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Plan for the day: Lecture 31: May 2, 2022:

Topics: Difference Equations

* Fibonacci Numbers
e Generating Function for Fibonacci Numbers

* Application: Double plus one: Roulette and Fibonaccis



Exercise 1.1 (Recurrence Relations). Lef v, . . ., a1 be fixed integers and consider the recurrence
relation of order k
Tn+k = O 1Tptk—1 T Ok2Tptk—2 T - T Q1 Ty T Qply. (1.1)
Show once k values of x,,, are specified, all values of x,, are determined. Let
f(r) = r* —apr*t — - —ag; (1.2)
we call this the characteristic polynomial of the recurrence relation. Show if f(p) = 0 then x, =

cp™ satisfies the recurrence relation for any c € C.

Exercise 1.2. Notation as in the previous problem, if f(r) has k distinct roots ry, . . ., 1}, show that
any solution of the recurrence equation can be represented as

Tn = Cir] + -+ cpry (1.3)
for some c; € C. The Initial Value Problem is when k values of x,, are specified; using linear

algebra, this determines the values of c.....c,. Investigate the cases where the characteristic
polynomial has repeated roots. For more on recursive relations, see |GKP], §7.3.

Exercise 1.3. Solve the Fibonacci recurrence relation F, o = F,.1 + Fy, given Foy = Fy = 1.

Show Iy, grows exponentially, i.e., F, is of size v" for some r > 1. What is r? Let r, = .
T

Show that the even terms roy, are increasing and the odd terms ro,, 1 are decreasing. Investigate

limy, .o 1y, for the Fibonacci numbers. Show r,, converges to the golden mean, 1+2_\/E See [PS2] for
a continued fraction involving Fibonacci numbers.



Exercise 1.4 (Binet’s Formula). For F,, as in the previous exercise, prove

L [(1+v5\" [1-V5
/5 2 2

This formula should be surprising at first: F,, is an integer, but the expression on the right involves
irrational numbers and division by 2.

T

Frno1 =

(1.4)

Exercise 1.5. Notation as in the previous problem, more generally for which positive integers m is

SCERCY)

an integer for any positive integer n?




Exercise™ 1.6 (Zeckendorf’s Theorem). Consider the set of distinct Fibonacci numbers: {1, 2. 3,
5,8, 13,... }. Show every positive integer can be written uniquely as a sum of distinct Fibonacci
numbers where we do not allow two consecutive Fibonacci numbers to occur in the decomposition.
Equivalently, for any n there are choices of ¢;(n) € {0, 1} such that

£(n)
n = Z €i(n)F;, €(n)eq(n)=0forie{2,....0(n)— 1}. (1.6)
i=2

Does a similar result hold for all recurrence relations? If not, can you find another recurrence
relation where such a result holds?

Exercise™ 1.7. Assume all the roots of the characteristic polynomial are distinct, and let \; be

the largest root in absolute value. Show for almost all initial conditions that the coefficient of A is
Non-zero.

Exercise™ 1.8. Consider 100 tosses of a fair coin. What is the probability that at least three
consecutive tosses are heads? What about at least five consecutive tosses? More generally, for a

fixed & what can you say about the probability of getting at least & consecutive heads in /N tosses
as N — ox?



Fibonacci Numbers: F,. 1 = Fn+ Fp_1;
Fi=1F>,=2,F3 =3, F4 =5,

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm -- Theorems!: http://youtu.be/5e6HsfxqVSE
https://web.williams.edu/Mathematics/similler/public html/math/talks/CookiesToCLTtoGaps Yale2014.pdf
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lower = 0;
upper = 1;
max = 10000000;
Timing[For[n = 2, n <= max, n++,
{
new = lower + upper;
lower = upper;
upper = new;
1]
Print[upper];
{356.063,Null}

Log[10.,Fibonacci[1000000]]
Log[10.,Fibonacci[500000]]
208987.

104493.

Estimate on how many digit operations base 10 to get to the
millionth Fibonacci number. The 500,000t has 104,493 digits, so have
at least

100000 * 500000 = 50,000,000,000.

How many seconds in a year?
3600*24*365.25*4 = 1.2623*108 or approximately 100,000,000.

So if do 100 digits a second get to 10,000,000,000.

We're off by AT LEAST a factor of 5, and this is doing 100 digits a
second!



Binet’s Formula
Fi=Fam o= [(4)' - (254

V5

@ Recurrence relation: F,.1 = F, + Fp_+ (1)
@ Generating function: g(x) = »_,_, FnX".




