
Lagrange Multipliers and Problem Formulation

Steven J. Miller∗

Department of Mathematics and Statistics
Williams College

Williamstown, MA 01267

Abstract

The method of Lagrange Multipliers (and its generalizations) provide answers to numerous im-
portant tractable optimization problems in a variety of subjects, ranging from physics to economics to
information theory. Below we discuss five different formulations for a military problem (which can
be re-interpreted as a problem in business). We will show how the answer to this problem depends on
our choice of measuring. This illustrates a very powerful and important lesson: depending on your
evaluation criteria, you can end up with very different answers.
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1 Description of the Problem
Consider the following problem from Military Theory. Imagine that the Earth is sphere of radius 1, and
that we are trying to determine where to place a military installation in order to minimize the average
deployment time to three trouble spots, located at

P1 = (5/13, 12/13, 0), P2 = (12/13, 5/13, 0), P3 = (3/13, 4/13, 12/13).

Assuming we may build our base anywhere on the Earth, where should we place it?
While stated as a military exercise, the above problem is very important in business. Instead of three

trouble spots imagine we have three markets. Now our goal is to locate our factory or distribution center
in order to minimize shipping costs.

2 Interpreting the problem
There are two competing influences in building a mathematical model. The first is that we desire a model
which captures as many features as possible about the system of interest, while the second is that we wish
the model to be mathematically tractable and hence solvable. In general, the more features the model
captures, the harder it will be to solve it.

For this problem, we need to decide on how to measure the distance between points on the surface of
the Earth. Assume our base is located at (x, y, z) with x2 + y2 + z2 = 1. We give five different ways to
measure the distance.

1. We use the sum of the distance-squared, where we compute distance by burrowing through the
Earth:

D1(x, y, z) =
3∑

i=1

||(x, y, z)− Pi||2.

Expanding, we find

D1(x, y, z) = (x− 5/12)2 + (y − 12/13)2 + z2

+ (x− 12/13)2 + (y − 5/12)2 + z2

+ (x− 3/13)2 + (y − 4/13)2 + (z − 12/13)2.

There are several advantages of using this measure of distance. The first is that we have a very nice
formula (essentially the Pythagorean Theorem) for computing the distance between two points.
The second is that since we are squaring the distances before adding, our distance function is a
polynomial of degree two in x, y and z. This means ∇D1 will be a nice function, and the algebra
won’t be too bad. The disadvantage of this method, of course, is that we cannot burrow through the
Earth!
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2. We use the sum of the distances, where we compute distance by burrowing through the Earth:

D2(x, y, z) =
3∑

i=1

||(x, y, z)− Pi||.

Expanding, we find

D1(x, y, z) =
√
(x− 5/12)2 + (y − 12/13)2 + z2

+
√

(x− 12/13)2 + (y − 5/12)2 + z2

+
√

(x− 3/13)2 + (y − 4/13)2 + (z − 12/13)2.

There are two problems with this method. The first is that the square-roots lead to a function which
will have a very messy derivative, and the second of course is that this is burrowing through the
Earth.

3. We use the sum of 2(1−cosψi), where ψi is the angle between the point Pi and our base at (x, y, z):

D3(x, y, z) =
3∑

i=1

2(1− cosψi).

There are a lot of advantages of this. The first is that the cosine of an angle is easily computed using
the dot product. As all vectors are unit vectors, we have

(x, y, z) · Pi = ||(x, y, z)|| ||Pi|| cosψi;

thus for the first point we have
5x

13
+

12y

13
= cosψ1.

The second advantage is that, for ψi small, 1 − cosψi ≈ ψ2
i /2; this follows from the Taylor series

of cosine (cos θ = 1 − θ2/2! + θ4/4! − · · · ). As we are multiplying by 2, we see that for small ψi

each summand is about ψ2
i ; this is why we chose to look at 2(1− cosψi). Note that the closer two

points are, the smaller their angle and thus the closer the cosine will be to 1; this shows our quantity
is a reasonable measure of distance. For a circle of unit radius, the length of an arc equals the angle
in radians, and thus this should be a reasonable approach. Explicitly, we have

D3(x, y, z) = 6− 2

(
5x

13
+

12y

13
+

12x

13
+

5y

13
+

3x

13
+

4y

13
+

12z

13

)
.

