SOLUTION KEYS FOR MATH 150 HW (SPRING 2014)

STEVEN J. MILLER

1. HW #1: DUE MONDAY, FEBRUARY 10, 2014
1.1. Problems: HW #1: Due Monday, February 10, 2014.

Problem 1: What is wrong with the following argument (from MathematiEallacies, Flaws, and Flimflam - by Edward Barbeau):
There is no point on the parabaléy = 22 closest to(0, 5). This is because the distance-squared from (0,5) to a feiny on the
parabolais:? + (y — 5)%. As 16y = z?, the distance-squaredf§y) = 16y + (y — 5)%. Asdf /dy = 2y + 6, there is only one critical
point, aty = —3; however, there is np such thaiz, —3) is on the parabola. Thus there is no shortest distance!

Problem 2: Compute the derivative abs(sin(3z2 + 2z Inz)). Note that if you can do this derivative correctly, your knedge of
derivatives should be fine for the course.

Problem 3: Let f(z) = 2? + 82z + 16 andg(z) = 22 + 22 — 8. Compute the limits as goes to 0, 3 ando of f(z) + g(z), f(z)g(x)
andf(z)/g(z).

1.2. Solutions: HW #1: Due Monday, February 10, 2014.

Problem 1: What is wrong with the following argument (from MathematiEallacies, Flaws, and Flimflam - by Edward Barbeau):
There is no point on the parabdléy = 22 closest to0, 5). This is because the distance-squared from (0,5) to a peiny on the
parabolais:? + (y —5)2. As 16y = 22, the distance-squared f$y) = 16y + (y — 5)%. Asdf /dy = 2y + 6, there is only one critical
point, aty = —3; however, there is no such tha{z, —3) is on the parabola. Thus there is no shortest distance!

Solution: The error in the argument is that, to find maxima and minimis, iitot enough to just check the critical points; you must
also check the boundary points. The boundary points herg aré® andy = oo (0k, justy = 0). We thus see that = 0 gives the
closest point, whiley — oo gives ever increasing distances, indicating that there imaximum.

Problem 2: Compute the derivative abs(sin(3z2 + 2z Inz)). Note that if you can do this derivative correctly, your knedge of
derivatives should be fine for the course.

Solution: We use the chain rule multiple times. Remember that the afiréy of f(g(z)) is f'(g(z)) * ¢’(x).The derivative of
cos(sin(3z? + 2z Inz)) is two chain rules (with a sum rule and a product rule inside):

d
—sin(sin(3z% + 2zlnx)) * . [sin(32” + 2z Inx)]
x

which is

d
—sin(sin(3z% + 2z Inx)) * cos(3z% + 2zlnx) * . (32 +2zInz],
x

which is just

—sin(sin(32? + 2xInz)) * cos(3z? + 2xInz) * (62 +2Inx + 2).
Problem 3: Let f(z) = 2% 4+ 8x + 16 andg(x) = 2% + 2z — 8. Compute the limits as goes to 0, 3 and 8 of (z) + g(z), f(z)g(x)
andf(z)/g(x).

Solution: We havef(0) = 16, f(3) = 49, andf(co0) = oo, while g(0) = —8, ¢g(3) = 7 andg(co) = co. Using the limit of a sum
(product, quotient) is the sum (product, quotient) of tiheitli(so long as everything is defined), we see there is no prolait O or 3.
For the first,f (z) 4 g(x) goes to 16-8 =8 asgoes to 0, 49 + 7 = 56 asgoes to 3, ando+ oo asx goes toxo (note that whileco — oo
is not definedpo + oo is and just equalso). For f(z)g(z), this tends to 16 * (-8) =-128 asgoes to 0, to 49 * 7 = 343 asgoes to 3,
andoo * 0o = 0o asx goes too. For the quotient, it is important that we do not have 0/6@fooc. Thus we can immediately do the
first two cases, and sgéx)/g(x) goestol6/(—8) = —2 asx tends to 0 and 49/7 = 7 astends to 3. For the last, as we haxe/ oo
we need to work a bit harder. A{z) = 2 + 8z + 16 andg(x) = 2® + 2z — 8, f(z)/g(x) = (1 +8/x +16/2%) /(1 + 2/x — 8 /%)
(from pulling out anxz? from the numerator and denominator). Now each piece hasladeféhed and finite limit as: tends tooo,
and we see thaf(z)/g(x) tends to 1 as tends toco.
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Note you could also do Problem 3 by expanding out the expgmassbut that is much harder. For examplér)g(«x) is a polyno-
mial of degree 4 that can be analyzed directly. Also,ffor)/g(x) one could proceed by L'Hopital’s rule. That said, the poifthis
exercise was to remind you that the limit of a sum is the surhefimits, and so on.

2. HW #2: DUE WEDNESDAY, FEBRUARY 12, 2014
2.1. Problems: HW #2: Due Wednesday, February 12, 2014.

Page 823: #9:Find [@|,| — 2|, [@ — b|, @ + b and3@ — 20 for @ = (1,~2)and b = (—3,2).

Page 823: #18:Find a unit vectord in the same direction ag = (5, —12). Expressi in terms of ¢ and J , and find a vector’
in the opposite direction as that @f.

Page 823: #38:Given three pointsi(2, 3), B(—5,7) andC'(1, —5), verify by direct computation that B + BC + CA is the zero
vector.

Page 824: #42:1etd = (a1, as2) and? = (b1, b2). Prove by componentwise arguments thatif+ 7 =7 then?> = ﬁ
Page 833: #1:Let @ = (2,5, ~4)and b = (1,2, ~3). Find2@ + b,3@ —40,d - b,|d@ — b|and@/[@|.

Page 834: 39_Z;|'W0 vectors are parallel provided that one is a scalar maltip the other. Determine whether the vectars=
(4,-2,6) and b = (6,—3,9) are parallel, perpendicular or neither.

Additional Problem: Find the cosine of the angle betweah= (2,5, —4) and b = (1,-2,-3).
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2.2. HW #2: Due Wednesday, February 12, 2014: Solutions:
. — — — — —
Page 823: #9:Find | d|,| —2b|,|d — b|, @ + b and3@ —2b for @ = (1,—2)and b = (—3,2).

Solutlon We have|_>| = /12 + = /5. As -2 B = (6,—4), | — 20| = /67 (—D2 = V/B2. Since@ — b = (4, —4),
- b|f\/42 f\/— Flnally, T _< 2,0) and

3@ 20 = (3,-6) — (—6,4) = (9, ~10).

Page 823: #18:Find a unit vectori/ in the same direction a8’ = (5, —12). Expressi in terms of 7 and J , and find a vector’
in the opposite direction as that @f.

Solution: We have| @ | = \/52 12 = \/169 — 13. Aunitvectoris@ = @/|@|, or @ = (5/13, —12/13). As 7 = (1,0)

andj = (0,1), we haved = 3 i — ] As — has the opposite direction a8, we see we may take’ = —d = (—5,12).

Of course, there are multiple answers We could also Tdke — @/, as@ and@ are in the same direction.

Page 823: #38:Given three pointsi(2, 3), B(—5,7) andC(1, —5), verify by direct computation that B + BC + CA is the zero
vector.

Solution: Given two pointsP = (py,p2) and@ = (¢1, g2), byz@ we mean the vector from? to @), which is{q1 — p1, g2 — p2). We
thus have

AB = (=5,7)—(2,3) = (~7.4)
BC = (1,-5)— (=5,7) = (6,-12)
CA = (23)—(1,-5) = (1,8),
which implies
AB+ BC + CA = (—7,4) + (6, -12) + (1,8) = (0,0).

Why is this true? We are traveling in a directed way along ltined edges of a triangle, and we return to where we started.
Page 824: #42:1etd = (a1, as2) and? = (b1, b2). Prove by componentwise arguments thatif+ 7 =7 then?> = ﬁ

. — - .
Solution: Assumed + b = . Substituting for these vectors yields

(a1, az) + (b1,b2) = (a1,a2),
or equivalently
(a1 4+ bi,a2 +b2) = (a1, az).
This is a pair of equations:
a1 +b1 = a1, as+by = as.
We now have simple equations of numbers and not vectors.hedirst, subtracting; from both sides gives, = 0, while for the

. . . — . .
second subtracting, from both sides gives, = 0. Thus our vectorb = (0,0). The key observation here is that we can reduce a
vector question to a system of equations about numbers, arkghow how to handle / analyze numbers.

Page 833: #1:Let @ = (2,5, —4)and b = (1,2, —3). Find2@ + b,3@ —40,d - b,|d@ — b|and@/[@|.

Solution: First, .
2d + b = (4,10,-8)+ (1,-2,-3) = (5,8,—11)

_>
3d —4b = (6,15, —12) — (4,—8,—12) = (2,23,0).



4 STEVEN J. MILLER

Next,
DB = 2145 (—2)+(-4)-(=3) = 2-10+12 = 4.
As?—?:<1,77—1>,
T = JIET T (C1)2 = VAL
Finally,as|7|:\/m:\/_,wesee /| d| = (2/V/45,5//45, —4/\/45).

Page 834: 39:Two vectors are parallel provided that one is a scalar maltip the other. Determine whether the vectars=
(4,-2,6) and b = (6, —3,9) are parallel, perpendicular or neither.

Solution: We have N

T-b = 4-6+(—2)-(—3)+6-9 = 24+6+54 = 84.
If the two vectors were perpendicular, the dot product sthbel zero. As it isn’t zero, we know the vectors are not perpertar. We
now check to see if they are parallel; that means the cositieeaingle should be 1 or -1. To compute this, we need the Ismdtihe
two vectors. We have

|d) = /22 + (22462 = VI6+4+36 = V56
and

5] = 62+ (—3)2+92 = V3619181 = VI26.
Thus if# is the angle between the two vectors,

COS@*E)'?* 4 *%*1
@[T VEeVIZe 84

so the two vectors are indeed parallel.
o : . —
Additional Problem: Find the cosine of the angle betweeh= (2,5, —4) and b = (1, -2, —3).

Solution: If 0 denotes the angle, then
o =

a-b
Ijl 0] R
We worked with these two vectors in Problem 1, and s@w b = 4 and|d| = v/45. A similar calculation gives b | =
V12 + (=2)2 + (=3)2 = V/14. Thus
4
cost) = ——.
V4514

3. HW #3: DUE MONDAY, FEBRUARY 17, 2014
3.1. Problems: HW #3: Due Monday, February 17, 2014.

Section 11.2: Question 1:The corollary on page 830 states two vectors are perperdiddnd only if their dot product is zero.
Find a non-zero vector, say, that is perpendicular tol, 1, 1). (Extra credit: find another vector perpendicula1ol, 1) and the
vector that you just found. This extra credit should be written tigfter this problem, or as part of this problem.)

Question 2: Consider a triangle with sides of length 4, 5 and 6. Which tidessurround the largest angle, and what is the cosine of
that angle?

Section 11.3: Question 3Find the determinant of thizx 2 matrix( s ); in other words, we filled in the entries with the numbers

1

1, 2,3 and 4 in that order, row by row. Similarly, find the detarant of the3 x 3 matrix s 5 5 ); in other words, we fill in the

numbers by 1, 2, 3, 4, 5, 6, 7, 8, 9.(Extra credit: find a nicenfda for the determinant of the x n matrix where the entries are 1,
2, ...,n? filled as above, and prove your claim. This extra credit stidwel turned in on a separate sheet of paper.)

Question 4: Find the area of the parallelogram with vertices (0,0),X446), (3,10).

Question 5: Here is a great website

http://ww. graduat i onw sdom conm speeches/topten. htm
with 10 excellent commencement speeches. It's worth the teading thesa| particularly liked the one by Uslan
http://ww. graduat i onw sdom com speeches/ 0018- usl an. htm

a(on how it's not enough to just have a good idea, but how tangeited). Read Uslan’s graduation speech, and write asests
two on what you take away from it (any reasonable answer wdéive full credit).


http://www.graduationwisdom.com/speeches/topten.htm
http://www.graduationwisdom.com/speeches/0018-uslan.htm
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3.2. HW #3: Due Monday, February 17, 2014: Solutions:

Section 11.2: Question 1The corollary on page 830 states two vectors are perpemditfidnd only if their dot product is zero. Find a non-zero
vector, sayﬁ, that is perpendicular t¢1, 1, 1). (Extra credit: find another vector perpendicularto1, 1) and the vectord that you just found.
This extra credit should be written right after this probJemas part of this problem.)

Solution: Let's sayw = (z,y, z). Then - (1,1,1) = 0 means
rz-14+y-142-1 = 0.
If we takez = —(z + y), we see the dot product is zero. There are thus many possiikuch a3l = (1,1, —2). Another possibility is to take
z = 0 and theny = —z, giving us(1, —1, 0). Notice the solution space is two-dimensional; we’'ll sgerl#’s a plane. There are three dimensions

initially; we lose one in the directiofl, 1, 1) and thus two dimensions remain.
Let's say now we want to find a vectaf = (x,y, z) perpendicular tq1, 1, 1) and(1, —1, 0). We then have

z-1+y-142-1 =0 and z-14+y-(-1)+2-0 = 0.

The first gives ust + y + z = 0, while the second gives us— y = 0 or z = y. Substituting this into the first giveésr + z = 0 soz = —2z.
Takingz = 1 we seey = 1 andz = —2, for the vector(1, 1, —2) is perpendicular to botli, 1, 1) and(1, —1, 0).

Question 2: Consider a triangle with sides of length 4, 5 and 6. Which tidessurround the largest angle, and what is the cosine batiuhe?

Solution: Let 6;; denote the angle between the sides of lerigiind j. By the law of cosines, it = a® + b? — 2ab cos O, thencos 0., =
(a® + b* — ¢?)/2ab, so the cosines are
e L EEFC 12 a9 P8 312
° 2-4-5 8 16 2-4-6 16 ° 2-5-6 4 16
Note all the angles are between 0 and 90 degrees (i.e., dlsaage acute). The larger the angle, the smaller the cofhmes the largest angle has
thesmallestcosine, so the largest angle is the one between the sidesgthilé and 5.

Section 11.3: Question 3Find the determinant of th& x 2 matrix( 3 : ); in other words, we filled in the entries with the numbers 1,

2, 3 and 4 in that order, row by row. Similarly, find the detemanit of the3 x 3 matrix }; 5 é ;in other words, we fill in the

numbers by 1, 2, 3, 4, 5, 6, 7, 8, 9.(Extra credit: find a nicenfda for the determinant of the x n matrix where the entries are 1,
2, ...,n? filled as above, and prove your claim. This extra credit stidwel turned in on a separate sheet of paper.)

Solution: For the2 x 2 matrix, the determinant is just- 4 — 2 - 3 = —2. For the3 x 3 matrix, we write the first two columns again
and find the determinant is

1-5-942-6-74+3-4-8—7-5-3—-8:-6-1—-9-4-2 = 0.
Alittle inspection illustrates why this is zero. Note thatde the second row is the sum of the first and third row. Thagtiree vectors
do notreally form a 3-dimensional parallelpiped, but rather m&-dimensional parallelogram, and the volume of a 2-difoaas
parallelogram in 3-dimensional space is just zero. Sifyiline determinant for the x n matrix is zero ifn > 3 as twice the second
row is always the first row plus the third.

Building on this observation, we can show the determinarief. x n matrix with entries from 1 to? is zero forn > 3, even
though we don’t have a formula to compute these determirfants > 4! The reason is we have the geometric definition of the
determinant, namely that it gives thedimensional volume of the region spanned by the rows. Mdtiat whem > 3, the sum of
the first and third rows equals twice the sum of the second Tdws these three vectors all lie in a plane, and we have |dshst
one dimension. This implies thedimensional volume is zero.

