
Calculus Review Problems for Math 105

(Multivariable Calculus)

Steven J. Miller: sjm1@williams.edu

February 28, 2014



2



Contents

3



4



Chapter 1

Calculus Review Problems

Calculus is an essential tool in many sciences. These questions are designed to ensure that
you have a sufficient mastery of the subject for multivariable calculus. We first list several
results you should know and then many review problems, which are followed by detailed
solutions. We urge the reader who is rusty in their calculus to do many of the problems
below. Even if you are comfortable solving all these problems, we still recommend you
look at both the solutions and the additional comments. We discuss various techniques
to solve problems like this; some of these techniques may not have been covered in your
course. Further, for some of the problems we discuss why we chose to attack it one way as
opposed to another, analyzing why some approaches work and others fail.

Topics you should know:

• The Intermediate Value Theorem.

• The Mean Value Theorem.

• The definition of the derivative.

• The meaning of the derivative (if the derivative is positive then the function is in-
creasing, ...).

• L’Hopital’s rule.

• Critical points, inflection points, relative maxima and minima.

• The rules of differentiation and integration.

• Volumes for regions constructed by rotating a curve.

• u-substitution and integration by parts.
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As these are standard topics, I will not provide explicit definitions of each below, though
many are referred to in handouts on the course homepage; all of these can be found in any
standard calculus textbook. A particularly useful handout is

http://www.williams.edu/go/math/sjmiller/public html/105/handouts/MVT TaylorSeries.pdf

For the convenience of the reader, we collect some standard calculus results.

• Derivatives of Standard Functions

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

(xn)′ = nxn−1

(sinx)′ = cosx

(cosx)′ = − sinx

(ex)′ = ex

(bx)′ = (loge b)b
x

(loge x)
′ =

1

x

(logb x)
′ =

1

loge b

1

x

• Useful Rules

Sum Rule: h(x) = f(x) + g(x) h′(x) = f ′(x) + g′(x)
Constant Rule: h(x) = af(x) h′(x) = af ′(x)
Product Rule: h(x) = f(x)g(x) h′(x) = f ′(x)g(x) + f(x)g′(x)

Quotient Rule: h(x) = f(x)
g(x)

h′(x) = f ′(x)g(x)−f(x)g′(x)
(g(x))2

Chain Rule: h(x) = g(f(x)) h′(x) = g′(f(x)) · f ′(x)
h(x) = (f(x))n h′(x) = n(f(x))n−1 · f ′(x)

Multiple Rule: h(x) = f(ax) h′(x) = af ′(ax)
Reciprocal Rule: h(x) = f(x)−1 h′(x) = −f ′(x)f(x)−2

1.1 Problems

1.1.1 Derivatives (one variable)

Question 1.1.1 Find the derivative of f(x) = 4x5 + 3x2 + x1/3.

Question 1.1.2 Find the derivative of f(x) = (x4 + 3x2 + 8) cosx.

Question 1.1.3 Find the derivative of f(x) = log(1− x2).

Question 1.1.4 Find the derivative of log(4x)− log(2x).

Question 1.1.5 Find the derivative of e−x2/2 = exp(−x2/2).

Question 1.1.6 Find the second derivative of e−x2/2 = exp(−x2/2).
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Question 1.1.7 Find the derivative of ex cos(3x4) = exp(x8) cos(3x4).

Question 1.1.8 Find the derivative of the function f(x) = 4x +
√
2 cos(x) and then use

it to find the tangent line to the curve y = f(x) at x = π/4. Use the tangent line to

approximate f(x) when x = π
4 + .01.

Question 1.1.9 Find the second derivative of f(x) = lnx+
√
162.

Question 1.1.10 Find the maximum value of x4e−x = x4 exp(−x) when x ≥ 0.

Question 1.1.11 Find the critical points of f(x) = 4x3 − 3x2, and decide whether each is

a maximum, a minimum, or a point of inflection.

Question 1.1.12 Find the derivative of (x2 − 1)/(x− 1).

Question 1.1.13 Find the derivative of the function f(x) = 3

√

(5x− 2)2 = (5x− 2)2/3.

Question 1.1.14 Find the points on the graph of f(x) = 1
3x

3 + x2− x− 1 where the slope

is (a) −1, (b) 2, and (c) 0.

Question 1.1.15 Find the second derivative of f(x) = (x4 + 3x2 + 8) cosx.

1.1.2 Taylor Series (one variable)

Question 1.1.16 Find the first five terms of the Taylor series for f(x) = x8 + x4 + 3 at

x = 0.

Question 1.1.17 Find the first three terms of the Taylor series for f(x) = x8 + x4 + 3 at

x = 1.

Question 1.1.18 Find the first three terms of the Taylor series for f(x) = cos(5x) at

x = 0.

Question 1.1.19 Find the first five terms of the Taylor series for f(x) = cos3(5x) at

x = 0.

Question 1.1.20 Find the first two terms of the Taylor series for f(x) = ex at x = 0.

Question 1.1.21 Find the first six terms of the Taylor series for f(x) = ex
8

= exp(x8)
at x = 0.

Question 1.1.22 Find the first four terms of the Taylor series for f(x) = 1√
2π
e−x2/2 =

exp(−x2/2)/
√
2π at x = 0.

Question 1.1.23 Find the first three terms of the Taylor series for f(x) =
√
x at x = 1

3 .

Question 1.1.24 Find the first three terms of the Taylor series for f(x) = (1 + x)1/3 at

x = 1
2 .