Note that D3 is a linear function in the unknown location (x, y, z); thus we expect this will be a
very easy function to optimize.

4. We use the sum of the square of the sines of the angles ψi (with ψi as above). Explicitly,

D4(x, y, z) =
3∑

i=1

sin2 ψi.
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From the Taylor expansion of sine (sin θ = θ− θ3/3! + · · · ), we see for small ψi that sin2 ψi ≈ ψ2
i ,

and thus we expect the answer to be similar to the previous method. Why are we using this, and
more importantly, why are we squaring each sine? Unlike the dot product, our formula for sines is
a bit more involved, coming from the cross product. We have

||(x, y, z)× Pi|| = ||(x, y, z)|| ||Pi|| | sinψi|;

as every vector has length 1, we have

||(x, y, z)× Pi|| = | sinψi|.

The absolute value function is a horrible nightmare computationally. It is not differentiable, and
thus if we use it we cannot apply any of the techniques of calculus. Thus we must remove the
absolute value at all costs. We can do this by squaring the above, and obtain

||(x, y, z)× Pi||2 = sin2 ψi.

While the formula for the square of the sine is a bit more involved, it will be a quadratic in x, y and
z and thus its gradient won’t be too bad. For example,

(x, y, z)× (5/13, 12/13, 0) =

(
−12z

13
,
5z

13
,
12x

13
− 5y

13

)
,

and thus

||(x, y, z)× (5/13, 12/13, 0)||2 =

(
12x

13
− 5y

13

)2

+ z2.

Adding the contributions from the other two points yields

D4(x, y, z) = 329x2 − 264xy + 322y2 − 72xz − 96yz + 363z2.

Note again how nice the above function looks.

5. We use the sum of the distances of the arcs on the surface of the Earth. We know from geometry
that, for a circle of radius 1, the length of the arc equals the measure of the angle in radians. Thus
the angle ψi between (x, y, z) and Pi satisfies

cosψi = (x, y, z) · Pi,

or
ψi = arccos ((x, y, z) · Pi) .

Thus the distance is

D5(x, y, z) =
3∑

i=1

arccos ((x, y, z) · Pi) .
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The advantage of this formula is that it is the correct measure of distance; the disadvantage is that it
involves the function arccosine. The derivative of arccos t is −(1 − t2)−1/2. Similar to the second
approach, this will lead to very messy derivatives and it won’t be possible to get a nice, clean closed
form expression for the solution. Explicitly, our function is

D5(x, y, z) = arccos

(
5x

13
+

12y

13

)
+ arccos

(
12x

13
+

5y

13

)
+ arccos

(
3x

13
+

4y

13
+

12z

13

)
.

We now try and use the method of Lagrange Multipliers to find the optimal site for our base. As our
constraint function is

g(x, y, z) = x2 + y2 + z2 = 1,

we have
(∇g)(x, y, z) = 2(x, y, z).

Thus we are trying to solve

(∇Dk)(x, y, z) = λ(∇g)(x, y, z), g(x, y, z) = 1

for k ∈ {1, 2, 3, 4, 5}, or

(∇Dk)(x, y, z) = 2λ(x, y, z), g(x, y, z) = 1

for k ∈ {1, 2, 3, 4, 5}.
The natural question to ask is how our choice of measuring distance affects the final answer; do the

five different methods lead to our base being in approximately the same place, or are there significant
differences in its location?

Remark 2.1. Note that it is possible to generalize this problem by incorporating weights. For example,
it may be the case that the three trouble spots are not equally unstable, and thus we are less concerned
with one of them. Or perhaps the three points represent markets for our product, and one market is not as
important as another and buys significantly less. Similar to our many choices for measuring the distance,
we have many ways of including weights. One possibility is to have linear weights, such as

D2;weighted(x, y, z) =
3∑

i=1

wi||(x, y, z)− Pi||;

for example, we might take w1 = 6, w2 = 3 and w1 = 1, indicating that the first location is significantly
more important than the second which is significantly more important than the third. Such linear weights
lead to trivial modifications in these functions, and similar arguments will lead to their solutions.