Question 4: Find the area of the parallelogram with vertices (0,0),X446), (3,10).
Solution: The parallelogram is generated by the veciors= (2,4) and@ = (1,6); we find these by looking &g, 4) — (0, 0) and
(1,6) — (0,0); note that(3,10) = (2,4) + (1,6). We know the area is equal to the determinant of the matrik firist row ' and

second rowws. Thus we need the determinant of the ma(ri% ‘6* ),which is2-6 —1-4 = 8. Note that if we wrote the vectors in

the other order we would have the matdx = ( | ¢ ),which has determinarit- 4 — 6 - 2 = —8. What went wrong? We have to

remember it is the absolute value of the determinant thaeisitea.
Question 5: Here is a great website

http://ww. graduat i onw sdom conm speeches/topten. htm
with 10 excellent commencement speeches. It's worth the teading thesa| particularly liked the one by Uslan
http://ww. graduat i onw sdom com speeches/ 0018- usl an. htm

a(on how it's not enough to just have a good idea, but how tangeited). Read Uslan’s graduation speech, and write asests
two on what you take away from it (any reasonable answer wdéive full credit).


http://www.graduationwisdom.com/speeches/topten.htm
http://www.graduationwisdom.com/speeches/0018-uslan.htm
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4. HW #4: DUE WEDNESDAY, FEBRUARY 19, 2014
4.1. HW #4: Due Wednesday, February 19, 2014: Problems:

Page 842: #1Find @ x b with @ = (5,—1,-2)and b = (—3,2,4)

Page 842: #5Find the cross product of thé = (2, —3) and b = (4,5) by extending them to 3-dimensional vectars= (2, —3,0)

and b = 4,5,0).
7><?>)With(ﬁ>><€> 7

Page 842: #11Prove that the vector product is not associative by compatin ( ) % 7 inthe caséd =

— —
b =7+ j,andd =17+ ] +K.

Page 842: #12Find nonzero vectors’, b and @ suchthafd x b = @ x @, but b # .

Section 11.4: Question 1Write parametric equations of the straight line that pats@sigh the poin and is parallel to the vector
7/, with P the point (0,0,0) an@' the vectoii + 2j + 3k (1,2, 3).

Section 11.4: Question 2Write parametric equations of the straight line that patiseasigh the poinf® and is parallel to the vector
7, with P equal to (3,-4,5) and’= -2 + 7j + 3k = (—2,7,3).

Section 11.4: Question 3Write parametric equations of the straight line that patiseasigh the poinf® and is parallel to the vector
', with P equal to (4,13,-3) and’= 2i - 3k = (2,0, —3).

Section 11.4: Question 22:Write an equation of the plane with normal vecfar = (—2,7,3) that passes through the point
P =(3,-4,5).
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4.2. HW #4: Due Wednesday, February 19, 2014: Solutions:
. - —
Page 842: #1Find @ x b with @ = (5,—1,—2)and b = (—3,2,4)

Solution: We haved x b> = (agbs — asba, asby — a1bs, a1ba — azby), which in this case is
(=1)-4-(=2)-2,(=2)- (=3) =5-4,5-2— (1) - (=3)) = (0,—14,7).
We could also do the determinant approach, and write thehficstolumns again:

i A e
i 7 k|1
5 -1 2|5 -1
3 2 43 2
and then do the three diagonals (from upper left to bottoimtyigith positive signs, and then the three diagonals (frattdm left to
upper right) with negative signs.

Pagi842: #5Find the cross product of the = (2, —3) and b = (4,5) by extending them to 3-dimensional vectars= (2, —3,0)
and b = (4,5,0).

. . — N .
Solution: Again we haved x b = (agbs — asba, azby — a1bs, a1bs — asby), which in this case is

((=3)-0-0-5,0-4—2-0,2-5— (=3)-4) = (0,0,22).

This is a very powerful technique, and allows us to use thesgpooduct, initially defined only in three dimensions, i ivmensions.

Page 842: #11Prove that the vector productis not associative by compaiin (5 x @) with (@ x b ) x @ inthe cas&d’ = 7,
b=+, andd =7+ +k.
Solution: Rewriting @, 7 and¢ in terms of their components we have
@ = (1,0,0), =(1,1,0), @ =(1,1,1).
Using the definition of the cross product, we find thatc @ _() ,—1,0) and therefor&? x (b x @) = (O 0,—1).
Similarly, we see thai x T = (0,0,1), whichgives(@ x b ) x @ = (—1,1,0). Since(—1,1,0) # (0,0, —1), we see that the

cross product is not associative.

Page 842: #12Find nonzero vectors’, b and @ suchthafd x & — @ x @, but b # ¢

Solution: Here’s one solution. Let’s start with a specifi¢ and see what happens. The simple@sto take would béd = (1,0,0)
(we can't take the zero vector, so let's have two componearts)z This is a great way to build intuition. Then for any \a@ct

b> = (b1, by, b3), We haved x b = (0, —bs, b2). Notice thatad >< b does not depend ol ! Therefore Ietb> = (1,1,1) and
= (2011,1,1). We see thal/ x b = (0, —L1) = @ x 2 buth £ 7
For another solution, recall that x @ = 0. Thus, |f7 is anyvector, we always have

— —
dx b zﬁx(b +E>)7

so we can takéd and b arbitrary, and set? = b +d. (Okay, We can't take the zero vector far).) An interesting question
becomes: giveii/, describe all vectorsb and @ such thatd’ x b =d x . If youwant, you may do this for extra credit.

Section 11.4: Question 1Write parametric equations of the straight line that patsesigh the poin and is parallel to the vector
7, with P the point (0,0,0) and' the vectori + 2j + 3k = (1,2, 3).

Solution: The equation isz,y,z) = P + 7 with ¢ ranging over all real numbers. Substituting f8rand @ yields (x,y,2) =
(0,0,0) 4+ ¢(1,2,3), so(z,y, z) = (t,2t,3t), or equivalentlyr=t, y= 2t andz = 3t.

Section 11.4: Question 2Write parametric equations of the straight line that patsesigh the poin and is parallel to the vector
7, with P equal to (3,-4,5) and’= -2 + 7j + 3k = (—2,7,3).
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Solution: Again the equation of the line is:, y, z) = P + ¢ . Substituting forP and @’ yields (,y, z) = (3, —4,5) + t(—2,7, 3).
Thus(z,y, z) = (3 — 2t,—4 + 7t, 5 + 37), or expanding:= 3-2¢, y= -4+7t andz= 5+3.

Section 11.4: Question 3Write parametric equations of the straight line that patiseasigh the poinf® and is parallel to the vector
7, with P equal to (4,13,-3) and/= 2i - 3k = (2,0, —3).

Solution: Again the equation of the line i&:, y, z) = P + ¢t ¢/. Substituting forP and @’ yields (, y, z) = (4,13, —3) + £(2,0, 3).
Thus(z,y, z) = (3 — 2t,13, -3 + 3t), ora= 3-2t, y= 13 andz= -3+3.

Section 11.4: Question 22:Write an equation of the plane with normal vecfar = (—2,7,3) that passes through the point
P =(3,-4,5).

Solution: The equation of the plane iéz, y, z) — P)- 7 =0, 0r (z,y,2) - 7 = B - 7. Substituting givesz, y, z) - (~2,7,3) =
(3,-4,5) - (—2,7,3). ThuS—2z + Ty + 32 = 3(—2) + (—4)7 + 5(3) = —19, 50— 2z + Ty + 3z = —19.

5. HW #5: DUE FRIDAY, FEBRUARY 21, 2014
5.1. Problems: HW #5: Due Friday, February 21, 2014.
Section 11.8: Question 1Find the rectangular coordinates of the point with the giedimdrical coordinates. (%, 2).
Section 11.8: Question 26Describe the graph of the given equatign:= 5.
Page 908: #2:Find the largest possible domain fftz, y) = /22 + 2y2.
Page 908: #4:Find the largest possible domain ffz, y) = 1/(x — y).
Page 908: #5:Find the largest possible domain fp(z, y) = (y — x2)'/3.
Page 908: # 27:Describe the graph of(z, y) = /4 — 22 — y2.

Page 908: #32:Sketch level sets of (z,y) = 2% — y°.
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FIGURE 1. Contour Plot for Problem #32 on page 908.

5.2. Solutions: HW #5: Due Friday, February 21, 2014.

Section 11.8: Question 1Find the rectangular coordinates of the point with the gisgimdrical coordinates. (%;, 2)
Solution: In cylindrical coordinatesg=r cos 0, y=r sin § andz= z. We know that-= 1 and@ = 3 because cylindrical coordinates are written as
(r,0,2). Thusz = 1cos § = 0,y = 1sin § = 1, andz = 2, and the rectangular coordinates are (0,1,2).

Section 11.8: Question 26Describe the graph of the given equatign= 5.

Solution: The graph of the equation of the forps ¢ (¢ being a constant) can be described as sphere of radiistered at the origin, thus the graph
is a sphere with a radius 5 centered at the origin. In spHerazadinates we have = psin ¢ cosf, y = psin ¢sinf andz = pcos ¢. Using the
Pythagorean Theorem twice, we see tat- y2 + 22 = p? in spherical coordinates. Thusf= 5, which is the same g8 = 25 (sincep > 0),

in Cartesian coordinates this becomés+ 32 + 2% = 25, which is the equation for the surface of a sphere of radius 5.

Page 908: #2::Find the largest possible domain ffz, y) = /22 + 2y2.
Solution: The function is defined for all values afandy (thus the domain is all dk?). The reason is that the only danger with the square-root
function are negative numbers, anti+ 212 is always non-negative.

Page 908: #4::Find the largest possible domain fptz,y) = 1/(z — y).
Solution: The only danger with the reciprocal function is when the aeimator is zero. Thus, so long as# y the function is defined. We can
write this in set notation as the domain{ige, y) € R? : = # y}.

Page 908: #5::Find the largest possible domain 6z, y) = (y — 22)*/3.
Solution: Note the cube-root of a negative number is a negative nurttecube-root of zero is zero, and the cube-root of a positivaber is a
positive number. In other words, the cube-root is definedifiareal numbers. Thus the domain of this function is alRsf

Page 908: # 27:Describe the graph of (z,y) = /4 — 22 — y2.

Solution: Note that the height only depends of + y?; in other words, any two pairgecy,y1) and (2, y2) that are the same distance from the
origin (0, 0) give the same value to our function. There is thus enormogslansymmetry, and we see that there will be lots of cirafesur plot.

If we look at level sets, we want to solwg4d — x2 — y2 = cord — x* — y* = ¢® orz® + y* = 4 — ¢>. Remembering thay-- - means take the
positive square-root, we see that the admissible valuesd0 < ¢ < 2. For each of these we get a circle of radiyd? — c2 as the level set. The
smallest is wher = 2, which is over the origin; the largest circle is whea- 0 and then we get a circle of radius 2 in thg-plane. Another way
of looking at this problem is to write = f(x, ). If we do this we get? = 4 — 22 — % or 2% + y? + 2% = 4. Remembering that > 0 (due to
the square-root), we see this is just the upper hemisphexrspliere of radius 2.

Page 908: #32:Sketch level sets of (z, y) = = — .
Solution: If we havez? — y2 = ¢, notec can be anything. We get a series of hyperbalalgsse = 0, in which case we get two linest — 2 =0
meansr = +y). See Figurgll. The Mathematica code is:

Cont our Pl ot [ x*2-y~2, {x,-10, 10}, {y,-10, 10}]
(you can run Mathematica code online: gétiot p: 7/ www. wol T ramal pha. conT).

SCHEDULE FOR LAST WEEK OF FEBRUARY:

e No class on Monday February 24, but you are still requiredrop @ff your HW (put it in the appropriate envelope in my maittby the
end of your normally scheduled time; the graders will pickgtand make sure it is available by Wednesday).

e Instead of class on Monday use the time to learn the basicsattidvhatica. You should be able to use it through Williamsjftnot you
can run it online at WolframAlphéat t p: // www. wol framal pha. conTl
| have created a webpage with a template and video on how thlagematica:

http://web.wll1ans. edu/ Mat hematics/symller/public_htm /math/handouts/I atex. ht m


http://www.wolframalpha.com/
http://www.wolframalpha.com/
http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm
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(with a lecture uploaded to YouTubkt t p: // www. yout ube. com wat ch?v=gloj 7Cl qGvB). Another good source is here:
http://ww. wol fram coni br oadcast/ screencast s/ handsonstart/

(note that on the right there are links to other good videlb$.a very good skill to learn how to use a program like Mathéoa to check
your answers and investigate problems, which is one reas@nt to use some of the time we've saved from flipping a cows$eve you
explore a system like this. | have included a template filactvhas basic commands, online:

http://web.w i1 anms. edu/ Vat henatics/symller/public htm/nmath/LalexVat hemati ca/ Vat henati cal ntroVer6. nb

(note one of the difficulties is that you might not have acdedhe latest version of Mathematica, so I've posted a diigsitier template).
For what we're doing, the basic commands you want to use affdige:

Dot product, cross product: {1, 2, 4}.{1, -1, 2} Cross[{1,2,4},{1,-1,2}]
(using braces is how we do vectors);
Det[{{1, 2}, {3, 4}}]
(a matrix is a list of vectors, so we surround the vectors lagés);
D[4 x"3 + 2 x, X]
(takes the derivative of the function with respect to x);
D[4 x*"3 Sin[y] + 2 x Cos[x + vVy], X]
(the partial derivative of a function of x and y with respexk);
Integrate[4 x4 - 2, X]
(the indefinite integral);
Integrate[x"2, {x, 3, 6}]
(the definite integral from 3 to 6);
ContourPlot[x"2 - 3 y"2, {x, -4, 4}, {y, -4, 4}]
(a contour plot, with x from -4 to 4 and y from -6 to 6).
You should go through the first few HW assignments, as welhag&lculus review problems posted on the course webpadenake
sure you can do most of the problems using Mathematica. Whiledo not need to hand anything in, you're encouraged tottatke

TAs (both the class TAs and those for the MSRC); also feel theemail me your Mathematica programs or commands if youenértg
trouble.

Class on Wednesday is optional review.

Exam is in class on Friday, February 28. Closed book, no natesalculators, no phones, ... (you get the point). Make gaou write
neatly and in the exam packet. Clearly mark your answerslifodr or boxing is good). The first part is a quick test of Clesydtl material,
the second part is a review of your ability to differentiatel antegrate. | won't be adding the scores of the varioussgarget one number.
The main midterms are 2 and 3 (and I'll drop the lowest scortha@$e two). If you do well on this I'll keep that in mind at thedeof the
semester. The main purpose of this exam is to have a goodadiigiof how well you're doing with the new material, and hawoag your
old material.

6. HW #6: DUE MONDAY, FEBRUARY 24, 2014

6.1. Problems: HW #6: Due Monday, February 24, 2014.

Page 917: #1:Findlim ;) (0,0)(7 — z* + 5ay).

Page 917: #8:Findlim )2, 1) In (55552 ).

3y2—z

Page 917: #10:Findlim ), .0) <2552

1—22—y2

Page 918: #24:Find the limit or show that it does not existm ;. , .y (1,—1,1) LEEEEEY,

14+zyz

Page 918: #38:Evaluate the limitim ,_,_, (0,0 ;;;Z: by making the polar coordinates substitution.

Page 919: #54:Discuss the continuity of the functiof(z, y) that iss";’c% if zy #0and 1ifzy = 0.

Page 928: #1::Compute the first-order partial derivatives fifz, y) = z* — 2%y + 2y — zy® + y*.

Page 928: #4::Compute the first-order partial derivativesfifr, y) = e%e”?.