Binet’s Formula
FeFoe Fae g5 [(59) (255

2 2

V5

@ Recurrence relation: F,.1 = F,+ Fp_+ (1)
@ Generating function: g(x) = > ., FnXx".

(1) - Z Fn_|_1Xn+1 _ Z ann+1 + Z Fn_1x”+1
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Binet’s Formula
Fi=F,=1; F, == [(” 5)n _ (M)n] .

V5

@ Recurrence relation: Fp 1 = F, + Fph_1 (1)
@ Generating function: g(x) = > _,_, FnX".

(1) = an+1xn+1 _ Zann+1 n ZFn—1X”+1

n=2 n>2 n>2

= Zann = ZFan+1 + ZFan+2

n:_}.?) n22 n21




Binet’s Formula
Fieramt Fo= (55 (449

V5

@ Recurrence relation: F,.1 = F, + Fp_1 (1)
@ Generating function: g(x) = ., FnXx".

(1) = ZF”HXHH:Zann+1+ZFn—1X"+1

n>2 n>2 n>2
:\/" E ann — Z ann+1 + Z ann+2
n>3 n>2 n>1

— Zan” — xZan” + X2 Zan”

n>3 n>2 n>1
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Binet’s Formula
oot Foe (59~ (259))

V5

@ Recurrence relation: F,.1 = F, + Fp_1 (1)
@ Generating function: g(x) = > ., FnXx".

(1) — :E:‘:n+1xn+1::::E:‘:nxn+4'+'ZE:‘:n—1xn+1

n>2 n>2 n>2

= Y Fox" =) Fx" 4 Fpx"t?
n>3 n>2 n>1

= E F.x" = x Zan” + x? Zan”
n>3 n>2 n>1

= g(x) — Fix — Fox? = x(g(x) — F1x) + x*g(x)
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Binet’s Formula
Fi=Fo=1 Fo= 2 [(55) - (2%£)].

V5

@ Recurrence relation: F,.1 = F, + Fp_1 (1)
@ Generating function: g(x) = > ., Fnx".

(1) — Z Fn_|_1X”+1 _ Z ann+1 4 Z Fn_1X”+1

= Y Fox"=) Fx"" 4+ F,x"?
n:_:"S n:_:"2 ng-"

= » Fox"=x)Y Fpx"+x*) Fux"
nES nzz n:21

g(x) — Fix — Fax® = x(g(x) — F1x) + x°g(x)
g(x) =x/(1 —x —x?).

4 J
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® Generating function: =
g n. g(x)_Zn}UF”xn: 1—xx—x2' - % (—

J +
. 2 ~— -

= [+ +x) + (wtxY S + () €

- (e Gt (e Tek) (e 3K )
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@ Generating function: g(x) = ) _,.o FnX" =

@ Partial fraction expansion:

X
1—x—x2°
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@ Generating function: g(x) = > .o FnX" = +——.

@ Partial fraction expansion:

1 — x — x?

X 1(Mx SRSV

= g(x) = :E

Coefficient of x" (power series expansion):

Fn=—% [(1+2‘/§)n - (%‘E)n] - Binet's Formulal!

(using geometric series: == =1+r+r2+r3+...).
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We consider the following simplified model for the number of pairs of whales alive at a given moment
in time. We make the following simplifying assumptions:

(1) Time moves in discrete steps of 1 year.

(2) The number of whale pairs that are 0, I, 2 and 3 years old in year n are denoted by a,,. b,,. ¢,, and
d, respectively: all whales die when they turn 4.

(3) If a whale pair is 1 year old it gives birth to two new pairs of whales, if a whale pair is 2 years old
it gives birth to one new pair of whales, and no other pair of whales give birth.

@Jodﬂ,ﬂ = O'ﬂd 4Z~én — |- Ca o-HLn

Pl = [« Qa 5-bn — 0-Cn = 0-Har

i -d
‘(_/,.O‘&A ‘é‘“‘é" < 0-Ch 9T

_ /é ~ )‘C/t ‘(’0”6/4
Mﬂ(n—k( =o-an T

o o



Letting

p,
bn
=] (1)
d,,
we see that
’I-’n__|_1 — A'I-‘.n_, (2)
where
0 2 1 0
1 0 0 0
A=10100 | (3)
0 0 1 0
Thus
Vi1 = A"y, (4)

where vy 1s the initial populations at time 0. As discussed before, it is one thing to write down a solution
and another to have be able to numerically work with it. This matrix is fortunately easily diagonalizable.
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