3 Solving the models
We now describe how to solve the five different models. Our goal is to see how significant these different
formulations are. Remember the constraint is

g(x, y, z) = x2 + y2 + z2 = 1, (∇g)(x, y, z) = 2(x, y, z).
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3.1 First Model

Recall

D1(x, y, z) =
3∑

i=1

||(x, y, z)− Pi||2.

Expanding, we find

D1(x, y, z) = (x− 5/12)2 + (y − 12/13)2 + z2

+ (x− 12/13)2 + (y − 5/12)2 + z2

+ (x− 3/13)2 + (y − 4/13)2 + (z − 12/13)2.

We thus find that
(∇D1)(x, y, z) = (−40 + 78x,−42 + 78y,−24 + 78z).

Setting ∇D1 = λ∇g yields

(−40 + 78x,−42 + 78y,−24 + 78z) = 2λ(x, y, z).

As happens for many problems like this, it helps to break the analysis into two cases: λ = 0 and λ 6= 0.
If λ = 0 we find

(−40 + 78x,−42 + 78y,−24 + 78z) = (0, 0, 0),

which yields
x = 40/78, y = 42/78, z = 24/78;

however, this point must also satisfy our constraint. Substituting we find

(40/78)2 + (42/78)2 + (24/78)2 = 985/1521 6= 1;

as this point does not satisfy the constraint, it is neither a maximum nor a minimum. Remember that
the Method of Lagrange Multipliers finds candidates for maxima and minima; just because a point is a
candidate does not ensure that it must be a local max or a local min.

We now turn to the other case, λ 6= 0. We thus have the following system of equations to solve:

−40 + 78x = 2λx

−42 + 78y = 2λy

−24 + 78z = 2λz

x2 + y2 + z2 = 1.

As λ 6= 0, we may take ratios of the various equations. The advantage of doing this is that the λ’s
disappear. It’s worth thinking about the seeming absurdity of our approach: we introduce λ to help solve
the problem, and then proceed to eliminate it without ever finding its value! It’s a placeholder whose
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existence helps us find the max/min. (Note: there are many problems where the value of λ is important,
as it has a physical interpretation.)

Taking ratios yields
−40 + 78x

−42 + 78y
=

2λx

2λy
=

x

y
.

When we cross multiply, we are quite fortunate:

−40y + 78xy = −42x+ 78xy.

We have the same number of xy on both sides, which cancels, and we find

y =
42x

40
.

Taking the ratio of the first and the third yields

−40 + 78x

−24 + 78z
=

2λx

2λz
=

x

z
.

Cross multiplying yields
−40z + 78xz = −24x+ 78xz.

Canceling the 78xz from both sides yields

z =
24x

40
.

We now substitute into our constraint; as we can write y and z in terms of x, we will have one equation
in one unknown:

x2 + y2 + z2 = 1

becomes

x2 +

(
42

40

)2

x2 +

(
24

40

)2

x2 = 1,

or
197

80
x2 = 1,

which implies

x = ±
√

80

197
= ±

√
400

985
≈ 0.637253,

where we have written our answer with the following denominator to facilitate comparisons with other
methods.

Now that we have x it is easy to find y and z. While there are two different choices for x, a moments
thought shows that the minimum distance has to be when we take the positive square root. The reason is
our three trouble points are all in the first octant of the Earth (they all have non-negative coordinates), and
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thus the minimum distance will be from the point with three non-negative coordinates and not the point
with three non-positive coordinates.

We thus find the optimal location, using the above method to measure distance, is

(x, y, z) =

(√
400

985
,

√
420

985
,

√
240

985

)
≈ (0.637253, 0.669116, 0.382352).

3.2 Second Model

We encourage the reader to find the gradient of D2(x, y, z). The first two terms of ∂D2/∂x are

13x− 3

13
√

(x− 3/13)2 + (y − 4/13)2 + (z − 12/13)2
+

13x+ 5

13
√
(x− 5/13)2 + (y − 4/13)2 + (z − 12/13)2

+· · · .

Using numerical approximation techniques, Mathematica computes that D2 is minimized, subject to the
constraint, when

(x, y, z) = (0.658882, 0.723174, 0.207108).