Page 928: #5::Compute the first-order partial derivatives fifr, y) = ¥,

r—y


http://www.youtube.com/watch?v=g1oj7CIqGM8
http://www.wolfram.com/broadcast/screencasts/handsonstart/
http://web.williams.edu/Mathematics/sjmiller/public_html/math/LaTexMathematica/MathematicaIntroVer6.nb
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6.2. Solutions: HW #6: Due Monday, February 24, 2014.

Page 917: #1:Findlim, ) (0,0)(7 — 2* + Bay).
Solution: The limit laws tell us that the limit of a sum is the sum of thailis, and similarly for the difference or a product (so losgadl limits are
finite, and for the quotient the denominator is non-zero).thés have

lim (7—2°+5zy) = lim 7— lm 2"+ lim 5 lim =z lim y
(z,9)—(0,0) (z,y)—(0,0) (z,9)—(0,0) (#,9)=(0,0)  (2,)—(0,0) (z,y)—(0,0)

7-0°+5-0-0 = 7.
Page 917: #8:Findlim .y 2, 1) In (55522 ).
Solution: As (x,y) — (2, —1) the denominator goes &(—1)? — 2 = 1 and the numerator goes 1o+ 2 + 2(—1) = 1. Thus we are taking
the natural logarithm of a quantity getting closer and aldsel. AsIn1 = 0, the limit is zero. We could also attack this problem by ngtin
In(a/b) = Ina — In b and then using the difference rule.

Page 917: #10:Findlim(, ) (0,0) 1“;7:5)
Solution: As the limit of the denominator is 1, we can use the limit of atignt is the quotient of the limits. What is the limit of themerator?
We're evaluating cosine at values closer and closer to 0.08®1e is continuous, this equaiss 0 which is 1. Thus our limitid /1 or 1.

Page 918: #24:Find the limit or show that it does not existm ;. , .)—(1,-1,1) %j;jy

- ozt
Solution: lim g, ) (1,-1,1) L5755

The limit does not exist. A$zx,y, z) approaches (1,-1,1), the numerator approaches -1 +1-1+ 1 (—1) = —1, while the denominator
approaches + 1 - (—1) - 1 = 0. Thus our quantity looks like-1/0 in the limit, which is undefined.

Page 918: #38:Evaluate the limitim , ,y_, (0,0 z2+ 5 by making the polar coordinates substitution.
Solution: Using the textbook’s advice to convert from cartesian cimatieés to polar coordinates (< r cos 0, y = rsin 6), the problem becomes
significantly easier to manage. Note tfiaty) — (0,0) becomes: — 0 and@ is free. The limit equaliim, .o :zcos%w By factoring out

cos2 O+r2sin2 6
ther? from both the numerator and denominator, and using theitgients® # + sin? = 1, the limit equaldim, o M Here we can
see the limit approaches 0, becaliges® § = sin® 4| < 2 andr — 0.

Page 919: #54:Discuss the continuity of the functiof(z, y) that iss";’c% if zy #0and 1ifzy = 0.

Solution: This function is continuous. By the definition of continyigyfunctionf is continuous afa, b) if it is defined at(a, b) and the limit is
equal to the value there. The only troublesome points ar@whe 0, b = 0 or botha andb equal 0. Assume first that our point(is, 0) with a # 0.
Then(z,y) — (a,0) means that eventually is non-zero and close @, andy may or may not be zero but is close to 0. We hgiye, 0) = 1.
If y = 0thenf(z,y) = 1. If y # 0 andx is close toa and non-zero ang is close to 0, then we must shofi(x, y) is close to 1. We have
flz,y) = % with zy # 0 and small; however, sindém, o 22 = 1, we see that agr,y) — (a,0) wheneverry # 0 we havery — 0 and

thus, setting = xy, we'll haveSi;—;y arbitrarily close to 1. The analysis for poir(s, b) with b # 0, as well as the point0, 0), is similar.

Page 928: #1::Compute the first-order partial derivatives fifz, y) = 2* — 23y + 2%y* — zy® + ¢*.
Solution: To find the partial derivative with respect 19 we considery constant and apply the standard rules of differentiatiowl, find % =
z® — 3zy + 22y — y>. To find the partial derivative with respectgowe consider: constant and fin(% = —23 4+ 222y — 3zy® + 4y

Page 928: #4::Compute the first-order partial derivatives fifr, y) = e*e”?.
Solution: Note thate? is just a constant; there is no need to use the product rukt uge the constant rule. We h%@ yeZe™V andg—g = ze’e®?

Page 928: #5::Compute the first-order partial derivatives fifz, y) = ”5

Solution: Applying the quotient rule of differentiation gived = 12 (UZLJ;;W) = (nyy)z andg—£ = *1“(*00’{);1;””*9) = (132)2. Another way
to do this problem is to observe the following:

— 2 — 2 2

:c—l—y:m y—l—y::c y+y:1+y.
r—=y r—=y r—y =Y r—=y

This is a little nicer than using the quotient rule; if we wamé derivative with respect to note we just need to use the reciprocal rule, and find

gL =2y (~1)(z —y) 2, as before.

7. HW #7: DUE MONDAY, MARCH 3, 2014

You should have watched the video and read the book. To helpvith these problems, | will do a few similar problems as algui’m choosing
slightly longer problems than necessary as a way to review galculus. Doing these exercises is a great way to studyéotest!

Practice Problem #1: Multiple Derivatives: Let z(x,y) = %Y 4 sin(z? + 3xy) + 2. Find 2., 2y, 2z, andzy..
Solution: We havez, = %, the partial derivative of the functiofn(z, y) with respect tar. This means we hold fixed, and we find

2cvy

2o = 2ze™ 4+ z?e™y + cos(z”® + 3zy) - (2z + 3y),
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where we used the product rule for the first piece and the epiotule for the second. Similarly we find

zy = z°€™x + cos(x® + 3zy) - 3z = 2°™ + 3z cos(a’ +3my)

Note the notatiore,, meansazf' so first we take the derivative af with respect tar and getz, = <%, and then we take the derivative of

Ze = a = with respect ta; and getzw = 62; To make the notation clearer as to the order, we can usetbam.zxy = (zz)y; NOte we're using
our variables as subscripts to indicate the variable oérdbfftiation. We find

02a

Zoy = 7 = 2e™x+2® (e"ay + €"Y) — sin(z® + 3zy) - 3z(2z + 3y) + cos(z® + 3zy)3
= 322%™ + 23y + 3cos(z® + 3zy) — 3x(2x + 3y) sin(z® + 3zy),
Zyz = % = 322%™ + 2%y + 3cos(z” + 3zy) — 3wsin(z® + 3zy) - (22 + 3y);

notez,, = zy.. This last equality frequently holds; it is a theorem thatdtds if the mixed partial derivatives exist and are coraum Thus we
need only compute,, to know z,, in many cases, but it's good to do both as a check for calculdsagebra errors.

Below are Mathematica commands for these derivatives. Wetevrite ¢®¥ asExp|x y] (it's important to put a space betweenandy, as
otherwise Mathematica reads it asevariable and not a product. Similarly sine is encode&iag32> + 3x y] (note the use of square brackets).
We useD|function, variable] to denote the derivative of a function with respect to a \@eiato do two derivatives we can nest the expressions.
D[ x"2 Exp[x y] + Sin[x*2 + 3 x y] + 2, X]

D[ x"2 Exp[x y] + Sin[x*2 + 3 x y] + 2, V]
D[ D[ x"2 Exp[x y] + Sin[x*2 + 3 x y] + 2, x], vyl
D[ D[ x"2 Exp[x y] + Sin[x"2 + 3 x y] + 2, y], X]

Practice Problem #2: Tangent PlanesFind the tangent plane to= e~ ¥ cos(zy*n) at the point(1, 1, —1).

Solution: First, we check that this point is on the surface; it is-ds= e'~* cos(1 - 1%7). From the book or my lecture notes for Chapter 12 (see
http://web.w il ans. edu/ Mat henatics/symller/public _htn/150/ currentnotes/Mat h105LecNot es ChaplZ. pdt
page 11 for the equation of the tangent plane), we see thatif f(x, y) (also denoted by (z,y) at times) then the tangent plane at the point
(l’o, Yo, Zo) (Wlth zZo = f(l’o, yo)) is jUSt

z = f(zo,y0) + {%(wo,yo)} (z — x0) + B—i(rmyo)} (¥ — o).

Here— (z0,yo) means we take the partial derivative pfvith respect tor and evaluate that at the poifito, yo); if we wanted we could writeq

instead off (zo, yo) above azo = f(z0,y0). We have(xo, yo) = (1,1), z0 = —1, and
g _ x—y 2 T—yY (o 2 a2 g _
5 = ¢ cos(zy m) +e" Y (—sin(zy m) - y°m), so 8:0(1’1) = 1.
Similarly we find
of _ e”7Y(~1) cos(zy’m) + €Y (—sin(zy’n) - 2zy7), so %(1 1) = —1.
Oy ’ oy’

Thus the tangent plane is

= = Sana) + | L) -2 = an)+ [ on)] - - 0) = ~14 16 -0 10—,

which simplifies to
z=—-14@x-1)—(y—1) or z—y—2z = 1.

7.1. Problems: HW #7: Due Monday, March 3, 2014.

Page 928: #21::Showz,, = z,. With z(z,y) = 22 — 4xy + 3y°.

Page 928: #25::Showz,y = zye With 2(z,y) = In(z + y).

Page 928: #33:Find the tangent plane to= sin 5 at the point(3,5, —1).
Page 928: #36:Find the tangent plane to= 3x + 4y at the point(1, 1, 7).

Page 928: #63:The ideal gas law saysl” = nRT'. Show a—pa—V‘Z—T = —1. Is this surprising?


http://web.williams.edu/Mathematics/sjmiller/public_html/150/currentnotes/Math105LecNotes_Chap12.pdf
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7.2. Solutions: HW #7: Due Monday, March 3, 2014.

Page 928: #21:Showz,, = z,, With z(z,y) = 2% — 4xy + 3y
Solution: We havez, = 2z — 4y and thernz,,, = —4, while z, = —4z + 6y and therz,, = —4 = z,,,.

Page 928: #25:Showz,, = z,, With z(z,y) = In(z + y).

Solution: First, remember thdi(z + y) # Inx + lny; itis ln(zy) that equals this. We have, = ﬁ = (z +y)~ ! and thus
Zay = —(x +y) 2. Similarly, z,, = ﬁ =(x+y)tandzy, = —(z+y) 7% = 24y

Page 928: #33:Find the tangent plane to= sin 5 at the point(3, 5, —1).

Solution: First, we check that this pointis on the surface it is-ds= sin 13” Thuszy = 3, y0 = 5 andzy = f(xo,y0) = —1, with

ﬂzy

z,y) = sin Z2¢, We have— = L cos Y , SO Z-
flx,y) =

= 0. Similarly af = IZ cos T2, s0 4L f Vs = 0. The tangent plane is
of
0y 1(3,5)

*1(3,5)

7]
z = f(3,5)+a—£ (35)($—3)+

(since the two partial derivatives vanish at the point oéiiast).

(y—5) = ~1

Page 928: #36:Find the tangent plane to= 3z + 4y at the point(1, 1, 7).
Solution: Note this is the equation of a plane, so we expect this to bartkeer (this problem is thus a good check of the reasonable-
ness of our definition of the tangent plane). First, we do nlesthat7 = 3 -1+ 4 - 1. Letting f(z,y) = 3z + 4y, we havery = 1,

Yo =1, 20 = f(z0,y0) =7, 2L =3s0%L . 3,andgl —4s03! " 4. The tangent plane is

of of
= f(1,1)=— —1 — —-1) = —1 4(y—1) = 4.
FL )5 (171)(1 )+ay (11)(y ) =T+3@-1)+4y—1) = 3z+4y
Page 928: #63:The ideal gas law says/’ = nRT. Show 22 2V oL — _ 1,

oV T op
Solution: We may writep = nRT/V,V = nRT/p andT = pV/nR. Direct computation give% —nRT/V?, 2
and4l = V/nR. Thus

'a_T =nR/p

Op oV OT nRT nR V nRT

avaraop ~ V: p nR  Vp ’
where the last equality follows fromlV = nRT'. Surprising! “Canceling” the differentials giv%, whichis 1.

8. HOMEWORK #8: DUE WEDNESDAY, MARCH 5:

Skim my notes on the Method of Least Squares; link on the eduosnepage, or go to

http://www. w I1l1ans. edu/ Mat hematics/symller/public _htm/ 150/ handout s/ Met hodLeast Squar es. pdf.
Make sure you are comfortable with all the material from tkane. Try practice problems from the course homepage andabie. b
http://web.w I'Tians. edu/ Mat henmati cs/sym T er/public htm/ 150/ practiceexam ndex. him

8.1. Problems: HW #8: Due Friday, March 7:

Page 940: #5Find every point on the surfagdz, y) = 22 + y* — 6x + 2y + 5 at which the tangent plane is horizontal.
Page 940: #11Find every point on the surfagdz, y) = (222 + 3y?) exp(—2? — y?) at which the tangent plane is horizontal.
Page 940: #29Find the first octant point on the surfat®r + 4y + 3z = 169 closest to the poinf0, 0, 0).

Page 941: #61a.Suppose Alpha Inc and Beta Ltd have profit functions given by
P(z,y) = =22 + 12z 4+ay —y — 10, Q(z,y) = —3y> + 18y + 2zy — 22 — 15,

wherex is the price of Alpha Inc’s good anglis the price of Beta Ltd’s good. Supposing that the manadeidpha and Beta know
calculus and know that the other manager knows calculus bswinat price will the two companies set to maximize theiofiis?

Page 941: #61b.Now suppose that Alpha Inc and Beta Ltd set their prices so asiximize their combined profit. Now what will
the optimalr andy be?


http://www.williams.edu/Mathematics/sjmiller/public_html/150/handouts/MethodLeastSquares.pdf
http://web.williams.edu/Mathematics/sjmiller/public_html/150/practiceexamindex.htm
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8.2. Solutions: HW #8: Due Friday, March 7:

Page 940: #5Find every point on the surfagdx, y) = 22 + y* — 6x + 2y + 5 at which the tangent plane is horizontal.
Solution: Remember that the equation for the plane tangent to thecaurfa f(«, y) at the poinfa, b) is given by

z = f(a,b) = fala,b)(x — a) + fy(a,b)(y = b),

with f, = % andf, = 3—5- Therefore, if we want the tangent plane to be horizontalneed to find all point$z, y) such that both
partial derivatives vanish at that point, ff(z,y) = f,(x,y) = 0. We have

of of
— =2z — — =2 2.
o z — 6, By Y+
We seef,(z,y) = 0 whenz = 3 and f,(z,y) = 0 wheny = —1 (this is the example done in class), so the only point at wtheh

tangent plane is horizontal {8, —1).

Page 940: #11Find every point on the surfagdz, y) = (222 + 3y?) exp(—2? — y?) at which the tangent plane is horizontal.
Solution: The equation for the plane tangent to the surfice y) at the point(a, b) is given by

2= f(a,b) = fa(a,b)(x — a) + fy(a,0)(y - b).

Therefore, if we want the tangent plane to be horizontal, eedrto find all point$z, y) such thatf,(z,y) = f,(z,y) = 0. Taking
the partial off with respect tar, we have
g— = (22% + 32/2)671277!2(—226) tdge ™ Y = 21767127'7!2(2 — 227 — 3y?).
X
Sincee—" v # 0 for all pairs of real numbergr, ), we see thaf, (z,y) = 0 whenx = 0 or 2 — 222 — 3y? = 0. Similarly taking
the partial derivative of with respect tay gives
0
6_f = (2:102 + 3y2)e_””2_y2 (—2y) + 63/6_””2_?/2 = 2ye_:”2_y2 (3-— 222 — 3y7).
Y

Thereforef, (z,y) = 0 wheny = 0 or when3 — 2z2% — 3y* = 0.