Question 1.1.25 Find the first three terms of the Taylor series for f(x) = x log x at

x = 1.

Question 1.1.26 Find the first three terms of the Taylor series for f(x) = log(1 + x) at

x = 0.

Question 1.1.27 Find the first three terms of the Taylor series for f(x) = log(1 − x) at

x = 1.
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Question 1.1.28 Find the first two terms of the Taylor series for f(x) = log((1− x) · ex)
=
log((1− x) · exp(x)) at x = 0.

Question 1.1.29 Find the first three terms of the Taylor series for f(x) = cos(x) log(1+x)
at x = 0.

Question 1.1.30 Find the first two terms of the Taylor series for f(x) = log(1 + 2x) at

x = 0.

1.1.3 Integrals (one variable)

Question 1.1.31 Find the following integral:
∫ 1

0
(x4 + x2 + 1)dx.

Question 1.1.32 Find the following integral:
∫ 1

0 (x
2 + 2x+ 1)dx.

Question 1.1.33 Find the following integral:
∫ 1

0
(x2 + 2x+ 1)2dx.

Question 1.1.34 Find the following integral:
∫ π/2

−π/2(sin
3 x cosx+ sinx cosx)dx.

Question 1.1.35 Find the following integral:
∫ 4

−4(x
3 + 6x2 − 2x− 3)dx.

Question 1.1.36 Find the following integral:
∫ 1

0
x

1+x2 dx.

Question 1.1.37 Find the following integral:
∫ 3

0 (x
3 + 3x)8 (x2 + 1)dx.

Question 1.1.38 Find the following integral:
∫ 2

0
x cos(3x2)dx.

Question 1.1.39 Find the following integral:
∫∞
0 xe−x2/4dx.

Question 1.1.40 Find the following integral:
∫ b

a
x3e−x2/2dx.

Question 1.1.41 Let

f(x) =

{

1 if x ∈ [0, 1]

0 otherwise.

Calculate
∫∞
−∞ f(t)f(x− t)dt.

1.2 Solutions

1.2.1 Derivatives (one variable)

Question 1.2.1 Find the derivative of f(x) = 4x5 + 3x2 + x1/3.

Solution: We use the sum and constant rules, as well as the power rule (which says
the derivative of xn is nxn−1. This yields f ′(x) = 20x4 + 6x + 1

3x
−2/3. 2

Question 1.2.2 Find the derivative of f(x) = (x4 + 3x2 + 8) cosx.
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Solution: In problems like this, it helps to write down what rule we are going to use. We
have a product of two functions, and thus it is natural to use the product rule: the
derivative of A(x)B(x) is A′(x)B(x) + A(x)B′(x). The easiest way to avoid making an
algebra error is to write all the steps down; while this is time-consuming and boring, it
does cut down on the mistakes. Thus, we note

A(x) = x4 + 3x2 + 8, A′(x) = 4x3 + 6x (1.2.1)

and

B(x) = cosx, B′(x) = − sinx. (1.2.2)

Therefore f ′(x) = A′(x)B(x) + A(x)B′(x) with A,A′, B,B′ as above; as we have written
everything out in full detail, we need only substitute to find

f ′(x) = (4x3 + 6x) cosx− (x4 + 3x2 + 8) sinx. (1.2.3)

2

Question 1.2.3 Find the derivative of f(x) = log(1− x2).

Solution: This problem requires the chain rule. A good way to detect the chain rule is to
read the problem aloud. We are finding the derivative of the logarithm of 1 − x2; the of

almost always means a chain rule. If f(x) = g(h(x)) then f ′(x) = g′(h(x))h′(x). We must
identify the functions g and h which we compose to get log(1− x2). Usually what follows
the of is our h(x), and this problem is no exception. We see we may write

f(x) = log(1− x2) = g(h(x)),

with
g(x) = log x, h(x) = 1− x2.

Recall the derivative of the natural logarithm function is the one-over function; in other
words, log′(x) = 1/x. Taking derivatives yields

g′(x) =
1

x
, g′(h(x)) =

1

h(x)
=

1

1− x2

and
h′(x) = −2x,

or

f ′(x) = − 2x

1− x2
.

2

Important Note: One of the most common mistakes in chain rule problems is evaluating
the outer function at the wrong place. Note that even though initially we calculate g′(x),
it is g′(h(x)) that appears in the answer. This shouldn’t be surprising. Imagine f(x) =√
4− x; we may write this as f(x) = g(h(x)) with g(x) =

√
x and h(x) = 4−x. Note g(−5)

does not make sense; this is
√
−5, and we should only take square-roots of non-negative

numbers. If g(−5) doesn’t even make sense, how could g′(−5)? The reason this is not a
problem is that we do not care about g(−5), but rather g(h(−5)); as h(−5) = 9, we see
g(h(−5)) = 3.

Question 1.2.4 Find the derivative of log(4x)− log(2x).
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Solution: One way to evaluate this is to use the difference rule and then compute the
derivative of log(cx) with c = 4 and c = 2. We can do this by either using the chain
rule or the multiple rule (the derivative of f(cx) is cf ′(cx)). A better approach is to
simplify the problem: as logA − logB = log(A/B), our problem is to find the derivative
of log(4x/2x) = log 2. The constant rule says the derivative of any constant is zero; note
log 2 is a constant, approximately .69. Thus the derivative of this function is zero. 2

Important Note: For the problem above, note how much faster it is to do some algebra
first before differentiating. It is frequently a good idea to spend a few moments mulling
over a problem and thinking about the best way to attack it. Often a little inspection
suggests a way to rewrite the algebra to greatly simplify the computations.

