introduction to
Logarithms

Steven Miller, Williams|College
siml@Williams.edu



Why do we care about Logarithms

* Discuss objects across many orders of magnitude.
* Linearize many non-linear functions (calculus becomes available).
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Definition of Logarithms
*If x = bY thenlog, x = y.
* Read as the logarithm of x base b is y.

e Often use base 10, and some authors suppress the subscript 10.

* Other popular bases are 2 for computers, and e for calculus;
many sources write In x for the natural logarithm of x, which is
its logarithm base e (e is approximately 2.71828).

* Examples: log;, x = y means we need y powers of b to get x.

* 100 = 104 becomes log,, 100 = 2. N
*1 =10° becomeslog,, 1 = 0. N
¢.001 = 1073 becomes log;,.001 = —3. In

pase e it is about 4.6.
pase e it is still O.

pase e it is about -6.9.
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Examples of Logarithms

| Order of Magnitude of some Lengths

|LENGTH meters
| radius of proton 1071
| radius of atom 10710
| radius of virus 107
| radius of amoeba 10
| height of human being 10°
| radius of earth 10’
| radius of sun 10°
| earth-sun distance 101
| radius of solar system 1013
| distance of sun to nearest star 100
| radius of milky way galaxy 10!
| radius of visible Universe 106
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Examples of Logarithms

Earthquake frequency and destructive power

The left side of the chart shows the magnituda of the sarthquake and the right skde represents the amount of high ecplosive
required to produce the enargy relaased by the earthqualkea. The middlie of the chart shows the relative frequencles.
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Examples of Logarithms
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Examples of Logarithms

The pH Scale
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Recall: Definition of Logarithms
*If x = bY thenlog, x = y.
* Read as the logarithm of x base b is y.

e Often use base 10, and some authors suppress the subscript 10.

* Other popular bases are 2 for computers, and e for calculus;
many sources write In x for the natural logarithm of x, which is
its logarithm base e (e is approximately 2.71828).

* Examples: log;, x = y means we need y powers of b to get x.

* 100 = 104 becomes log,, 100 = 2. N
*1 =10° becomeslog,, 1 = 0. N
¢.001 = 1073 becomes log;,.001 = —3. In

pase e it is about 4.6.
pase e it is still O.

pase e it is about -6.9.
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Plots of Exponentiation and Logarithms

* If x = bY thenlog, x = y.

* Read as the logarithm of x base b is y.
Plot of b* for bin {2, e, 10} _ Plot of log_b(x) for bin {2, e, 10}

10" < x < 10™tt implies n < logiox < n+ 1.
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Why do we care about Logarithms

* Discuss objects across many orders of magnitude.
* Linearize many non-linear functions (calculus becomes available).
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Why do we care about Logarithms

* Linearize many non-linear functions (calculus becomes available).

Plot of x*r for r in {1/4, 1/2, 2, 4}

10000 -
8000 -
6000 —
4000 -

2000 |

100 -

Plot of x*r for rin {1/4, 1/2, 2, 4}

Notice that even on a small range, from 1 to 10, the polynomial of highest
degree drowns out the others and can barely see.
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Why do we care about Logarithms

* Linearize many non-linear functions (calculus becomes available).

Plot of log_10(x*r) for r in {1/4, 1/2, 2, 4} Log-Log Plot: y = x*r, or log_10(y) = log_10(x"r) or log_10(y) = r log_10(x)
0.25
| — logo(x )101400 4025
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log14(x?) X
600 4
d — |0910(X4) 0 — X
10200
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Left: Semi-log plot: y = log x". Right: log-log plot: log y = logx".
Note that we can now see the four functions on one plot, and the log-log
plot now has linear relations. 14



Review: Exponent Laws

Laws L [* - _(L.4) (b L4) = b°

° b‘m bn — bm+n 3/é 4/7 B é

« WM [ W — }[ym—n - 4
l(?b””/)’lz et L) 6o h (=L

Examples

*10310% = (10 %10 *10) * (10 * 10) = 10°
*103/10%= (1010 *10)/(10 % 10) = 10*
*(10%)%2 =103 % 103 = (10 * 10 * 10) * (10 * 10 * 10) = 10°
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Remember if x = b”Y thenlog, x = y.

Below assume log, x; = y, and log, x, = v,.

These allow us to simplify computations with logarithms.

THEOREM fog (x7) = =17

-

n —_—
108 (X ) — 1 10819 X Log of a power is that power times the log.

:*Ogb (X1 xz) — logb (xl) T lOgb (xZ) Log of a product is the sum of the logs.

Logb (.X'1 /xz) — lOgb (xl) o logb (xZ) Log of a quotient is the difference of the logs.
log, x = log,. x/log, b. L

If know logs in one base, know in all.



OPTIONAL — PROOFS OF THE LOG LAWS

“I think you should be more explicit here in step two.”
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Logarithm Laws: Proofs

Remember if x = b” thenlog, x = y.
Below assume log, x; = y, and log, x, = v,.

e ny —
logb (x ) —n logb X. Log of a power is that power times the log.

Proof:

*log, x = ymeans x = b”.

* Thus x* = (b”)" = b"™.

* Taking logarithms: log,, (xn') =ny = nlog, x.
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Logarithm Laws: Proofs

Remember if x = b” thenlog, x = y.
Below assume log, x; = y, and log, x, = v,.

° logb(x1 xz) — logb (xl) logb (xZ)' Log of a product is the sum of the logs.

Proof:
*Aslog, x, =y, and log, x, = y,, we have x;, = bY1and x, = b”.
*Thus x; x, = bY1bY2 = hY17Y2,

* Therefore log, (x, x,) =y, +y, =log, x,; +logy x.. _
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Logarithm Laws: Proofs

Remember if x = b” thenlog, x = y.
Below assume log,. x = u (sox = c*)andlog.b = v (so b = c").

° logb X = logc .X'/ logc b Know logs in one base, know in all.

Proof:

*Aslog, x = y have x = b”. Similarly x = c% and b = c".
*Thusx = bY = (cV)Y = cv.

* As also have x = c* we haveu = vy or y = u/v.

* Substituting gives log, x = log. x/log, b. _
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Example: Factorial Function:
Number ways to order n objects when order matters:
n=nx*xmM-—1)xeeex3 x2 x1.

list = {}; semiloglist = {}; logloglist = {};
For[n =1, n <= 200, n++,
{
list = AppendTo(list, {n, nl}];
semiloglist = AppendTo[semiloglist, {n, Log[n!]}];
logloglist = AppendTo[logloglist, {Log[n], Log[n!]}];
3,
Print[ListPlot[list]]; Print[ListPlot[semiloglist]]; Print[ListPlot[logloglist]];
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Example: Factorial Function:
Number ways to order n objects when order matters:
n'=nxxmM-—1)«xeeex3 x2 x1.

1.4x102% | i i

i 800 - 800 -
1.2x10296 L I '
1.0x10296 L 600}
8.0x102%5 [ [
6.0x10295 [ a00r a0or
4.0x10295 L[ L L

[ 200} 200
2.0x102%} [ '

50 100 150 200 s 10 10 220 1 2 s 4 5
Normal Plot Semi-log Plot Log-Log Plot

— n
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