We now need to find the points where bgthandf, are 0. Since we knovi,(z,y) = 0 whenever: = 0, let’s first letz = 0. For
f, to be 0 given that = 0, we needy(3 — 3y?) = 0, soy = 0 ory = +1. Therefore the tangent plane is horizontal at the three
points(0,0,0), (0,1,3/e) and(0, —1, 3/e) (the z-component is found by evaluatirfgat thex andy values).

We also know thaff, (z,y) = 0 whenevery = 0, so now let’s lety = 0. For £, to be 0, we needz(2 — 222) = 0, sox = 0 or
x = +1. Therefore the tangent plane is also horizontal at the péin®, 0), (1,0,2/e) and(—1,0,2e71).

Finally, we need to make sure there aren't any other solstie@re missing. Notice that we've found every possible sofu
wherez or y is 0. Thus any other solution we could find would havandy not equal to 0. In this case, fgfi, to be 0 we need
3 — 222 — 3y2 = 0. Similarly, for f, to be 0 we need — 222 — 3y? = 0. However, it is impossible for both of these equations
to be satisfied at the same time. Subtracting the two equeatverfindl = 0, which is a clear contradiction. Therefore there are no
additional solutions with both andy not equal to 0.

Page 940: #29Find the first octant point on the surfat®r + 4y + 3z = 169 closest to the poinf0, 0, 0).
Solution: We want to express the distance from a point on the surfadeetorigin as a function af andy. Once we've done that,
we can use our optimization techniques to find the paig/) which minimizes this distance. Notice that we can rewriteehuation
of the plane as
z= @ — 4z — éy
3 3

Therefore any point on the plane can be writter{:ag/, 169/3 — 4x — 4y/3). The distance squared from this point to the origin is
given by
1 4 \?
h(z,y) = 2* +y* + <% — 4z — §y> .

Notice that the poin{z, y) which minimizes the distance from the origin to the plan® agnimizes the distance squared from the
origin to the plane. Therefore we can just minimige:, y) to find our optimal point, instead of having to deal with thetyssquare
roots that come into play with actual distance. To minimize, y), we take the partial derivatives with respecttandy, and set

them equal to 0. We have
Oh 169 4 Oh 8 /169 4
— =2 -8 — —dx— = —=2y— = — —dz— -y .
oz ' 8(3 * 3y>’ ay Y 3<3 * 3y>
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So we want to solve the system of equations

169 4
2 — 8 — — 4z — -

Multiplying the second equation by 3 and we get

9 4
2— _— — =
T 8(3 3y)
4
3 .

Subtracting the second equation from the first gives- 6y = 0, sox = 3y. Substitutingr = 3y into the first equation gives

169
6y — 8 <— — 12y — —1/) =0,

which simplifies toy = 4. Thereforer = 3y = 12, andz = 169/3—4-12—4-4/3 = 3, so the point on the planxz+4y+3z = 169
which is closest to the origin id 2, 4, 3).

Page 941: #61a.Suppose Alpha Inc and Beta Ltd have profit functions given by
P(z,y) = 22> + 12z + xy —y — 10

Q(z,y) = =3y + 18y + 2zy — 22 — 15,
wherez is the price of Alpha Inc’'s good angis the price of Beta Ltd’s good. Supposing that the manadefdpha Inc and Beta
Ltd know calculus and know that the other manager knows t#as well, what price will the two companies set to maxintiesr
profits?
Solution: Since Alpha Inc can only control its own price, it will set fisce to the point wher#,, = 0. Similarly, Beta Ltd will set
its price to the point wherg, = 0. That is,

aP 9
OF _ gpi124y—0 292 6 i18+20—0.
ox oy

From the first equation we fingd = 42 — 12. Substituting this into the second equation giveg4x — 12) + 18 4+ 22 = 0, which
simplifies toz: = 45/11. Plugging this back into the first equation then giyes 48/11.

Page 941: #61b.Now suppose that Alpha Inc and Beta Ltd set their prices so asakimize their combined profit. Now what will
the optimalr andy be?

Solution: Now our profit function isR(z,y) = P(z,y) + Q(z,y) = —22% + 10z + —3y? + 17y + 3zy — 25. To maximize this
function with respect ta: andy, we will take the partials with respect toandy and set them equal to 0. This gives

OR OR
— =—4r+104+3y=0, — =—-6y+17+32x=0.
oz dy

The first equation gives = (3y + 10)/4. Plugging this into the second equation yields 98/15. Substituting this value fay back
into the first equation gives = 37/5. Note that, with profit sharing, one company is quite willlogake one for the team!

9. HW #9: DUE MONDAY, MARCH 10, 2014

Homework from handout
http://www. willi1ans. edu/ Mat hematics/symiler/public htnl/ 150/ handout s/ Met hodLeast Squar es. pdfl

9.1. Problems: HW #9: Due Monday, March 10, 2014:

Exercise 3.3:Consider the observed d&i& 0), (1, 1), (2, 2). Show that if we use (2.10) from the Least Squares handouégt m
sure error then the ling = 1 yields zero error, and clearly this should not be the besh# |

Exercise 3.9:Show that the Method of Least Squares predicts the periodbittmf planets in our system is proportional to the
length of the semi-major axis to the 3/2 power.


http://www.williams.edu/Mathematics/sjmiller/public_html/150/handouts/MethodLeastSquares.pdf

16 STEVEN J. MILLER
9.2. Solutions: HW #9: Due Monday, March 10, 2014:

Homework from handout
http://wwwv. w I l1ans. edu/ Mat hematics/symiler/public htm/ 150/ handout s/ Met hodLeast Squar es. pdf.

Exercise 3.3:Consider the observed d&i& 0), (1, 1), (2, 2). Show that if we use (2.10) from the Least Squares handouét m
sure error then the ling = 1 yields zero error, and clearly this should not be the beshfi |
Solution: We will use equation (2.10) to calculate the error of the line 1. This gives an error functiofs (a, b) = Z,]LVZO (yi — (az; + D).
Evaluating the sum with the ling = 1 (which means = 0 andb = 1) gives an error of

Ey(0,1) = (0—1)+(1-1)+(2-1) = 0.

The problem with (2.10) is that the errors are signed quasfiso during the calculation the positive errors cancetioeinegative
errors.

Exercise 3.9:Show that the Method of Least Squares predicts the periodbittmf planets in our system is proportional to the
length of the semi-major axis to the 3/2 power.
Solution: Using the numbers from the handout, namely

N N N N N N N N
Zn:l 1 Zn:l TnlYn — Zn:l Ln, Zn:l Yn b = Zn:l Ln Zn:l TnlYn — Zn:l ‘T721 Zn:l Yn

N N N N ’ N N N N )
Donet 121 TR = 2 Tn D T D1 Tn Dot Tn = D ey Ty Doy L
we findN = 8 351 =28, 50 |z, = 9409461, 30y, = 14.1140384, 35 _ 22 = 29.29844102 and Y>> _, 2y, =

43.94486382. Feeding these into the equationsda@ndb in the handout give best fit valuesof= 1.49985642 andb = 0.000149738
(the reasorm is so close to zero is we have chosen to measure distancesdnasical units, precisely to make the proportionality
constant nice)Note that this is not a cookbook problem; this is one of thetimggortant calculations in the history of science, as it
was one of the three guideposts that helped lead Newton tawisf universal gravitation.

10. HW #10: DJE WEDNESDAY, MARCH 12, 2014
10.1. Problems: HW #10: Due Wednesday, March 12, 2014:

Page 949: #18::Use the exact value of(P) and the differentiallf to approximate the valug(Q), wheref(z,y) = /22 — 2,
with points P(13, 5) and@(13.2,4.9).

Page 949: #23:Use the exact value of(P) and the differentiadlf to approximate the valug(Q), wheref(x,y, z) = e~ *¥* with
the pointsP = (1,0, —2) and@ = (1.02,0.03, —2.02).

Problem #3: Briefly describe what Newton’s Method is used for, and roydtaw it works.

Extra Credit: to be handed in on a separate paper:Let f(z) = exp(—1/22) if |z| > 0 and 0 ifz = 0. Prove thatf") (0) = 0
(i.e., that all the derivatives at the origin are zero). Tihiplies the Taylor series approximation f@x) is the function which is
identically zero. Asf(x) = 0 only for x = 0, this means the Taylor series (which converges for:ptinly agrees with the function
atx = 0, a very unimpressive feat (as it is forced to agree there).


http://www.williams.edu/Mathematics/sjmiller/public_html/150/handouts/MethodLeastSquares.pdf
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10.2. Solutions: HW #10: Due Wednesday, March 12, 2014:

Page 949: #18::Use the exact value of(P) and the differentiallf to approximate the valug(Q), wheref(z,y) = /22 — 2,
with points P(13,5) and@(13.2,4.9).

Solution: Applying the differentialdf = f,(a,b)Az + f,(a,b)Ay, we can approximate the valy&@). We havef(z,y) =
V2?2 — y?2, with points P(13,5) andQ(13.2,4.9). This meansAz = 0.2 andAy = —0.1. Take the partial derivatives gf with

respect tar andy. We get3l = L_and§l = ——Z_ — ——L_ Wefinddf = —= x4

2x _
- 2\/m2—y2 - \/wz_yz 2\/952—112 \/mz_yz o (13,5)
Ay. Evaluating the partial derivatives at the points and pgtin the values oAz andAy givesdf = \/%(0.2) —

—y
Va2—y?1(13,5)

ﬁ(—o.l), or equivalentlydf = 22 + 53 = 0.2583. Now we just have to add the differentidf to f(P) to obtain an

approximation off (@), and obtainf(P) = +/132 — 52 = 12. Thus an approximation of(Q) is 12 + .2583 = 12.2583. If you
prefer to use the notation of the tangent plane, what we lsave i
of of

= 13,5 — 13.2-13 — 4.9 —5).
2 = f3,5)+ Ox (13,5)( )+ Oy (13,5)( )

Page 949: #23:Use the exact value of(P) and the differentiadlf to approximate the valug(Q), wheref(x,y, z) = e~ *¥* with
the pointsP = (1,0, —2) and@ = (1.02,0.03, —2.02).

Solution: Similar to Problem 18, we use the differentifil = f,(a,b)Az + f,(a,b)Ay to approximatef (Q). We havef (z,y, z) =
e~ *¥* with the pointsP” = (1,0, —2) and@ = (1.02,0.03, —2.02). Take the partial derivatives gfwith respect ta:, y, andz. This
gives gL = —yzemmvz, 8L — —gzemovz, GL — —zye=v= We now find the differentiadf. Notice that any terms multiplied by
will be 0 because point P id, 0,2). This simplifies the math significantlylf = —yze=*¥* o Z)Ax — xze TYF o 2)Ay —
zye Y2 o Q)Az. Evaluating the partial derivatives givelf = 0 — (1)(—2)e~M(©(=2)(0.03) — 0 = 2¢°(0.03) = 0.06.
We calculatef(P) and add it to the differentialf to obtain an approximation of (Q): f(P) = e~ MO@) = ¢0 = 1, s0
F(Q) =1+ 0.06 =1.06.

Problem #3: Briefly describe what Newton’s Method is used for, and roydtaw it works.

Solution: We use Newton’s Method to find such thatf(z) = 0. We start with an initial guess;,, and use the tangent line to
approximate our function with a line, and see where that$etets thes-axis. Calling that point:;, we then find the new point on
the curve with this as its-coordinate, and approximate again with the tangent linelak for the new intersection with theaxis,
and call that point». We keep iterating and hopefully the sequefieg, 1, z2, . . ., } converges to a solution tf(z) = 0.

Extra Credit: to be handed in on a separate paper:Let f(z) = exp(—1/22) if |z| > 0 and 0 ifz = 0. Prove thatf(")(0) = 0
(i.e., that all the derivatives at the origin are zero). Tihiplies the Taylor series approximation fdx) is the function which is
identically zero. Asf(xz) = 0 only for z = 0, this means the Taylor series (which converges fogalinly agrees with the function
atz = 0, a very unimpressive feat (as it is forced to agree there).

First Proof (Professor Miller): The proof follows by induction. If you haven't seen inductjgyou can look it up online, check out
my notes, or see me. Basically, induction is a way to proviestants for all.. Let's use L'Hopital’s rule to find the derivative at O.
We start with the definition of the derivative, noting thfdd) = 0. We find

- f(h) =) _ . exp(—1/h?)
/ = =
FOr= = T
We now change variables; let= 1/h, so ash — 0 we havek — oo. We find
/ T exp(—kQ) o
F10) = klggo 1/k T e exp(k2)’

Note this is of the formyo /o0, and we can use L'Hopital’s rule. We find
1

! = = lim ——.
10) hroo 2k exp(k?)

lim ————
el exp(k?)

As we no longer haveo /oo we stop, and see thgt(0) = 0.
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To find the second derivative, we argue similarly. We now kitloat

oo J—Zexp(=1/2?) ifxz#0
f(x)_{o if 2 = 0.

We again use the definition of the derivative and L'Hopitalite. In general the!" derivative is of the fornp,,(1/z) exp(—1/z?)
for x # 0 and0 if x = 0, wherep,, is polynomial with finitely many terms. We then just use L'Hial

Second Proof (2011 TA David Thompson)Let f(x) = exp(—1/2?) for x # 0 and f(z) = 0 for » = 0. We want to show that

all of the derivatives off («) vanish whenc = 0. Notice that it's not even clear whether this function is @dferentiable, let only

infinitely differentiable! However, it can be shown (usirghniques from real analysis) thétr) is indeed infinitely differentiable.

We will simply assume this to be true. Sin¢ér) is infinitely differentiable (meaning all of its derivatis@re continuous), we need

only show that the limit off"")(z) = 0 asz — 0; by continuity, this will imply f(*)(0) = 0. Making the change of variables

x — 1/y, we see that this is equivalent to showing that all the déviea of the functiony(y) = exp(—y?) approach 0 ag — oc.
Let's think about derivatives af(y). We see

9'(y) = —2yexp(—y°) = —2yg(y).
Remember that the exponential function decays faster thgpalynomial; that is, ifp(y) = ap + a1y + - - - + any™ with a; € R,
then
o P

y—+o0 exp(y)
Thereforey’(y) — 0 asy — oo, since we can writg’(y) as a polynomial iry divided by an exponential function. Suppose we knew
thateveryderivative ofg(y) could be written as a polynomial intimesg(y). By the same argument as above, this would imply that
every derivative of(y) decays to 0 ag goes to infinity. Remember this would imply that every deffixaof f(x) is 0 whenx = 0,
which is what we want to show. Our new task, then, is to showebhery derivative org(y) can be written as a polynomial jntimes
9(y).

To prove this claim we are going to use mathematical indadifoyou haven't seen this before, check out Professor Willeotes
online). Our claim is that for all positive integers then!” derivative ofg(y), g™ (y), can be written a4, (y)g(y) whereh,,(y) is a
polynomial iny. Notice that we've already shown the base case 1. Suppose that our claim holds for some- & > 1; we show
it holds forn = k + 1.

If ¢*(y) = hr(y)g(y), then we have

gk+1(

y) = h@ay)+9' m)h(y)
= hp(y)9(y) — 2yg9(y)hi(y)
(W) (R (y) — 2yhu(y)).
Letting hi11(y) = hi(y) — 2yhi(y), we see thay*T1(y) = hyt1(y)g(y), so we can indeed write"™!(y) as a product of a
polynomial iny timesg(y), and we've proven our claim.
Thereforef (z) really is as strange as we claimed: despite having all ofétdvdtives equal 0 at the origirf,(z) only equals O
whenz = 0. Thus the Taylor Series expansionfdf:) aboutz = 0 only agrees witty (z) at one point!