Question 1.2.5 Find the derivative of e−x2/2 = exp(−x2/2).

Solution: This is another chain rule; the answer is −x exp(−x2/2), and uses the fact that
the derivative of ex is ex. 2

Question 1.2.6 Find the second derivative of e−x2/2 = exp(−x2/2).

Solution: To find the second derivative, we just take the derivative of the first derivative.
The first derivative (by the previous problem) is −x exp(−x2/2). We now use the product
rule with f(x) = −x and g(x) = exp(−x2/2). The answer is− exp(−x2/2)+x2 exp(−x2/2).
2

Question 1.2.7 Find the derivative of ex
8

cos(3x4) = exp(x8) cos(3x4).

Solution: When there are several rules to be used, it is important that we figure out the
right order. There is clearly going to be a power rule, as we have terms such as x8 and
x4. There will be a chain rule, as we have cosine of 3x4; there will also be a product.
Which rule do we use first? We have to ask: is the entire expression a product of one
function? As the answer is no, the product rule isn’t used first. Similarly we can’t write
our function as f(g(x)), so we don’t use the chain rule first. We can write it as f(x)g(x),
with f(x) = exp(x8) and g(x) = cos(3x4). Thus by the product rule our derivative is

f ′(x)g(x) + f(x)g′(x) = f ′(x) cos(3x4) + exp(x8)g′(x);

to complete the problem we must compute f ′(x) and g′(x). We use the chain rule for each,
and find

f ′(x) = 8x7 exp(x8), g′(x) = −12x3 sin(3x4);

substituting these in yields the answer. 2

Question 1.2.8 Find the derivative of the function f(x) = 4x +
√
2 cos(x) and then use

it to find the tangent line to the curve y = f(x) at x = π/4. Use the tangent line to

approximate f(x) when x = π
4 + .01.

Solution: The derivative is f ′(x) = 4 −
√
2 sin(x); while we could use the product rule for

the second term, it is faster to just note that
√
2 is a constant and the derivative of cg(x)

is cg′(x). The tangent line is the best linear approximation to our function at that point.
The slope of the tangent line is given by the derivative at that point; this is one of the most
important interpretations of the derivative. We thus have three pieces of information: we
are at the point (π/4, f(π/4) and the derivative (ie, the instantaneous rate of change) is
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f ′(π/4). We can thus find the line going through this point with this slope by using, not
surprisingly, the point slope form:

y − y1 = m(x− x1).

Here
(x1, y1) = (π/4, f(π/4)) = (π/4, π − 1), f ′(π/4) = 3.

Thus
y − (π − 1) = 3(x− π/4) or y = (π − 1) + 3(x− π/4).

When x = π/4+ .01, this gives f(π/4+ .01) ≈ (π−1)+ .03 = π− .97. Note π− .97 is about
2.17159, while f(π/4+ .01) is about 4.17154. This is terrific agreement; our approximation
is basically accurate to about four decimal places! In general, when we evaluate f(x0 + h)
using the tangent line method, the error is on the order of h2; for this problem h = .01 so
we expect to be accurate to about .0001. 2

Question 1.2.9 Find the second derivative of f(x) = lnx+
√
162.

Solution: Remember the derivative of any constant is zero, so we see f ′(x) = 1/x and thus
f ′′(x) = −1/x2. 2

Question 1.2.10 Find the maximum value of x4e−x = x4 exp(−x) when x ≥ 0.

Solution: To find the maximum (or minimum) value of a function, we must do two things:
find the critical points (the places where the first derivative vanishes) and find the end
points. We then evaluate our function at all these points and see where it is largest (or
smallest). The first derivative is

4x3 exp(−x)− x4 exp(−x) = x3 exp(−x) (4− x) .

Thus the critical points are x = 0 and x = 4. We only have one end point, but note
that as x → ∞ our function very rapidly decays to zero (as exponential decay is faster
than polynomial growth). Our function is 0 when x = 0 but 254e−4 ≈ 4.7 when x = 4.
Comparing these points, we see the maximum is when x = 4. 2

Question 1.2.11 Find the critical points of f(x) = 4x3 − 3x2, and decide whether each is

a maximum, a minimum, or a point of inflection.

Solution: From the previous problem, we know the critical points are where the first deriva-
tive vanishes. In this case, f ′(x) = 12x2 − 6x = 6x(2x− 1), giving critical points of 0 and
1/2. There are several ways to determine if we have a maximum or minimum at a criti-
cal point. If we can take two derivatives, the second derivative test is a great way to
proceed. It says that if f ′(a) = 0 and f ′′(a) > 0, then we have a local minimum, while if
f ′(a) = 0 and f ′′(a) < 0 then we have a local maximum. For us, f ′′(x) = 24x − 6; thus
f ′′(0) = −6, which tells us 0 is a local maximum, while f ′′(1/2) = 6 > 0, which tells us
1/2 is a local minimum. An inflection point is where the second derivative vanishes; this
corresponds to the shape of the curve changing (from concave up to concave down, for
instance). It is quite unusual for a maximum or minimum to also be an inflection point;
as the second derivative is non-zero at each point, neither point is an inflection point. 2

Important Note: A good way to remember the second derivative test is to look at the
polynomials x2 and −x2. Both have critical points at 0, but the first has second derivative
of 2 while the second has a second derivative of −2. The first is an up parabola, and clearly
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the vertex x = 0 is a minimum; the other is a down parabola, and clearly the vertex x = 0
is a maximum. Note the second derivative test is silent in the case when f ′(a) = 0 and
f ′′(a) = 0. There is a third and even a fourth derivative test.... 2

Question 1.2.12 Find the derivative of (x2 − 1)/(x− 1).