3.3 Third Model

This is perhaps the easiest of all cases, as we have

D3(x, y, z) = 78− 40x− 42y − 24z.

This leads to
(∇D3)(x, y, z) = (−40,−42,−24).

Setting ∇D3 = λ∇g yields

(−40,−42,−24) = 2λ(x, y, z) and x2 + y2 + z2 = 1.

Again, in problems like this it is often convenient to break the analysis into two cases, when λ = 0
and when λ 6= 0. If λ = 0 then we quickly see no choice of x, y, z works. Thus we may assume λ 6= 0.
We have

−40 = 2λx

−42 = 2λy

−24 = 2λz

x2 + y2 + z2 = 1.
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Taking the ratio of the first and the second equation gives

−40
−42

=
2λx

2λy
,

or
40

42
=

x

y
,

which yields

y =
42x

40
.

If we take the ratio of the first and the third we similarly find

−40
−24

=
2λx

2λz
,

or
z =

24x

40
.

Note that these are exactly the relation between x and y that we found in Model 1, and thus the solution
will also be

(x, y, z) =

(√
400

985
,

√
420

985
,

√
240

985

)
≈ (0.637253, 0.669116, 0.382352).

As Models 1 and 3 give the same location, it is worth thinking about why this is. We can use the law
of cosines to determine the distance (burrowing through the Earth) from (x, y, z) to Pi. Letting ψi denote
the angle between these two vectors and di the distance between them, and noting that the two vectors
have unit length, we have

d2i = ||(x, y, z)||2 + ||Pi||2 − 2||(x, y, z)|| ||Pi|| cosψi = 2− 2 cosψi

In other words,
d2i = 2(1− cosψi),

and
D1(x, y, z) = D3(x, y, z).

While the algebra after computing the gradients in Model 1 and Model 3 is the same, I think the
algebra is significantly easier in Model 3 in the beginning.
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3.4 Model 4

Recall
D4(x, y, z) = 329x2 − 264xy + 322y2 − 72xz − 96yz + 363z2,

which leads to the gradient

(∇D4)(x, y, z) = (658x− 264y − 72z,−264x+ 644y − 96z,−72x− 96y + 726z).

While we again have four unknowns in four equations, the algebra becomes a bit more tedious and in-
volved here. If you know linear algebra, it is not that bad to find the solutions. As linear algebra is not a
pre-requisite for the course, we will simply state what you would find

(x, y, z) ≈ (0.659301, 0.688772, 0.301521)

(the closed form solution is a pain to write down).

3.5 Model 5

Due to the presence of the arccosine function, D5(x, y, z) has a very messy derivative, and we must
resort to numerical approximations. This show that the optimal location is approximately

(x, y, z) ≈ (0.659441‘, 0.713781, 0.235913).

4 Comparing the Models’ Solutions
We compare the five models:

Model 1 Model 2 Model 3 Model 4 Model 5
x .637 .659 .637 .659 .659
y .669 .723 .669 .689 .714
z .382 .207 .382 .302 .236

Note five different models returned four different answers! Two of the five models (numbers 2 and 5)
had to be solved numerically; the others could be solved using elementary techniques. The fifth model
is the best way to measure distance, but not the easiest to work with. Of the models where we can solve
everything in closed form, it’s clear that Model 4 is closer to the ‘true’ solution than Model 1 (which is
the same as Model 3).

Again, the very important takeaway for this problem is that the answer to a problem can depend on
how you choose to ask the question. Different notions of distance lead to different locations.
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5 Connection to the rest of the course
This material is a natural stepping stone to the Method of Least Squares. The purpose of the Method of
Least Squares is to find the best values of parameters in a theory given experimental observations. The
main idea is that we have an error function which depends on the unknown parameters, and we must
minimize it, with the minimum occurring when the gradient vanishes. We thus need to decide on what is
the ‘best’ way to measure errors. We cannot do just the amount we are off, as that is a signed quantity.
We could use the absolute value of the difference between theory and experiment, but the absolute value
function is not differentiable. We thus use the square of the difference. This turns out to be mathematically
tractable, and leads to very nice closed form expressions.

11