<

11. HW #11: DUE FRIDAY, MARCH 14, 2014

11.1. Problems: HW #11: Due Friday, March 14, 2014: Note: the notation for this homework is a bit annoying. Foareple,
imagine we have a functiofi : R* — R andx,y,z : R? — R, so we haved(u,v) = f(x(u,v),y(u,v), z(u,v)). If we want to
figure out how this compound function changes with prefer to writeg—;‘; however, the book will often overload the notation and
write %. | think this greatly increases the chance of making an garmistrongly suggest introducing another function name.

Page 960: #2:Find dw/dt both by using the chain rule and by expressingxplicitly as a function of before differentiating, with

W = iy, u = cos(2t), v = sin(2t).

Page 960: #5Find Ow/ds andOw /0t with w = In(2? + y? + 22),x = s —t,y = s + t, 2 = 2V/st.

Page 960: #8Find dw/ds anddw /ot with w = yz + zx + xy, . = s2 — 2,y = 82 + 12, 2z = %2,

Page 960: #34:A rectangular box has a square base. Find the rate at whighlitsne and surface area are changing if its base is
increasing at 2 cm/min and its height is decreasing at 3cmétiihe instant when each dimension is 1 meter.

Page 960 #41Suppose that = f(u) and thatu = = + y. Show thabw/dx = dw/dy.
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11.2. Solutions: HW #11: Due Friday, March 14, 2014: Note: the notation for this homework is a bit annoying. Foaraple,
imagine we have a functiofi : R*> — R andx,y,z : R? — R, so we haved(u,v) = f(x(u,v),y(u,v), z(u,v)). If we want to
figure out how this compound function changes with prefer to write‘g—f; however, the book will often overload the notation and
write %. I think this greatly increases the chance of making an garmastrongly suggest introducing another function name.
Page 960: #2:Find dw/dt both by using the chain rule and by expressingxplicitly as a function of before differentiating, with
w = uz—_lH)z, u = cos(2t), v = sin(2t).

Solution: To use the chain rule, we need to consideas a function ofx andwv, which are in turn functions of; here%—if = %,
9 = 4% and§t = 492 as all are functions of just one variable. Let us wiitg) = f(u(t),v(t)), with f(u,v) = 1/(u* +v?),
u(t) = cos(2t), v(t) = sin(2t). We have

ow af ou 3_f ov dw 8_f du 8_f dv

Bt 0ulu)w) Ot T 00 o) 8 O dE | Bul ) dE T 00 (ue)o) db
We seef, = 0f/ou = —(u® +v?)72 - 2u, f, = Of/Ov = —(u® +v?)72 - 2u, du/dt = —2sin(2t) anddv/dt = 2 cos(2t).
Remembering to evaluafg, andf, at (u(t),v(t)) = (cos 2t,sin 2t), we find
dw _ 4cos(2t)sin(2t)  4sin(2t)cos(2t)
dt  cos?(2t) +sin?(2t)  cos2(2t) 4+ sin(2t)

For the second approach, we writeas a function of and differentiate. We see
1
w(®) cos?(2t) + sin(2t)?

As w(t) is constant, differentiating givesv/dt = 0, as we found above.

Page 960: #5Find Ow/0s anddw /0t with w = In(2? +y* + 2%),z = s —t,y = s + 1, 2 = 2¢/st.

Solution: Again, to minimize the chance of error, we’'ll introducing lageholding functiory, and haveuv(s,t) = f(x(s,t),y(s,t), z(s,t). As we
vary s keepingt fixed, w can change for three reasons: a changedan cause a change in which can cause a change fna change irs can
cause a change in which can cause a changejinor a change i can cause a change inwhich can cause a changefinThe Chain Rule says

ow _ Of dr Of dy Of 0z

— - + — —Z — —_
Os ox (z(s,t),y(s,t),z(s,t)) Os ay (z(s,t),y(s,t),z(s,t)) 0s 0z (z(s,t),y(s,t),z(s,t)) Js
Therefore we have

ow 2x(t, s) n 2y(t, s) n 2z(t, s) 2Vt
s x(t,s)2+y(t,s)> +2(t,8)2 * x(t,s)2 +y(t,s) +2(t,5)2  x(t,s)2 +y(t,5)% + 2(t,5)2 2¢/s
Substituting forz (¢, s), y(t, s), andz(t, s) gives 52 = 22555 = 25
Similarly, we can write
ow _ of ox _ of o, of 0z
Ot 0 l(w(s,t)y(s,t)z(s,0) Ot O l(w(s,t)y(s,6),2(s,6)) Ot 02 l(w(s,6),y(s,),2(s,)) Ot
giving
ow —2x(t, s) n 2y(t, s) n 22(t, s) 2./s
ot w(t,s)2+ylt,s)2+2(t,8)2 * x(t,s)>+y(t,s)2 4+ 2(t,5)?  x(t,s)> +y(t,s)> + 2(t,5)2 2v/t
Substituting forz(t, s), y(t, s), andz(t, s) gives 52 = 2.

Page 960: #8Find dw/ds anddw /Ot with w = yz + 2z + zy, x = s> — %,y = s> + 1%, z = s°t%.
Solution: Let's writew(s, t) = f(x(s,t),y(s,t), z(s,t)). The Chain Rule gives

ow  0f 8x+8f 8y+8f 0z

ds 0z l@(s,0)u(s,0),2(5,0) 05 Oy l(2(s,0),u(5,6),2(5,6) D5 Dz |(a(s,6),u(5,6),2(5,6)) DS

hs 1o} 1o} 1o}
of _ of _ af _
8miz+y’ é)yizﬁ_:c7 0z =yt
and
Oxr @ _ % Y
E—Qs, s = 2s, 83—22587
we have 5
8—1: = (2(s,t) + y(5,1))(25) + (2(5,) + x(s,1))(25) + (y(s,1) + (s, 1)) (2t°5).

Substituting forz(s, t), y(s,t), andz(s, t) gives
ow

55 = (%2 + 5% + 1) (25) + (s°1° + s° — t7)(25) + (25°)(2t°s) = 45°(1 + 2t7).
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Similarly, we can write
ow  Of or Of oy Of 0z

— - — = 4 == .
ot 0% |(2(s,8),y(s,t),2(5,6)) Ot OY l(@(s,t),y(s,t),2(s,8)) O OZ l(w(s,t),y(s,t),2(s,t)) Ol
Using our values for the partials ¢ffrom above gives

%—1: = (2(s,8) +y(s,))(=20) + (=(s, 1) + x(s, ) (2t) + (2 (s, ) + y(s,1))(2571),
and then using
or B @ B % o2
o5 = 2 g =2 5 =257
and substituting for: (s, t), y(s,t) andz(s,t) gives
%—1: = (522 + 57 + 1) (=2t) + (s°1° + 5° — £7)(2t) + (257)(25°t) = 4t(s* —t°),

Page 960: #34:A rectangular box has a square base. Find the rate at whigblitse and surface area are changing if its base is incigasip
cm/min and its height is decreasing at 3cm/min at the instéiein each dimension is 1 meter.

Solution: Let’s call the box’s length, its widthy, and its height. Since the box has a square base, we hawey. The volume of the box is given
by zyz = x?2. We're also going to think of andz as functions of time, soV (t) = f(x(t), z(t)) with f(z, z) = 2°z. The Chain Rule gives

v _of do  Of 9z AV _ Of dw  Of dz
Ot Ozl@®,=t) Ot 0z l(a(t),=(t)) Ot dt — Oxl@w),-m) dt = 0z l(x(t),2)) dt
From the statement of the problem, we kndw/dt = 2 anddz/dt = —3. Differentiating givesf, = 2zz and f. = 2°. Therefore% =

da(t)2(t) — 3z(t)%. Whenz(t) = z(t) = 1, we havedV/dt = 1, meaning the volume is increasing at a rate of one cubicroetgir per second.
To calculate the rate at which the surface area is changawlirthe surface area ¥xy + 2z + yz) = 2(2® + 2z2) (sincex = y). Set
A(t) = g(x(t), 2(t)) with g(, 2) = 2(2* + 2x2). The Chain rule gives
0S _ Og Jx  Og 0z ds _ Odg dx  Og dz
Ot Oz l@w.aw) 0t | 0z l(@),-t)) OF U T e @)= dt | 0z l(w(e),t)) dt
Taking the derivatives and usinly/dt = 2 anddz/dt = —3 gives
ds
dt
Therefore, whem:(t) = z(t) = 1, the surface area is changing at a rate of 4 square centsmEesecond.

= 4(2x(t) + 22(t)) — 12z(t) = 8z(t) — 4z(t).

Page 960 #41Suppose thay = f(u) and thatu = = + y. Show thabw/dx = dw/dy.
Solution: Let’s first think about what this problem means. We havas a function of one variabla, which we know want to think of as a function
of two variablesx andy, using the relationship = = + y. Claiming thatbw/9x = dw/dy essentially means that we achieve the same effect by
varyingy a little bit as we do by varying that same little bit. This makes sense, since if we incredsg0.1 and leave constantu increases by
0.1; alternatively, if we increasgby 0.1 and leave constantu again increases by 0.1.

More formally, let's writew(z, y) = f(u(z,y)), SO

7] 0 0 /

81: - 8_£ u(z’y)a_z = [lu(z,y))-1 = [ (ulz,y)),
O 0 0 / /

BZ - 8£ u<z,y>8_z = fllu(z,y) -1 = f(u(z,y)).

Soodw/dx is indeed equal tow/dy.

12. HW #12: DJE MONDAY, MARCH 17, 2014
12.1. Problems: HW #12: Due Monday, March 17, 2014

Page 971: Question 3:Find the gradien¥ f at P wheref(z,y) = exp(—z* — y*) and P is (0,0).
Page 971: Question 10:Find the gradien¥ f at P wheref(z,y, z) = (2x — 3y + 52)° and P is (-5,1,3).

Page 971: Question 11:Find the directional derivative of (z,y) = = + 2xy + 3y? at P(2,1) in the directions = (1,1). In other words,
compute(Dg f)(P) whered = v/|v].

Page 971: Question 19:Find the directional derivative of (x, y, z) = exp(xyz) at P(4, 0, —3) in the directiont’ = (0, 1, —1) (which isj — k).
In other words, computéD; f)(P) whereu = ¢/|4].

Page 971: Question 21:Find the maximum directional derivative ¢fz,y) = 22% + 3zy + 4y at P(1, 1) and the direction in which it occurs.
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12.2. Solutions: HW #12: Due Monday, March 17, 2014. Page 971: Quisn 3:: Find the gradien¥ f at P wheref(z,y) = exp(—z? — y?)
andP is (0,0).
Solution: {f., fy) = (—2x exp(—z* — y?), —2y exp(—x* — y*)). Plugging inP(0, 0), we have the gradient & is (0, 0).

Page 971: Question 10:Find the gradien¥ f at P wheref(z,y, 2) = (2x — 3y + 52)® and P is (-5,1,3).
Solution: (fz, fy, f-) = (10(2x — 3y + 52)*, —15(2x — 3y + 52)*,25(2x — 3y + 52)*), and evaluating aP gives the gradient there is just
(10(16), —15(16), 25(16)) or (160, —240, 400).

Page 971: Question 11:Find the directional derivative of (z,y) = z* + 22y + 3y* at P(2, 1) in the directiond = (1,1). In other words,
compute(Dz f)(P) whereud = v/|v].
Solution: As |§] = /12 + 12 = /2, normalizing givesi = 4/v/2 = (1/+/2,1/+/2). Using our formula we havéD; f)(P) = (fx, fy)| i =
P
(22 + 2y, 22 + 6y>‘ -(1/4/2,1/+/2). Plugging in the values far andy, we have(D;z f)(P) = (6,10) - (1/v/2,1/v/2) = 8/2.
P
Page 971: Question 19:Find the directional derivative of (z, y, z) = exp(zyz) at P(4, 0, —3) in the directiont’ = (0, 1, —1) (which isj — k).
In other words, computéD; f)(P) whereu = ¢/|4].
Solution: As |#] = /12 + (—1)2 = /2, we haveii = (0,1, —1)/v/2 = (0,1/+/2, —1/+/2). The gradient is
Df = (yze™* zze™7 xye™?) = (0,—-12¢°,0) = (0,—12,0),
SoD, f(P) = (0,-12,0)(0,1/v2, —1/v/2) = —6/2.
Page 971: Question 21:Find the maximum directional derivative ¢fz,y) = 22> + 3zy + 4y at P(1, 1) and the direction in which it occurs.
Solution: The maximum directional derivative is in the direction oé thradient (the minimum is in the opposite direction). Thadgnt of f is
Df = {4z + 3y, 3z + 8y), which atP is (7, 11). A unit vector in this direction isi = (7,11)/[(7,11)|. As [{7,11)| = /7% + 112 = /170,
the directional derivative is largest in the directi@r= (7/1/170,11/4/170). To find the maximum value, we just need to computs; f)(P) =

(Df)(P) - i, which is(7,11) - 7/+/170,11/4/170. This is just(7* + 11%) /4/170 = +/170; it is not a coincidence that this is the magnitude of the
gradient!

13. HW #13: DJE WEDNESDAY, MARCH 19, 2014
13.1. Problems: HW #13: Due Wednesday, March 19, 2014.

Question 1: Use Newton’s Method to find a rational number that estimdtestuare-root of 5 correctly to at least 4 decimal places.

Question 2: Let w(r, s,t) = f(u(r,s,t),v(r,s,t)) with f(u,v) = u? + v, u(r,s,t) = tcos(rs) andv(r,s,t) = tsin(rs). Find the partial
derivatives ofw with respect to-, s andt both by direct substitution (which is very nice here!) andlyy chain rule.

Question 3: Write (1/2,v/3/2) in polar coordinates.
Question 4:Find the tangent plane to= f(z,y) with f(x,y) = 2y + /= + y at(1, 3), and approximate the function @p, 1.2).

General comments: These problems are all done the same wayet's say we have functions of three variablesy, y, z. Find the function to
maximize f, the constraint function g, and then solveV f(z,y, z) = AVg(z,y, z) and g(z, y, z) = c. Explicitly, solve:

of N

%(w7y7z) - )‘ax(m7y7’z)

of 9y

8_y(w’y’z) - )‘ay(w7y7z)

of _ 2\

5, U2 = Ag(,y,2)
9(z,y,2) = ¢

For example, if we want to maximizezy®2> subjecttox + y + z = 4, then f(z, vy, 2) = zy*2® and g(z,y, 2) = = + y + z = 4. The hardest
part is the algebra to solve the system of equationd)kemember to be on the lookout for dividing by zero. That is eeallowed, and thus you
need to deal with those cases separately. Specifically,éfdbantity you want to divide by can be zero, you have to coaestk a separate case
what happens when it is zero, and as another case what happemsn it is not zero.

Page 981: Question 1Find the maximum and minimum values, if any, fffr, y) = 2z + y subject to the constraint® + y* = 1.

Page 981: Question 14Find the maximum and minimum values, if any, fifr, y, z) = 22 + y* + 2> subject to the constraint' + 3* + 2* = 3.
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13.2. Solutions: HW #13: Due Wednesday, March 19, 2014. Question Jse Newton’s Method to find a rational number that estimdtes t
square-root of 5 correctly to at least 4 decimal places.

Solution: We use the functiorf(z) = z* — 5 and we start withco = 2. The equation of the tangent linegs— f(xo) = f'(zo)(z — z0). As
f(2) = —1andf’(2) = 4, the tangent line ig — (—1) = 4(x — 2). We find thex-intercept by setting = 0 in the tangent line, and this gives us
our next guessy:. Thusl = 4(z; — 2) orz; = 9/4. If we worked more formally, we would have found that = 2 — ff—fz)) =9/4 = 2.125.