Solution: We use the quotient rule: if f(x) = g(x)/h(x) then

f ′(x) =
g′(x)h(x) − g(x)h′(x)

h(x)2
.

For us

h(x) = x2 − 1, h′(x) = 2xc

and
g(x) = x− 1, g′(x) = 1.

We just substitute in, and find

f ′(x) =
2x(x− 1)− (x2 − 1)1

(x− 1)2
=

x2 − 2x+ 1

(x − 1)2
= 1.

2

Important Note: The above problem could have been done a lot faster if, as suggested
above, we spent a moment thinking about algebra first. Such a pause might have allowed us
to see that the numerator factors as (x−1)(x+1); the x−1 cancels with the denominator,
and we get f(x) = x + 1. This is a much easier function to differentiate; the answer is
clearly 1. Another way to do this problem is to avoid the quotient rule and use the product
rule, by writing the function as (x2 − 1) · (x− 1)−1.

Question 1.2.13 Find the derivative of the function f(x) = 3

√

(5x− 2)2 = (5x− 2)2/3.

Solution: This is an example of the generalized power rule: if f(x) = g(x)r then
f ′(x) = rg(x)r−1g′(x). Here g(x) = 5x − 2 and r = 2/3. Thus g′(x) = 5, r − 1 = −1/3,
and the answer is f ′(x) = 2

3 (5x− 2)−1/3 · 5.qed
Important Note: One of the most common mistakes in using the generalized power rule

is forgetting the g′(x) at the end. One reason this is so frequently omitted is the special case:
if f(x) = xr then f ′(x) = rxr−1; however, we could write this as f ′(x) = rxr−1x′ = rxr−11.
Thus there is a g′(x) term even in this case, but as it is 1 it is easy to forget about it when
we generalize.

Question 1.2.14 Find the points on the graph of f(x) = 1
3x

3 + x2− x− 1 where the slope

is (a) −1, (b) 2, and (c) 0.

Solution: The first derivative gives the slope, so we must find where the first derivative
equals −1, 2 and 0. Well, f ′(x) = x2 + 2x− 1. So for (a) we must solve x2 + 2x− 1 = −1,
or x2 + 2x = 0; there are two solutions, x = 0 and x = −2. We can see this by factoring:
x2 + 2x = 0 is the same as x(x + 2) = 0, and the only way the product can vanish is if
one of the factors vanish. Thus either x = 0 or x + 2 = 0. For (b), a similar analysis
gives x2 + 2x− 3 = 0; this factors as (x + 3)(x − 1) = 0, so the solutions are x = −3 and
x = 1. For (c), we have x2 + 2x − 1 = 0. This does not factor nicely, so we must use
the quadratic formula. Recall the quadratic formula says that if ax2 + bx+ c = 0 then
x = (−b ±

√
b2 − 4ac)/2a. In our case, we find the roots are (−2 ±

√
4 + 4)/2. We can

simplify this with some algebra and find the roots are −1±
√
2. 2
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Question 1.2.15 Find the second derivative of f(x) = (x4 + 3x2 + 8) cosx.

Solution: This is another product rule problem; the answer is

(4x3 + 6x) cosx− (x4 + 3x2 + 8) sinx.

2

1.2.2 Taylor Series (one variable)

Recall that the Taylor series of degree n for a function f at a point x0 is given by

f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2

+
f ′′′(x0)

3!
(x− x0)

3 + · · ·+ f (n)(x0)

n!
(x− x0)

n,

where f (k) denotes the kth derivative of f . We can write this more compactly with sum-
mation notation as

n
∑

k=0

f (k)(x0)

k!
(x− x0)

k,

where f (0) is just f . In many cases the point x0 is 0, and the formulas simplify a bit to

n
∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

The reason Taylor series are so useful is that they allow us to understand the behavior of a
complicated function near a point by understanding the behavior of a related polynomial
near that point; the higher the degree of our approximating polynomial, the smaller the
error in our approximation. Fortunately, for many applications a first order Taylor series
(ie, just using the first derivative) does a very good job. This is also called the tangent

line method, as we are replacing a complicated function with its tangent line.
One thing which can be a little confusing is that there are n+1 terms in a Taylor series

of degree n; the problem is we start with the zeroth term, the value of the function at the
point of interest. You should never be impressed if someone tells you the Taylor series at
x0 agrees with the function at x0 – this is forced to hold from the definition! The reason is
all the (x− x0)

k terms vanish, and we are left with f(x0), so of course the two will agree.
Taylor series are only useful when they are close to the original function for x close to x0.

Question 1.2.16 Find the first five terms of the Taylor series for f(x) = x8 + x4 + 3 at

x = 0.

Solution: To find the first five terms requires evaluating the function and its first four
derivatives:

f(0) = 3

f ′(x) = 8x7 + 4x3 ⇒ f ′(0) = 0

f ′′(x) = 56x6 + 12x2 ⇒ f ′′(0) = 0

f ′′′(x) = 336x5 + 24x ⇒ f ′′′(0) = 0

f (4)(x) = 1680x4 + 24 ⇒ f (4) = 24.