Performing this process again gives = 2.125 — f,(é‘_llf’s)) = 2.238071, and one more time givess = 2.238971 — ﬁ%&% = 2.23607. If

we instead starting withy = 3 as our guess, the first tangent line wouldybe f(3) = f/(3)(x — 3). As f(3) = 4 and f'(3) = 6, the tangent line
here isy — 4 = 6(x — 3). Thez-intercept is wherg = 0, soz; is found by solving—4 = 6(x1 — 3), which givesz; = 14/6 = 7/3. The next
guess isc; = 47/21, followed byzs = 2207/987 ~ 2.236068896.

Question 2: Let w(r, s,t) = f(u(r,s,t),v(r, s, t)) with f(u,v) = u? + v, u(r,s,t) = tcos(rs) andv(r,s,t) = tsin(rs). Find the partial
derivatives of w with respect to r, s and t both by direct sitissdn (which is very nice here!) and by the chain rule.

Solution: We substitute (plug in) the functional expressionsdandv, then we haveo(r, s, t) = (t cos(rs))? 4 (tsin(rs))? = t*(cos?(rs) +
sin®(rs)) = t*. So2% = 2¢, 22 = 2% — (. For the chain rule, we have

' Os or
ou _of ou, of o0
Or  Oul(u(rs,t),o(mst) Or OV l(u(rs,t)w(rst) O
We haveg—ﬁ = 2u and% = 2v, while % = —tssin(rs) and% = tscos(rs). Substituting (and evaluating the derivatives at the rjggint)
gives
ow _ 2u (—tssin(rs)) + 2v (tscos(rs)) = —t*s cos(rs) sin(rs) + t*ssin(rs) cos(rs) = 0.
or (u(r,5,6),0(r,5,1)) (u(r,5,6),0(r,5,1))

The other derivatives are computed similarly.

Question 3: Write (1/2,v/3/2) in polar coordinates.
Solution: Polar coordinates are = r cos @ andy = rsin 6, orr = \/x2 + y? andf = arctan(y/x). We first find the radiusr = /22 + y2 =
/1/4+3/4 = 1. To find the angle, knowing = 1 we seesin 6 = /3/w (or tan(d) = v/3), so = /3. Hence the expression (%, /3).

Question 4: Find the tangent plane to= f(x,y) with f(z,y) = 2%y + /= + y at(1, 3), and approximate the function .9, 1.2).

Solution: The equation of the tangent planezis= f(1,3) + 2(1,3)(z — 1) + 2—5(1,3)(11 —3). We havef(1,3) = 5, 2L = 22y + #er)

which at(1, 3) equals22, while g_i =%+ s Which at(1, 3) equalss + 22 (.9 — 1) + (1.2 - 3) = f, which is approximately 2.125. The
actual value at = 0.9,y = 1.2 is z = — 2L = —2.6375. The reason our approximation is off by so much is that we tifeegpoint(.9, 1.2), and

80
1.2 is a ways from 3.

General comments: These problems are all done the same wayet's say we have functions of three variablesy, v, z. Find the function to
maximize f, the constraint function g, and then solveV f(z,y, z) = AVg(z,y, 2z) and g(z,y, z) = c. Explicitly, solve:

of N

%(w7y7z) - )‘ax(m7y7’z)

of 9y

8_y(w’y’z) - )‘ay(w7y7z)

of _ 2\

5, U2 = Ag(,y,2)
9(z,y,2) = ¢

For example, if we want to maximizezy?®2® subjecttoz + y + z = 4, then f(z, vy, 2) = 29°2® and g(z,y, 2) = = + y + z = 4. The hardest
part is the algebra to solve the system of equation®Remember to be on the lookout for dividing by zero. That is eesllowed, and thus you
need to deal with those cases separately. Specifically,éfdgbantity you want to divide by can be zero, you have to coastk a separate case
what happens when it is zero, and as another case what happemsn it is not zero.

Page 981: Question 1Find the maximum and minimum values, if any, fffr, ) = 2z + y subject to the constraint® 4 y* = 1.

Solution: We use of the method of Lagrange multipliers to solve for t@iised optimization. We set up the appropriate equatignseiting the
gradients proportional to each other with proportionatipnstant\, and remember that the constraint equation must hold as Welis, we are
looking for (x, y, \) such that'V f)(z,y) = AM(Vg)(z,y) andg(z,y) = 2 + y* = 1. The gradien¥ f(z,y) = (2, 1). This is obtained by just
taking the partial derivatives of th&x, y) with respect to its variables. Taking the gradient of thest@int givesVg(z,y) = (2z, 2y).

We set up the equations? f(z,y) = AVg(z,y), so{(x,1) = \(2z,2y), and alsaz® + 3> = 1 (it is very important not to forget this, as
otherwise we have two equations in three unknowns, which svar-determined system). We now solve the equations fdr eariable by setting
the components of the gradients as equal. We have thred@mua = A2z, 1 = A2y andz? + y? = 1.

One way to solve this is to take ratios; unfortunately, wedneebe careful: what i or y is zero? Well, ify = 0 then the constraint equation
becomes:®> = 1 sox = +1, leading tof (1,0) = 2 andf(—1,0) = —2. If insteadz = 0 then the constraint equation becomés= 1 soy = =+1,
leading to the point$0, 1) and (0, —1), which evaluate undef to 1 and -1, respectively.

If now z does not equal zero, then dividing the second equation bfjriteliminates the\’s, and we find2/1 = z/y, sox = 2y. Substituting
into 2% 4+ y* = 1 gives5y? = 1 ory = +1/+/5, and thus we get the candidate poifitsy) = (2/v/5,1/4/5) and(—2/+/5, —1/+/5). Evaluating
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f at the first gives3/+/5 while evaluatingf at the second gives 3/+/5. We thus see the maximum value pis not 3/+/5 but rather 2, and’s
minimum value isnot —3/+/5 but rather -2. In other words, it is very important to rementhe candidates that can arise from dividing by zero!

Remark: looking at the function, we see we waib be as large (small) as possible for the maximum (minimamg,thus it is not unexpected
that these occur when = 0.

Page 981: Question 14Find the maximum and minimum values, if any, fifr, y, z) = x? + y* + 2 subject to the constraint' + 3* + 2* = 3.
Solution: We use Lagrange Multipliers. The gradients &f¢(z,y) = (2x,2y,2z) andVg(z,y, z) = (4a®,4y*, 42°). We set up the equations
Vf(x,y,2) = AVg(z,y,2) andg(z,y, z) = z* + y* + 2* = 3, leading to(2x, 2y, 22) = A(4x>, 4¢3 42°) andg(z,y, 2) = «* +y* + 2* = 3.
Writing things out, we have the three equatiopu$ the constraint, of coury@x = Max?, 2y = My?, and2z = \dz2°.

These functions are symmetrical and simplify the algebsaid. Assume first that none of the variables equal zero. Biglitig both sides of the
first equation by2z, both sides of the second equationyy and both sides of the third equation &y, we can easily see the relationship between
the three variablest = \2z2, 1 = A2y and1 = A\2z2. This leads the squares of the three variables being equahaker = +y andz = +z,
since the square of any of these equals the square of andtnesz? + y* + 2! = 3 becomesz® = 3y* = 32* = 3, sox,y, 2z € {1,-1}. The
candidate points are the eight poiifs1, £1, +1), all of which evaluate t@ underf.

What about the case when some of the variables are zero?tlifedl are zero, the constraint cannot be satisfied. If twaem@ then the third
must equat-3'/4, and this point evaluates ®/2 ~ 1.732 under f, larger than the values seen above! What if only one varisbtero, for
definiteness say. Then we may divide the first equation By and the second bgy, finding 1 = 2X\z? = 2)\y?, soz = +y and2z* = 3
(from z* + y* + 2* = 3). This givesz = +(3/2)"/* = +y, and thus the candidate poirtts:(3/2)'/,+(3/2)*/*,0) evaluate undey to
V/3/2 + /3/2 ~ 2.44949. There are lots more points like thi, +(3/2)'/*, £(3/2)"/*) and(£(3/2)*/*,0, £(3/2)'/*), all evaluating under
f to the same. Thus the maximum is occurring at one of the puihese we would have divided by zero, while the minimum ocairghe point
where all are equal in absolute value.

14. HW #14: DUE MONDAY, APRIL 7, 2014
14.1. Problems: HW #14: Due Monday, April 7, 2014.

Page 981: Question 19Find the point on the lin8z + 4y = 100 that is closest to the origin. Use Lagrange multipliers taimize the SQUARE
of the distance.

Page 981: Question 35Find the point or points of the surfaee= xy + 5 closest to the origin.
Page 981: Question 51Find the point on the parabola = (x — 1)? that is closest to the originNote: after some algebra you'll get that

satisfie2(z — 1)* + z = 0 (depending on how you do the algebra it may look slightlyediffit). You may use a calculator, computer program, ...
to numerically approximate the solution.
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14.2. Solutions: HW #14: Due Monday, April 7, 2014.

General comments: These problems are all done the same wayet's say we have functions of three variablesy, y, z. Find the function to
maximize f, the constraint function g, and then solveV f(z,y, z) = AVg(z,y, 2z) and g(z,y, z) = c. Explicitly, solve:

of _ 299

B (,y,2) = /\ax (z,y,2)

of _ 299

(9y (CC7y,Z) - )‘ay(:c7y7z)

af N/

52 (,y,2) = /\az (z,y,2)
g9(z,y,2) = ¢

For example, if we want to maximizexy?®z> subjecttox + y + z = 4, then f(z, vy, 2) = 29°2° and g(z,y, 2) = « +y + z = 4. The hardest
part is the algebra to solve the system of equationd)kemember to be on the lookout for dividing by zero. That is eesllowed, and thus you
need to deal with those cases separately. Specifically,éfdbantity you want to divide by can be zero, you have to coaes#k a separate case
what happens when it is zero, and as another case what happemsn it is not zero.

Page 981: Question 19Find the point on the lin8z + 4y = 100 that is closest to the origin. Use Lagrange multipliers taimize the SQUARE
of the distance.

Solution: Because we are solving for the square of the distance, weftake)) = (/22 + y2)* = 2® + y2. Since the distance is being squared,
the square root is being canceled out, which significanthpsfies the algebra and the calculus. Our constraint ismgigeus as our point must lie
on the line3z + 4y = 100. We apply the method of Lagrange multipliers and set theignasl of both functions to be proportional to each other.

The gradientV f(x,y) = (2z,2y), andVg(x,y) = (3,4). The equations to solve aféf(z,y) = AVg(zx,y) with 3z 4+ 4y = 100, so
(2z,2y) = A(3,4) with 3z + 4y = 100. We now solve the equations for each variable by setting ¢hheponents of the gradients as equal. We
have the two equatiors: = 3\ and2y = 4, plus of course the constraidt: + 4y = 100.

We solve each of the first two equations fgras that will allow us to find a nice relation betweerndy. If we divide both sides of the first
equation by 3, we can isolage So2z/3 = \; similarly the second equation givgg2 = . Setting these equal to each other gi2eg3 = y/2
orz = 3y/4 ory = 4z/3. By plugging that value into the constraint function, we ¢ the candidate point. We hage: + 4(%) = 100, so
25z = 300 orz = 12, givingy = 242 = 16. The optimal point i12, 16).

Alternate geometric solution (advanced): We can also sihligegeometrically, if we remember the product of the slaggeerpendicular lines is
-1. As this line has slope -3/4, frojn= —3z /4 + 25, the slope of any perpendicular line must be 4/3. A point atlthe is (0,0), thus the equation
of that line isy — 0 = (4/3)(x — 0) or y = 4z /3. We need the intersection of this and our original line, soneat (x, y) such thaty = 4x/3 and
3z + 4y = 100. The second equation becon$as+ 16x/3 = 100 or 25x/3 = 100 and thust = 12, exactly as beforeNO CALCULUS!

Page 981: Question 35Find the point or points of the surfage= zy + 5 closest to the origin.

Solution: Again we'll be minimizing the square of the distance to siifypthe algebra. We také (z,y, z) = (v/22 + 32 + 22)? = 22 + y? + 2°.
Our constraintis = zy + 5 or g(z,y,2) = zy — z = —5. We apply the method of Lagrange multipliers and set theignasl of both functions
proportional to each other (with proportionality constaht The gradients ar¥ f(x, y, z) = (2x, 2y, 2z) andVg(z,y) = (y, =, —1).

We set up the equations f(x,y) = AVg(z,y) with g(z,y) = —5, so(2z, 2y, 2z) = Xy, z, —1). We solve the equations for each variable by
setting the components of the gradients as equal. We hae dguations2z = Ay, 2y = Az, 2z = A\(—1), and of coursg(z,y,2) = zy — z =
—5.

If x = 0 then sincez = Ay we have eithed = 0 ory = 0 (or both). If A\ = 0 thenz = 0 from 2z = —\, but then the constraint cannot be
satisfied. Thus\ # 0, so if x = 0 then we must havg = 0. The constraint equation (with = y = 0) implies thatz = 5, giving us the point
(0,0, 5) whose distance-squared to the origin is 25. We get the sasveeaif insteady = 0.

We may thus assume now that neithemnor y is zero. In this case we may divide the first equation by thersgicand find2z /2y = \y/\z, or
x/y = y/x, orz® = y? which impliesz = 4. If 2 = y then the first equatior2z = \y, becomegx = \z. Asz # 0 we see\ = 2. The third
equation then give8z = —\ = —2s0z = 1. The constrainty — z = —5 becomes:? + 2 = —5 or 2 = —7, which has no solution.

Continuing to assume neither nor y is zero, we see that it must be the case that= —y. In this case, the first equation becomes
2z = \y = —\z, SO = —2. The third equation2z = —\ = 2 now givesz = 1. The constrainty — z = —5isnow —z% — 1 = —5
orz? = 4. Thusz = £2, andy = —2 andz = 1, giving us the candidate poinfg, —2,1) and(—2, 2, 1), whose distance-squared to the origin is
9, smaller than the 25 we saw above. Thus, these are the taestlpoints.

Page 981: Question 51Find the point on the parabola = (x — 1)? that is closest to the originNote: after some algebra you'll get that
satisfie2(z — 1)* + z = 0 (depending on how you do the algebra it may look slightlyediffit). You may use a calculator, computer program, ...
to numerically approximate the solution.
Solution: Again we'll be solving for distance squared using the methibdagrange Multipliers. Ouy (z,y) = (/22 + »2)* = 2* + y* and our
constraintigy = (x — 1)? or g(z,y) = (x — 1)? — y = 0. The gradients ar& f(z, y, z) = (2z,2y) andVg(z,y) = (2(x — 1), —1).

We set up the equation. f(z,y) = AVg(z,y) and(z—1)?—y = 0, s0(2z, 2y) = A(2(z—1), —1) (and of course the constraint holds). Now
solve the equation for each variable by setting the compsrafrithe gradients equal. We have two equatichs= \2(z — 1) and2y = A\(—1).
We use the second equation to isolatewhich is A = —2y. Substitute that into the first equation to obtain a relaiop between: and y:
2z = (—2y)(2(xz — 1)) or —2y, which becomeg(;—fl) = y solong ast # 1. Note that ifx = 1 theny = 0, giving a distance-squared
of 1.

2x —
2(xz—1) —
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Now solve for the optimal using the constraint function tigh substitution. Our constraint beconfies: (z—1)% — z(;—jl) or cross multiplying

gives2(z — 1)® + = = 0. Taking the advice of the book, we can enter that equatianangraphing calculator or Mathematica to solve for the
optimal point which i50.410245, 0.347810). We could also use divide and conquer or Newton’s method ¢btfia root!

15. HW #15: DUE WEDNESDAY, APRIL 9, 2014
15.1. Problems: HW #15: Due Wednesday, April 9, 2014. Page 1004: @stion 15:Evaluatef, [ (zy + Tz + y)dzdy.

Page 1004: Question 24Evaluate[, [ e ¥dzdy
Page 1004: Question 25Evaluate[" [" (zy + sin z)dzdy.
Page 1005: Question 37Use Riemann sums to show, without calculating the valueefritegral, thad < fo” fo” sin /Tydzdy < 7.

Extra credit: LetG(z) = f;”:o g(t)dt. Find a nice formula fot7’(z) in terms of the functions in this problem.
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15.2. Solutions: HW #15: Due Wednesday, April 9, 2014. Page 1004:u@stion 15: Evaluatef03 f(f(a:y + Tz + y)dxdy.
Solution: We start by integrating the inside first, which gives us

3 3 3
/ / (zy + Tz + y)dzdy = / [:czy/Q + 7232/2 + :cy]zzo dy
o Jo 0

3
/ [9/2 + 63/2 + 3y] dy
0

3
= /(15y/2+63/2)dy
0
15y2‘3 63y‘3 135 189
= 22 = 224 22 = 12825,
4 0+ 2 lo 4 + 2 8.25

Page 1004: Question 24Evaluate[, [ e ¥ dzdy
Solution: We start by integrating the inside first. As we are integtirith respect ta, the anti-derivative 0é* ¥ with respect tac is juste®*?.
Note we may also write it as®e?; written like this, we see? functions like a constant. Evaluating@and1 givese' ™ — %Y =¢ . e¥ — ¥ =

1
e¥(e — 1). We now integrate this with respectgoand find(e — 1)e¥| = (e — 1)e — (e — 1)1. Alternatively, we may write this out as
0

1o 1 1
/ / e Hdedy = / {e”Hy ] dy
o Jo 0

z=0
1
/ (el+y _ ey)dy
0

/Ol(e—l)ey = (e—1)e’

1

0

Page 1004: Question 25Evaluate[;" [" (xy + sin z)dzdy.
Solution: We start by integrating the inside first, which givngyF — cosx "
=0 =

7‘,2 7‘,2 . . .
. or Ty — (=1 — 1) = -y + 2. Integrating this now with

. 2
respect tqy gives 4-

. + 2y’ﬂ = 7' /4 + 27, Alternatively, we may write this as
0 0

//(:cy+sinx)dmdy = /{%xzy
o Jo 0

Page 1005: Question 37Use Riemann sums to show, without calculating the valueefritegral, thad < fo" fo" sin y/Tydxdy < 2.
Solution: The idea here is to find the upper and lower bound for the integiWe know thasin ,/zy reaches its maximum valuewhen,/zy =
m/2. We also know that sinceé < z,y < 7,0 < /2y < 7. This means thad < sin/zy < 1. We use the simplest possible Riemann sum,
namely just one partition (so our partition is the origirettangle). As the rectangle has area
pi2, the lower sum is the minimum value timeg, or 0, while the upper sum is the maximum value times the afeaor 1 - 72. Thus0 <
Jo Jy sin \/rydedy < 7.

Extra credit: LetG(z) = ftfo g(t)dt. Find a nice formula foZ’ () in terms of the functions in this problem.
Solution: We use the Fundamental Theorem of Calculus for this problemch states that i is the antiderivative off, a.k.a. if F/ = f, then
I f(@) = F(b) - F(a).
Now in our case, we hav@(z) = F(z*)— F(0). We then differentiate both side€ () = F’'(z*)— F’(0). F(0) is just a constant, sB’(0) = 0.
BecauseF is the antiderivative of, we havel”’ (z%) = f(z*). SoG’(z) = f(«®)

16. HW #16: DUE FRIDAY, APRIL 11, 2014
16.1. Problems: HW #16: Due Friday, April 11, 2014.

Page 1011: Question 4Evaluate fyl/Q(x +y)dady; note this is[”_ f::y/Q(x + y)dady.
Page 1012: Question 11Evaluate, fozg exp(y/x)dydz; note this is[!_ f:jo exp(y/z)dydz.

Additional Problem: Let f(z) = 2® — 42 4 cos(2z®) + sin(x + 1701). Find a finiteB such that f'(z)| < B for all z in [2,3].
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Page 1011: #13Evaluate the iterated integral

3 ry 3 Y
/ / Vy2+16dz dy = / / Vy? + 16 dx dy.
0 0 y=0 J =0

Page 1011: #25Sketch the region of integration for the integral

2 4 2 4
/ / :czy dy dx = / / m2y dy dz.
—2J 2 z=—2Jy=a2

Reverse the order of integration and evaluate the integral.

Page 1011: #30Sketch the region of integration for the integral

1ol 1ol
/ / exp(—z°) dz dy = / / exp(—z?) dz dy.
0 Jy y=0Ja=y

Reverse the order of integration and evaluate the integral.

Additional Problem: Give an example of a region in the plane that is neither batelly simple nor vertically simple.
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16.2. Solutions: HW #16: Due Friday, April 11, 2014.

Page 1011: Question 4Evaluatef, [, (z + y)dady; note thisis[” | [ (x + y)dwdy.
Solution: We start by integrating the inside first with respect:tavhich gives us

2,1 272 1
/ / (zr+y)dzedy = / {— + my] dy
0 Jy/2 0 2 z=y/2
_ 1

Il
S—
[V}
VRS
N —

+

<

|
‘Cﬂ
0 (<
[ V)
~

QU

<

2 2 24

5 4
= 14+2—= = —.
* 3 3

Remember that to do multiple integrals, do them one at a tireating the variables we aren't integrating as constdntou are not sure whether
your integral is correct, you can always take the derivadive check whether it equals the original integrand.

Page 1012: Question 11Evaluate/, fozg exp(y/x)dydz; note this is[!_ f;jo exp(y/z)dydz.
Solution: We start by integrating the inside first with respecytas we havelydxz and notdzdy. Note that the integral afxp(y/x) with respect
toy iszexp(y/x), as can be verified by taking the derivative with respegt td/e thus find

/01 /0 cotints ~ [ wexp(y/a)); da
/O 1 (e —we’) dz

/ (wexp(e?) —2) do
B exp(a?) — m—? 1
(-3)- () -5

For help on the integrafol ze®” dz, use the u-substitution technique. ket 22, sodu = 2zdx andexp(z?) = exp(u).

Additional Problem: Let f(z) = 2® — 42 4 cos(2z®) + sin(x + 1701). Find a finiteB such that f'(z)| < B for all z in [2,3].
Solution: Differentiating f with the normal differentiation rules gives

f(x) = 32% — 8z — 627 sin(22°) 4 cos(z + 1701).

Now we'll find anupperbound for the absolute maximum ¢f(x). We constantly use the absolute value of a sum/differeniesssthan or equal to
the sum of the absolute values of the pieces. We also use tkienoma of the absolute value of a product is at most the prodiidie maximums.

If'(z) = |3232 — 8¢ — 62”sin(2z”) + cos(x + 1701)|
< [32°| 4 [8x| + 627 - | sin(22®)| + | cos(x 4 1701)]
= 3|z + 8|z| + 6]2?| - | sin(22®)| + | cos(x + 1701)]
< 333 +83)+6(3)%-14+1 = 27+24454+1 = 106.

We may take any3 greater than 106. Note the maximum of the absolute valuenefai cosine is 1, which helps in the arguments above.

Page 1011: #13Evaluate the iterated integral

3 ry 3 Y
/ / Vy2+16dz dy = / / Vy? + 16 dx dy.
0 0 y=0 Jx=0

Solution: Let’s first make sure we know what region we're integratingrowVe see thag ranges from 0 to 3, and that for a given valueyof:
ranges from O tg. Therefore we're integrating over a triangle in thg-plane with vertices a0, 0), (0, 3) and(3, 3). The interior integral is easy
to evaluate becausg'y? + 16 is constant as a function af Therefore

y ,
/ Vy?+16 d:c:m\/y2+16‘z:y\/y2+16.
0
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We now need to integratg,/y2 + 16 from 0 to 3. It isn’t immediately apparent what that integsalalthough making the substitutian = />
makes things a lot clearer, sinde = 2ydy:

3 9
1 1 9 12 4 1
/yvy2+16dy=§/ \/u+16du:§(u+16)3/20:?5—%:%.
0 0

Notice that this problem would have been much harder to deeifad tried to integrate with respectidirst, since we would not have had the
additionaly term that allowed us to make an easy substitution. In that weeswould have had to find the integral ny2 + 16 with respect tay,

which is (not obviously)y+/y2 + 16/2 + 8sinh~*(y/4). Remember that switching the order of integration can sionest make your life a lot
easierlNOTE: We could also da = 32 + 16.

Page 1011: #25Sketch the region of integration for the integral

2 4 2 4
/ / :czy dy dx = / / m2y dy dz.
—2 J 2 r=—2Jy=x2

Reverse the order of integration and evaluate the integral.

Solution: Notice thatz ranges from—2 to 2. For a fixed value ofz, y ranges fromz? to 4. Notice that when: = +2, y = 4. Therefore the
boundary of the region of integration is defined by the cunyes 4 andy = 2. To reverse the order of integration, we need to considas a

FIGURE 2. Region for Problem #25.

function ofy. First notice that the minimum value gfis 0, and the maximum value gfis 4. For a fixed value of, what values does take? Since
the bottom curve of our region of integration is givengpy= x2, we haver = +,/y. Thus for a given value of, = ranges from-,/y to \/y. Our

new integral is given by:
2 4 ) B 4 T 5
zy dy dx = 7y dx dy.
—2J 2 0 —Y

We see the inner integral evaluates to

Noi 30 1VT 5/2
/ $2y dx = ﬁ‘ Y = —2y s
NG 3 —VY 3
giving our double integral as
/4 2 gy = 22|t 2 512
s 3 WTE7Y T o

Page 1011: #30Sketch the region of integration for the integral

1ol 1ol
/ / exp(—z°) dz dy = / / exp(—z?) dz dy.
0 Jy y=0Ja=y

Reverse the order of integration and evaluate the integral.

Solution: Notice thaty ranges from 0 to 1, and that for a given valueyofc ranges fromy to 1. Therefore our region of integration is a triangle
with vertices(0, 0), (1,0), and(1, 1). To reverse the order of integration, notice that the mimmualue ofz is 0 and the maximum value afis 1.
For a given value of, y ranges fron0 to z. Therefore our integral can be written as

11 1
/ / exp(—z?) dx dy = / / exp(—z?) dy dz.
0 Jy o Jo

To evaluate this integral, notice that the interior intégga

T

/ exp(—:cz) dy = yexp(—xz) = :cexp(—:cz)7
0 0

FIGURE 3. Region for Problem #30.
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FIGURE 4. Region for Additional Problem.

so our double integral is given by
1
/ z exp(—2z?) dz.
0
Again, this might not be immediately obvious, but letting= z?, we seelu = 2zdz or xdz = %du, so our integral simplifies to

1 1 1
/o zexp(—2?) dz = %/ exp(—u) du = —%exp(—u) 0 % (1 — é) .

0
As we saw in Problem 13, this integral is significantly easiegvaluate after we changed the order of integration. Witewitching the order, we
would have had to integratep(—2?) with respect tac, which has no elementary antiderivative!

Additional Problem: Give an example of a region in the plane that is neither baotelly simple nor vertically simple.

Solution: Recall what it means for a region to be horizontally or veiticsimple. A region is horizontally simply if we can expsethe range ok
values for a givery as allz such thay: (y) < = < g2(y), whereg: andg- are two continuous functions wii (v) < g2(y). Intuitively, a region
is horizontally simple if any horizontal line intersectettegion at most twice. Similarly, a region is vertically gimif any vertical line intersects
the region at most twice.

One way to construct a region which is neither horizontaitigde nor vertically simple is to insert a hole into a regiohigh is horizontally
and vertically simple. For example, consider the annulukéncy plane with inner radius 1 and outer radius 2 (that is, theectithn of all points
between 1 and 2 units away from the origin). This region isvestically simple, since the vertical line = 0 intersects the annulus in 4 places.
This region is also not horizontally simple, since the homizl liney = 0 intersects the annulus in 4 places as well. Thus by takingeneigion
(the circle of radius 2) and inserting a hole, we have madgiamevhich is neither horizontally simple nor verticallyrgle.

17. HW #17: DUE MONDAY, APRIL 14, 2014
17.1. Problems: HW #17: Due Monday, April 14, 2014.

Page 1018: #13Find the volume of the solid that lies below the surface: f(z,y) = y + ¢ and above the region in they-plane bounded by
the givencurvesr =0,z =1,y =0,y = 2.

Page 1018: #42Find the volume of the solid bounded by the two paraboleids 2 4 2y* andz = 12 — 22 — 2.

Page 1026: #13Evaluate the given integral by first converting to polar ctioates:

1 V1-y2 1
o Jo 1+z2+y

Page 1026: Question 4Eva|uateff7/r‘;4 [Ze02% rdrde.

Additional Question 1: Find [ [ a%y®dzdy.

Additional Question 2: Evaluatefo1 ffy sin(zy) - exp(x®y?)dzdy. Hint: in what way is this similar to an earlier problem on thHimmework
assignment?

Additional Question 3: Let f(x, vy, z) = cos(xy + 22). Find (Df)(x,y, 2).

Additional Question 4: Find the maximum value of (z, y) = zy given thatg(z,y) = z? + 4y* = 1.
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17.2. Solutions: HW #17: Due Monday, April 14, 2014.

Page 1018: #13Find the volume of the solid that lies below the surface: f(z,y) = y + ¢ and above the region in they-plane bounded by
the givencurves: =0,z =1,y =0,y = 2.

Solution: Note the region in they-plane is the rectangl®, 1] x [0,2], or0 < z < 1and0 < y < 2. The heightis: = f(z,y) = y + " (which
is always above they-axis. Thus the volume is equal fol o f (y + €®)dydx; we could have done the-integral first since the region is both

horizontally and vertically simple. The-integral gives%y + ye”, WhICh we must evaluate at 0 and 2. We thus find the volume squal

1 g2 B
/ / (y + €*) dydx
=0 Jy=0

2

1 2
[e]
=0 2 y=0

1
= / (2 + 2e")dx
z=0

1
= [2:0 + 261']
=0

= 2+26_2:26

Page 1018: #42Find the volume of the solid bounded by the two paraboleids 2 + 2y* andz = 12 — 22 — 2.

Solution: We first solve for the intersection of the two paraboloidsteNibe first is the bottom and the second is the top. Settingntbequal, we
find z = % + 2y = 12 — 222 — 3%, Doing some algebra givels:> + 33> = 12, orz> + > = 4. Note this is the equation of a circle of radius
2; unlike the problems in class the height is not constare.h€he distance between the top and the bottom curves @t,am is ztop — Zbottom,
whichis12 — 222 — y? — (2% — y?) = 12 — 32 — 3y>. We have

1 V1—22
/ / (12 — 3% — 3y%)dydz.
rz=—1 y:7\/1712

We convert this to polar coordinates. Lz, y) = 12 — 3z — 3y?. We are integrating over the unit disk, which is easily coteeto a rectangle
in polar coordinates. We hayér cos @, rsin §) = 12 — 3r2, and thus the volume is

/ / (12 — 3r°)rdrdf.
0

We useu-substitution. Lets = 12 — 372 sodu = —6rdr or rdr = (—1/6)du. We replace- : 0 — 2 with u : 12 — 0, and thus the volume is

27 2.0
/ / —1/6)ududd 1 / 21 an
0 6 Jo—o 2 l12

_ 27
N St sl A
6 2 6=0

27
= 12/ df = 1227 = 24m.
[’

=0

If you do not want to convert to polar, you can follow the himtthe book for problems 39 to 45, which says to consult thestablntegrals in the
back of the book for the anti-derivativfe ¢i> — 22)%/2, and use that to finish solving the problem.