Therefore the first five terms of the Taylor series are

f(0) + f ′(0)x+ · · ·+ f (4)(0)

4!
x4 = 3+

24

4!
x4 = 3 + x4.
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This answer shouldn’t be surprising as we can view our function as f(x) = 3 + x4 + x8;
thus our function is presented in such a way that it’s easy to see its Taylor series about 0.
If we wanted the first six terms of its Taylor series expansion about 0, the answer would
be the same. We won’t see anything new until we look at the degree 8 Taylor series (ie,
the first nine terms), at which point the x8 term appears. 2

Question 1.2.17 Find the first three terms of the Taylor series for f(x) = x8 + x4 + 3 at

x = 1.

Solution: We can find the expansion by taking the derivatives and evaluating at 1 and not
0. We have

f(x) = x8 + x4 + 3 ⇒ f(1) = 5

f ′(x) = 8x7 + 4x3 ⇒ f ′(1) = 12

f ′′(x) = 56x6 + 12x2 ⇒ f ′′(1) = 68.

Therefore the first three terms gives

f(1) + f ′(1)(x− 1) +
f ′′(1)

2!
(x− 1)2 = 5 + 12(x− 1) + 34(x− 1)2.

2

Important Note: Another way to do this problem is one of my favorite tricks, namely
converting a Taylor expansion about one point to another. We write x as (x − 1) + 1; we
have just added zero, which is one of the most powerful tricks in mathematics. We then
have

x8 + x4 + 3 = ((x − 1) + 1)8 + ((x − 1) + 1)4 + 3;

we can expand each term by using the Binomial Theorem, and after some algebra we’ll
find the same answer as before. For example, ((x− 1) + 1)4 equals

(

4

0

)

(x− 1)410 +

(

4

1

)

(x− 1)311

+

(

4

2

)

(x− 1)212 +

(

4

3

)

(x− 1)113 +

(

4

4

)

(x− 1)015.

In this instance, it is not a good idea to use this trick, as this makes the problem more
complicated rather than easier; however, there are situations where this trick does make
life easier, and thus it is worth seeing. We’ll see another trick in the next problem (and
this time it will simplify things).

Question 1.2.18 Find the first three terms of the Taylor series for f(x) = cos(5x) at

x = 0.

Solution: The standard way to solve this is to take derivatives and evaluate. We have

f(x) = cos(5x) ⇒ f(0) = 1

f ′(x) = −5 sin(5x) ⇒ f ′(0) = 0

f ′′(x) = −25 cos(5x) ⇒ f ′′(0) = −25.

Thus the answer is

f(0) + f ′(0)x+
f ′′(0)

2
x2 = 1− 25

2
x2.
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2

Important Note: We discuss a faster way of doing this problem. This method assumes
we know the Taylor series expansion of a related function, g(u) = cos(u). This is one
of the three standard Taylor series expansions one sees in calculus (the others being the
expansions for sin(u) and exp(u); a good course also does log(1 ± u)). Recall

cos(u) = 1− u2

2!
+

u4

4!
− u6

6!
+ · · · =

∞
∑

k=0

(−1)ku2k

(2k)!
.

If we replace u with 5x, we get the Taylor series expansion for cos(5x):

cos(5x) = 1− (5x)2

2!
+

(5x)4

4!
− (5x)6

6!
+ · · · .

As we only want the first three terms, we stop at the x2 term, and find it is 1 − 25x2/2.
The answer is the same as before, but this seems much faster. Is it? At first it seems like
we avoided having to take derivatives. We haven’t; the point is we took the derivatives
years ago in Calculus when we found the Taylor series expansion for cos(u). We now use
that. We see the advantage of being able to recall previous results – we can frequently
modify them (with very little effort) to cover a new situation; however, we can of course
only do this if we remember the old results!

Question 1.2.19 Find the first five terms of the Taylor series for f(x) = cos3(5x) at

x = 0.

Solution: Doing (a lot of!) differentiation and algebra leads to

1− 75

2
x2 +

4375

8
x4 − 190625

48
x6;

we calculated more terms than needed because of the comment below. Note that f ′(x) =
−15 cos2(5x) sin(5x). To calculate f ′′(x) involves a product and a power rule, and we can
see that it gets worse and worse the higher derivative we need! It is worth doing all these
derivatives to appreciate the alternate approach given below. 2

Important Note: There is a faster way to do this problem. From the previous exercise,
we know

cos(5x) = 1− 25

2
x2 + terms of size x3 or higher.

Thus to find the first five terms is equivalent to just finding the coefficients up to x4.
Unfortunately our expansion is just a tad too crude; we only kept up to x2, and we need to
have up to x4. So, let’s spend a little more time and compute the Taylor series of cos(5x)
of degree 4: that is

1− 25

2
x2 +

625

24
x4.

If we cube this, we’ll get the first six terms in the Taylor series of cos3(5x). In other words,
we’ll have the degree 5 expansion, and all our terms will be correct up to the x6 term. The
reason is when we cube, the only way we can get a term of degree 5 or less is covered. Thus
we need to compute

(

1− 25

2
x2 +

625

24
x4

)3

;

however, as we only care about the terms of x5 or lower, we can drop a lot of terms in the
product. For instance, one of the factors is the x4 term; if it hits another x4 term or an x2
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it will give an x6 or higher term, which we don’t care about. Thus, taking the cube but
only keeping terms like x5 or lower degree, we get

1 +

(

3

1

)

12
(

−25

2
x2

)

+

(

3

2

)

1

(

−25

2
x2

)2

+

(

3

1

)

12
(

625

24
x4

)

.

After doing a little algebra, we find the same answer as before.
So, was it worth it? To each his own, but again the advantage of this method is we

reduce much our problem to something we’ve already done. If we wanted to do the first
seven terms of the Taylor series, we would just have to keep a bit more, and expand the
original function cos(5x) a bit further. As mentioned above, to truly appreciate the power
of this method you should do the problem the long way (ie, the standard way).

Question 1.2.20 Find the first two terms of the Taylor series for f(x) = ex at x = 0.

Solution: This is merely the first two terms of one of the most important Taylor series of
all, the Taylor series of ex. As f ′(x) = ex, we see f (n)(x) = ex for all n. Thus the answer
is

f(0) + f ′(0)x = 1 + x.

More generally, the full Taylor series is

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞
∑

n=0

xn

n!
.

2

Question 1.2.21 Find the first six terms of the Taylor series for f(x) = ex
8

= exp(x8)
at x = 0.

Solution: The first way to solve this is to keep taking derivatives using the chain rule.
Very quickly we see how tedious this is, as f ′(x) = 8x7 exp(x8), f ′′(x) = 64x14 exp(x8) +
56x6 exp(x8), and of course the higher derivatives become even more complicated. We use
the faster idea mentioned above. We know

eu = 1 + u+
u2

2!
+

u3

3!
+ · · · =

∞
∑

n=0

un

n!
,

so replacing u with x8 gives

ex
8

= 1 + x8 +
(x8)2

2!
+ · · · .

As we only want the first six terms, the highest term is x5. Thus the answer is just 1
– we would only have the x8 term if we wanted at least the first nine terms! For this
problem, we see how much better this approach is; knowing the first two terms of the
Taylor series expansion of eu suffice to get the first six terms of ex

8

. This is magnitudes
easier than calculating all those derivatives. Again, we see the advantage of being able to
recall previous results.

Question 1.2.22 Find the first four terms of the Taylor series for f(x) = 1√
2π
e−x2/2 =

exp(−x2/2)/
√
2π at x = 0.

Solution: The answer is
1

2π
− x2

4π
.

We can do this by the standard method of differentiating, or we can take the Taylor series
expansion of eu and replace u with −x2/2. 2
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Question 1.2.23 Find the first three terms of the Taylor series for f(x) =
√
x at x = 1

3 .

Solution: If f(x) = x1/2, f ′(x) = 1
2x

−1/2 and f ′′(x) = − 1
4x

−3/2. Evaluating at 1/3 gives

1√
3
+

√
3

2

(

x− 1

3

)

− 3
√
3

8

(

x− 1

3

)2

.

2

Question 1.2.24 Find the first three terms of the Taylor series for f(x) = (1 + x)1/3 at

x = 1
2 .

Solution: Doing a lot of differentiation and algebra yields

(

3

2

)1/3

+
1

3

(

2

3

)2/3 (

x− 1

2

)

− 2

27

(

2

3

)2/3 (

x− 1

2

)2

.

2

Question 1.2.25 Find the first three terms of the Taylor series for f(x) = x log x at

x = 1.

Solution: One way is to take derivatives in the standard manner and evaluate; this gives

(x− 1) +
(x − 1)2

2
.

2

Important Note: Another way to do this problem involves two tricks we’ve mentioned
before. The first is we need to know the series expansion of log(x) about x = 1. One of the
the most important Taylor series expansions, which is often done in a Calculus class, is

log(1 + u) = u− u2

2
+

u3

3
− u4

4
+ · · · =

∞
∑

n=1

(−1)k+1uk

k
.

We then write
x log x = ((x − 1) + 1) · log (1 + (x− 1)) ;

we can now grab the Taylor series from

((x− 1) + 1) ·
(

(x− 1)− (x− 1)2

2

)

= (x− 1) +
(x− 1)2

2
+ · · · .

Question 1.2.26 Find the first three terms of the Taylor series for f(x) = log(1 + x) at

x = 0.

Question 1.2.27 Find the first three terms of the Taylor series for f(x) = log(1 − x) at

x = 1.

Solution: The expansion for log(1− x) is often covered in a Calculus class; equivalently, it
can be found from log(1 + u) by replacing u with −x. We find

log(1− x) = −
(

x+
x

2
+

x

3
+ · · ·

)

= −
∞
∑

n=1

xn

n
.

For this problem, we get x+ x2

2 . 2
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Question 1.2.28 Find the first two terms of the Taylor series for f(x) = log((1− x) · ex)
=
log((1− x) · exp(x)) at x = 0.

Solution: Taking derivatives and doing the algebra, we see the answer is just zero! The
first term that has a non-zero coefficient is the x2 term, which comes in as −x2/2. A
better way of doing this is to simplify the expression before taking the derivative. As
the logarithm of a product is the sum of the logarithms, we have log((1 − x) · ex) equals
log(1−x) + log ex. But log ex = x, and log(1−x) = −x−x2/2−· · · . Adding the two expan-
sions gives −x2/2−· · · , which means that the first two terms of the Taylor series vanish. 2

Question 1.2.29 Find the first three terms of the Taylor series for f(x) = cos(x) log(1+x)
at x = 0.

Solution: Taking derivatives and doing the algebra gives x− x2/2. 2

Important Note: A better way of doing this is to take the Taylor series expansions of
each piece and then multiply them together. We need only take enough terms of each piece
so that we are sure that we get the terms of order x2 and lower correct. Thus

cos(x) log(1 + x) =

(

1− x2

2
+ · · ·

)

·
(

x− x2

2
+ · · ·

)

= x− x2

2
+ · · · .

Question 1.2.30 Find the first two terms of the Taylor series for f(x) = log(1 + 2x) at

x = 0.

Solution: The fastest way to do this is to take the Taylor series of log(1 + u) and replace
u with 2x, giving 2x. 2

1.2.3 Integrals (one variable)

Question 1.2.31 Find the following integral:
∫ 1

0 (x
4 + x2 + 1)dx.

Solution: We use the integral of a sum is the sum of the integrals, and the integral of xn is
xn+1/(n+ 1) (so long as n 6= −1; if n = −1 then the integral is log x). Thus the answer is

∫ 1

0

(x4 + x2 + 1)dx =

∫ 1

0

x4dx+

∫ 1

0

x2dx+

∫ 1

0

dx

=
x5

5

∣

∣

∣

∣

∣

1

0

+
x3

3

∣

∣

∣

∣

∣

1

0

+ x

∣

∣

∣

∣

∣

1

0

=
1

5
+

1

3
+ 1.

2

Question 1.2.32 Find the following integral:
∫ 1

0 (x
2 + 2x+ 1)dx.

Solution: We can solve this as we did the above problem, integrating term by term, or we
can note that the integrand x2 + 2x+ 1 is just (x+ 1)2. Thus

∫ 1

0

(x2 + 2x+ 1)dx =

∫ 1

0

(x+ 1)2dx =
(x+ 1)3

3

∣

∣

∣

∣

∣

1

0

=
8

3
− 1

3
=

7

3
.

2
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Question 1.2.33 Find the following integral:
∫

0 (x
2 + 2x+ 1)2dx.

Solution: We use the power rule:

∫ 1

0

(x2 + 2x+ 1)2dx =
(x2 + 2x+ 1)3

3

∣

∣

∣

∣

∣

1

0

=
64

3
− 1

3
= 21.

2

Question 1.2.34 Find the following integral:
∫ π/2

−π/2
(sin3 x cosx+ sinx cosx)dx.

Solution: We use the integral version of the power rule:
∫

g(x)ng′(x)dx = g(x)n+1/(n+1).
As sin′ x = cosx, we have

∫ π/2

−π/2

(sin3 x cosx+ sinx cosx)dx =
sin4 x

4

∣

∣

∣

∣

∣

π/2

−π/2

+
sin2 x

2

∣

∣

∣

∣

∣

π/2

−π/2

= 0.

An alternate way to write the computations is with u-substitution. We show this for the
first integral. If we let u = sinx then du/dx = cosx or du = cosxdx; also, if x runs from
−π/2 to π/2 then u runs from −1 to 1. Hence

∫ π/2

−π/2

(sin3 x cosxdx =

∫ 1

−1

u3du =
u4

4

∣

∣

∣

∣

∣

1

−1

= 0.

Question 1.2.35 Find the following integral:
∫ 4

−4
(x3 + 6x2 − 2x− 3)dx.

Solution: The indefinite integral is −3x−x2+2x3+ 1
4x

4; evaluating at the endpoints gives
232. 2

Question 1.2.36 Find the following integral:
∫ 1

0
x

1+x2 dx.

Solution: This is another example of u substitution. Let u = x2. Then du/dx = 2xdx so
xdx = du/2; as x runs from 0 to 1 we have u runs from 0 to 1 as well. Thus

∫ 1

0

x

1 + x2
dx =

∫ 1

0

1

1 + u

du

2
=

log(1 + u)

2

∣

∣

∣

∣

∣

1

0

=
log 2

2
.

2

Important Note: In the above problem, it is very important that the range of integration
was from 0 to 1 and not from −1 to 1. Why? If we tried to do u-substitution in that case,
we would say u = x2 so when x = −1 we have u = 1, and also when x = 1 we get u = 1.
In other words, the range of the u-integration is from 1 to 1! Any integral over a point
is just zero. What went wrong? The problem is the function x2 is not one-to-one on the
interval [−1, 1]; in other words, different values of x are mapped to the same value of u.
When we do u-substitution, it is essential that to each x there is one and only one u (and
vice-versa).

Question 1.2.37 Find the following integral:
∫ 3

0
(x3 + 3x)8 (x2 + 1)dx.
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Solution: There are several ways to do this problem. The slowest (but it will work!)
is to expand the integrand and write it as a massive polynomial. The fastest is to let
u = x3 +3x and use u-substitution. Note that du/dx = 3x2 + 3 = 3(x2 + 1), and thus our
∫

(x3 + 3x)8(x2 + 1)dx becomes
∫

u8du/3. After some algebra we obtain 369/27. 2

Important Note: We need to use u-substitution and not the product rule here, as the
product rule does not give a nice answer for

∫

f(x)g(x)dx, but only for
∫

[f ′(x)g(x) + f(x)g′(x)] dx.

Question 1.2.38 Find the following integral:
∫ 2

0
x cos(3x2)dx.

Solution: This is another u-substitution; this is a very important technique in probability.
We let u = 3x2 so du/dx = 6x or xdx = du/6. Thus

∫ 2

0

x cos(3x2)dx =

∫ 12

0

cosudu

6
=

sinu

6

∣

∣

∣

∣

∣

12

0

=
sin 12

6
.

2

Question 1.2.39 Find the following integral:
∫∞
0

xe−x2/4dx.

Solution: Surprise – another u-substitution! This time it is u = x2/4 so du/dx = x/2 or
xdx = 2du. We find

∫ ∞

0

xe−x2/4dx =

∫ ∞

0

2e−udu = −2e−u

∣

∣

∣

∣

∣

∞

0

= 2.

2

Important Note: This integral is very important; it is basically how one calculates the
mean of a normal distribution (except that it doesn’t integrate to 1, this would be a normal
distribution with mean 0 and variance 2.

Question 1.2.40 Find the following integral:
∫ b

a x3e−x2/2dx.

Solution: We finally have an integral where we do not proceed by u-substitution. For this
one, we integrate by parts. The formula is

∫ b

A

udv = u(x)v(x)

∣

∣

∣

∣

∣

b

a

−
∫ b

a

vdu.

The explanation below is quite long because we want to highlight how to approach problems
involving integration by parts. It is well worth the time to analyze approaches that work
as well as those that do not, and see why some fail and others work. This is a great way
to build intuition, which will be essential when you have to evaluate new integrals.

The difficulty in integrating by parts is figuring out what we should take for u(x) and

v(x). The integrand is x3e−x2/2. There are several natural choices. Two obvious ones are

to either take u(x) = x3 and dv = e−x2/4dx, or to take u(x) = e−x2/2 and dv = x3dx. The
first guess fails miserable, but it is illuminating to see why it fails. The second guess works
but is a little involved. After analyzing these two cases we’ll discuss another choice of u
and dv that works quite well for problems like these.

In the first guess, it is easy to find du, which is just du = 3x2dx. While this looks
promising, we’re in trouble when we get to the dv term. There we have dv = e−x2/2dx,
which requires us to find a function whose derivative is e−x2/2. Sadly, there is no elementary
function that works!
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What about the other idea? For the second guess, the dv = x3dx is no problem; it
leads to v(x) = x4/4. Then the u(x) = e−x2/2 term gives du = −xe−x2/2. This will work,
but it will be a tad cumbersome. We get

∫ b

a

x3e−x2/2dx = e−x2/2 x
4

4

∣

∣

∣

∣

∣

b

a

+
1

4

∫ b

a

x3e−x2/2dx.

Thus after integrating by parts we are still left with a tough integral. Amazingly, however,
this is the same integral as we started with, except multiplied by a factor of 1/4. It is
essential that it is multiplied by something other than 1; the reason is we can subtract it
from both sides, and find

3

4

∫ b

a

x3e−x2/2dx = e−x2/2x
4

4

∣

∣

∣

∣

∣

b

a

,

or, multiplying both sides by 4/3, we can solve for our original, unknown integral! This is
another example of the bring it over method, which we saw in ADD REF.

The second method works, and involves a truly elegant trick. If we call our original
integral I, we found I = C+ 1

4I where C is some computable constant. This led to 3
4I = C

or I = 4
3C. It’s nice, but will we always be lucky enough to get exactly our unknown

integral back? If not, this trick will fail. Thus, it is worth seeing another approach to this
problem. Let’s analyze what went wrong in our first attempt. There we had dv = e−x2/2dx;
the trouble was we couldn’t find a nice integral (or anti-derivative) of e−x2/2. What if we

took dv = e−x2/2xdx? The presence of the extra factor of x means we can find an anti-
derivative, and we get v = −e−x2/2. This means we now take u(x) = x2 instead of x3, but
this is fine as du is readily seen to be du = 2xdx. To recap, our choices are

u(x) = x2 and du = 2xdx

and
dv = e−x2/2xdx and v = −e−x2/2.

This yields

∫ b

a

x3e−x2/2dx = −x2e−x2/2

∣

∣

∣

∣

∣

b

a

+ 2

∫ b

a

xe−x2/2dx.

While we have not solved the problem, the remaining integral can easily be done by u-
substitution (in fact, a simple variant of this was done in the previous problem). We leave
it as a very good exercise for the reader to check and make sure these two methods give
the same final answer. 2

Question 1.2.41 Let

f(x) =

{

1 if x ∈ [0, 1]

0 otherwise.

Calculate
∫∞
−∞ f(t)f(x− t)dt.

Solution: This integral is significantly harder to evaluate than all the others we have looked
at. The reason is that the function f is not one of the standard functions we’ve seen. The
easiest way to attack problems like this is to break the problem up into cases. Note that
the integrand f(t)f(x − t) is zero unless both t and x − t are in [0, 1]. In particular, if
x > 2 or x < 0, then at least one of these two expressions is not in [0, 1]. For example, we
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must have t ∈ [0, 1]. This means that that x − 1 ≤ x − t ≤ x; for this to lie in [0, 1], we
must have x ≥ 0 and x − 1 ≤ 1, which translates to 0 ≤ x ≤ 2. For each such x we now
do the integral directly. The answer turns out to depend on whether or not 0 ≤ x ≤ 1 or
1 ≤ x ≤ 2. Let’s do the first case. If 0 ≤ x ≤ 1, then x − t ∈ [0, 1] forces t ∈ [0, x]. Thus
for x ∈ [0, 1],

∫ ∞

−∞
f(t)f(x− t)dt =

∫ x

0

dt = x.

If now 1 ≤ x ≤ 2 then x − t ∈ [0, 1] implies t ∈ [x − 1, x]; however, we must also have
t ∈ [0, 1], so these two conditions restrict us to t ∈ [x− 1, 1], and now we get

∫ ∞

−∞
f(t)f(x− t)dt =

∫ 1

x−1

dt = 2− x.

To recap, the answer is x if 0 ≤ x ≤ 1, 2− x if 1 ≤ x ≤ 2, and 0 otherwise. 2

Important Note: There is a nice probabilistic interpretation of the above integral. It is
the convolution of f with itself. If f is the density of the uniform distribution on [0, 1], this
represents the probability distribution for the sum of two uniform distributions on [0, 1].
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