If you've read this far, however, you have forgotten the \v&ge advice of the Patron Saint of Mathematics, Henry Dakim&au, who advises
us all to ‘Simplify, simplify: Instead of trying to use-substitution, let’s just multiply things out! Theni2 — 3r2)r becomes 2 — 31, which can
be integrated directly! Thus the solution to this probleral&o

/ / (12r — 3r°)drd6
0= r= O

/ / (12 — 3r®)rdrd6
0= r= O
2

12r2 37’4}
= - = do
~/9:0 |: 2 4 r=0

27
= / (24 — 12) do
0

=0

27
= 12 / do
0=0

= 12-27 = 24m,

not surprisingly the same answer as before.

Page 1026; #13Evaluate the given integral by first converting to polar clieates:

// 1+:c2+ 2d:cdy
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Solution: We notice that the region is the first-quadrant part the unilee ThusO < » < 1 and0 < 6 < w/2. The function isf(z,y) =
1/(1 4 2% +y?), sof(rcos 6, rsin ) = 1/(1 + r?). We thus have the integral equals

Tr/2/1 1 0 1 ‘rr/2[ ( 2)]1 )
—— rdrd = —/ In(1+7r7)],—od
9=0 Jr—o L+72 2 Jo—o 0
1 /2
= —/ [In2—1In1]deo
2 Jo—o
/2
_ om2 P 2 on i
2 Jo—o 2 2 4

The key step was a-substitution. We had to integrayﬁ;lzO #d:g. If we takeu = 1 4 72, du = 2rdr sordr = (1/2)du, r : — — 1 becomes

2
u : 1 — 2, and thus the-integral becomeg‘f_1 du/u = Inu = In2.
- u=1
Additional Question #1: Find [ [¥__ «°y*dudy.
Solution: We start by integrating with respect 4 so we have:
! Y 9 8 1 ! 8 10
— Y
/y:o /x:iy:v ydedy = 5 /yzo[y T |a—_ydy
_ i /1 (y18 _ ylS)dy
10 J,—o
= 0

Note we are integrating an odd function about a symmetrarvad, and thus we do get zero.

Page 1026: Question 4Eva|uatef:/r‘;4 02 0820 1 drdp.

Solution: We start by integrating the inside first with respect tevhich gives us
/4 2 cos 20 /4 7‘2 2 cos 20
/ rdrdd = / {—] do
—r/4J0 —m/4 2 0

/4

= / 2 cos® 20d0
—7/4
/2

= / cos? udu,

—7/2

where we didu-substitution:u = 20, du = 2df, andf : —7/4 — 7w/4 meansu : —x /2 — /2. We now use a trig-identity. As

. . 2 .2 2
cos(2u) = cos(u+ u) =cosucosu —sinusinu = cos” u —sin“u = 2cos”u — 1

(where the last followed fromsin? u = 1 — cos® u), we see thatos? u = % In the arguments below we’'ll do another substitution; Wetl
v = 2u sodv = 2du andu : —m /2 — 7/2 will mean thatv : —m/ — 7. Continuing we find

/4 2 cos 260 /2 /2
/ rdrdf = / cos®udu = / {COS 2u + l] du
—7w/4J0 —7/2 —m/2 2 2

I /2
= 1/ cosvdv—kl/ du
4 —7 2 —7/2
T 1 /2
v=—T + 5 [u]uzf‘rr/2

- GoeiGD -3

Remember that when usingsubstitution, be sure to change the bounds correctly.
There are other ways to do this problem. We could use the tdbigegrals in the front cover to find the anti-derivativecok? u; to put our
expression in a form where we could do this, we would need ta@substitution first. Thus we have

/4 2 cos 20 /4 /2 /2
/ rdrdf = / 2 cos” 20d = / cos® udu = 2/ cos? udu,
—7/4J0 —m/4 —7/2 0

where we used the-substitutionu = 20, du = 2df, and a¥) : —w/4 — 7/4,u : —7/2 — 7 /2. We then noted the integrand was even and the
range symmetric, so we could just integrate frono 7 /2 and double. Note that

/2 1 27 2w 27
2 2 2 .2
/ cos“udu = —/ cos” udu, / cos” udu = / sin” du.
0 4 Jo 0 0

/2 27
2 2
/ cos“udu = / cos” udu =
0 0

= <~ [sinv]

| = =

Thus

1 27
3 / [0052 u + sin® u] du = —
0

==
=
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ascos®u + sin® u = 1, and so the answer . (27/8) = /2.

Additional Question 2: Evaluate fol ffy sin(zy) - exp(z?y?)dxdy. Hint: in what way is this similar to an earlier problem on thislomework
assignment?

Solution: The key to this question is to realize thah(zy) is an odd function and thatp(z2y?) is an even function. Recafl(z) is odd if
f(—z) = —f(x) and even iff(—z) = f(x). The product of an even function and an odd function is an addtfon. Since we are first integrating
over the boundfy, y] we can use the symmetry properties of integrals to simpti€/calculation: the integral of an odd function over a syrmime
region is zero, as the positive parts cancel with the negaidvrts.

1 Y 1
/ / sin(xy) - exp(e’y®)dedy = / Ody = 0
0 —y 0

2
For exampleff yxdr = %‘ = 0. What is very nice is that we do not need to know what the aritigiéve is; the antiderivative of an odd
T== r=—2
function is an even function, and thus the difference is ndren we subtract with symmetric boundary points.

Additional Question 3: Let f(z,v, z) = cos(xy + 22). Find (Df)(z,v, 2).
Solution: Since we are calculating the gradient of this function, wepty need to apply the normal differentiation rules to detieie the partial
derivatives off (z, y, z).

U (ry,z) = —ysinay+?)
g—}yc(m,y, z) = —xsin(zy+ 2°)
? (z,y,2) = —2zsin(zy+ 27)
z
Df(z,y,z) = (—ysin(zy+ 2°), —zsin(zy + 2°), —2zsin(zy + 2%))

Additional Question 4: Find the maximum value of f(x,y) = xy given that g(z,y) = z* + 4y* = 1.
Solution: We will use the method of Lagrange multipliers to calculdite tonstrained maximum. Set up the appropriate equatiosstting the
gradients equal to each other with the constarih other words, we must solVé f = AVg andg(z,y) = 1. AsVf = (y,z) andVg = (2z, 8y),
we see we must solve

of _ Y9 of _ 99 _
9. LY = Ay (@), 9y (z,y) = ay (z,y), g(zy) =«
or substituting

y = Az, = = A8y, x2 -|-4y2 = 1.

Note that ify = 0 thenz = 0, but this does not satisfy the constraint. Similarlyi= 0 theny = 0. Thus neither: nory is zero (and thus
neither is\).
If we take the ratio of the second equation over the first, we fin

x_@orx_ély

Y A2z Y T

Cross multiplying gives:? = 4y>. Substituting this into the constraint + 4y> = 1 gives4y® + 4y> = 1, soy® = 1/8ory = £1/2V2.
As 2 = 4y, we see that = +1//2. We thus have four candidate points to check for maxima /meni(z, y) = (£1/v/2, £1/2v/2). The
two points where the signs are equal evaluate uyfder1/4, while the two points where the signs are oppositeuatalunderf to —1/4; thus the
maximum value id /4.

18. HW #18: DUE FRIDAY, APRIL 18, 2014
18.1. Problems: HW #18: Due Friday, April 18, 2014.

Page 1056: #37a.Use spherical coordinates to evaluate the integral

I = //Lexp(—pg)dv

whereB is the solid ball of radiug centered at the origin.

Page 1056: #37h.Let a — oo in the result of part (a) to show that

/ / / exp(— (22 +y* + 2%)*?) da dy dz = %w.
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18.2. Solutions: HW #18: Due Friday, April 18, 2014.

Page 1056: #37a.Use spherical coordinates to evaluate the integral

e

whereB is the solid ball of radiug centered at the origin.
Solution: We first need to figure out our limits of integration. Recadlttin spherical coordinates we have the ragipghich will range from 0 taz,
the angle in the zy-plane, which ranges between 0 dhd and the azimuthal anglg will ranges from 0 tar. Therefore our limits of integration

are
0=27
/ / / exp(—p”) dV.
p=0 Jo= =

The volume elemeniV is given bydV = p?sin ¢ d¢ df dp (as we have a rectangular box in spherical coordinates ankahnds of integration
are fixed and do not depend on each other, we may integratg iordar). Therefore our integral is given by

=27
/ / / exp(— p sin ¢ d¢ df dp.
0 o=

The inside integrates te exp(—p®)p? cos ¢. Taking the difference at the endpoints we gekp(—p?) p?, and thus

0=27
= 2/ / exp(—p°) p 2do dp.
p= 0=

Since the inside is constant as a functior pihtegrating with respect t6 has the same effect as multiplying By, giving

p=a

I = 471'/ exp(—p°) p°dp.
p=0

Notice that the integral afxp(—p®) p? with respect tg is just— exp(—p®) /3, S0 our integral evaluates to

(1 exp(—a).

I =
3

v a
-

Page 1056: #37h.Leta — oo in the result of part (a) to show that

/ / / exp(— (22 +y* + 2%)*?) da dy dz = %w.

Solution: Notice that this is the integral @kp(—p*) over all of R®, which is exactly the integral we worked out in part (a) in lingit asa — oco.
As a — oo, we see thatxp(—a®) — 0, so our integral does indeed approaety 3.

19. HW #20: DuE MONDAY, APRIL 21, 2014
19.1. OPTIONAL Problems: HW #—: OPTIONAL: Monday, April 21, 2014.

THIS ASSIGNMENT IS ENTIRELY EXTRA CREDIT! IT INVOLVES YOU WA'CHING THE VIDEO AND DOING THESE PROBLEMS.
IT IS OPTIONAL.

Page 1071: #2Solve forxz andy in terms ofu andv, and compute the Jacobi@fz, y)/0(u, v) with u = x — 2y, v = 3z + v.

Page 1071: #3Solve forz andy in terms ofu andwv, and compute the Jacobi@fz, y)/0(u, v) with u = zy,v = y/z.
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19.2. Solutions: OPTIONAL Problems: HW #—: OPTIONAL: Monday, Apr il 21, 2014.

Page 1071: #2Solve forz andy in terms ofu andv, and compute the Jacobi@z, y)/0(u, v) with
u=x—2y v =3 +y.

Solution: We first notice that, + 2v = 7z, sox = z(u,v) = (u + 2v)/7. Similarly,v — 3u = Ty, soy = y(u,v) = (v — 3u)/7. Therefore the
Jacobiard(z,y)/0(u, v) is given by

sea | & |-| 245 31 -

Page 1071: #3Solve forz andy in terms ofu andwv, and computer the Jacobi&tz, y)/9(u, v) with
u=xy v=uy/x.
Solution: Notice that multiplyingu andv together yieldsuv = y?, soy = y(u,v) = ++/uv. Similarly, dividingu by v givesu/v = 2, so
x = z(u,v) = £+4/u/v. Which of the solutions should we take? Notice that we negd= u, so we must either take both positive solutions or
both negative solutions. Taking both positive solutions,find that the Jacobian is given by

T T 1 —Vu
8($,y):‘% %‘: vyl I S
(u,v) = 2‘5”% 2\/\/% v dv 2w

The exact same calculation shows that the Jacobian is agéiin) when we take the negative solutions.

20. HW #21: DJE FRIDAY, MAY 1, 2014
20.1. Problems: HW #21: Due Friday, May 1, 2014.

Problem 1:. Give an example of a sequenfe, };~, that diverges.
Problem 2:. Give an example of a sequence of distinct teamsuch that the sequende., } 7=, converges.
Problem 3:. Give an example of a sequence of distinct tetmsuch thaja, | < 2014 and the sequenc, };2; does not converge.

Problem 10-4 (Cain-Herod): Find the limit of the sequenae, = 3/n?, or explain why it does not converge.

3n%4+2n—7
n2 .

Problem 10-5 (Cain-Herod): Find the limit of the sequence, =
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20.2. Solutions: HW #21: Due Friday, May 1, 2014.

Problem 1:. Give an example of a sequenge, };2, that diverges.

Solution: There are two ways for a sequence not to converge. It carr gi¢heoo big (diverge to infinity), or it can bounce aroundefeer and never
settle down. For instance, the sequence given,by= n for all n € N will diverge to infinity, since given any real numbere R, a,, > r for all
n > r. A sequence that fails to converge because it bounags is (—1)", or more interestingly., = (—1)" + (—=1)"/n.

Problem 2:. Give an example of a sequence of distinct tetmsuch that the sequenge,, } 7>, converges.

Solution: For a sequence to converge to a lihjtit must eventually get and stay arbitrarily closetoConsider the sequenag = 1/n. We claim
this converges to 0. To prove this, we need to show that gimgre a> 0, we can find anV such thata, — 0| < eforalln > N. Let N be any
integer exceeding/e. Then forn > N, a, < €/2, s0la, — 0] < €/2 < ¢, S0a, does indeed converge to 0. Arguing more informally, we would
saylim,— oo |an — 0] = lim,— oo 1/n, @and this limit is zero, thus proving that 0 is indeed the fiafithe sequence. For a more interesting example,
consider the sequeneg = 3 + 1/n, which converges to 3.

Problem 3:. Give an example of a sequence of distinct tetmsuch thafa,| < 2014 and the sequencg:, };,-, does not converge.
Solution: Here we are looking for a bounded sequence that does notrgenvBince the sequence cannot diverge to infinity, it musticoally

bounce around. Consider the sequence
2 1 6 1 8
nzo: - 17 o) 90 g R e ]
{an}n=s { 33 7709 }

where the odd terms are given by,1 = 1/(2k + 1), and the even terms are given &y, = 2k/(2k + 1). Notice that this sequence is bounded
since every term is less than or equal to 1, and cannot combetause the odd terms converge to 0 while the even termergeno 1.

Problem 10-4 (Cain-Herod): Find the limit of the sequenae, = 3/n?, or explain why it does not converge.

Solution: We can use the limit of a quotient is the quotient of the lirsitize limit of the denominator is not zero and we do not havexc. We see
that the numerator is alwayswhile the denominator increases and approaches infinitys Wie know thatim,, - 3/n% = 0.

41
55

Problem 10-5 (Cain-Herod): Find the limit of the sequence, = M
Solution: We cannot use the limit of a quotient is the quotient of thathras we havexo/co. One approach is to use L'Hopital’s rule and take
derivatives of the numerator and the denominator. We have

2 J—
fim 2L A2T gy, 2 O 3= s
n— oo n n— oo 2n n—»00 n— 00
Another approach is to pull out the highest powernadh the numerator and denominator:
2 42n— 2 2/n — 7/n? 2/n —7/n’ 2
fim 2T @A) g 32T (g 20 T g
n— oo n2 n— oo n2 . 1 n— oo 1 n— oo n n2

The analysis is easier than some of the other problems agtiwninator was just to a power.

21. HW #22: DJE MONDAY, MAY 5, 2014
21.1. Problems: HW #22: Due Monday, May 5, 2014.

Problem 10-8 (Cain-Herod): Find the limit of the serie§_ > in.

n=1

Problem 10-10 (Cain-Herod): Find a value of: that will insure thatl +1/2 +1/3 + --- + 1/n > 10°. Prove your value works.

Page 10-8 (Cain-Herod): Question 14Determine if the serie} "~ ) - converges or diverges.

k+k

Page 10-8 (Cain-Herod): Question 15Determine if the seriel_ ;> ﬁ converges or diverges.

Additional question: Let f(z) = cos x, and compute the first eight derivativesfifr) atz = 0, and determine the™ derivative.
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21.2. Solutions: HW #22: Due Monday, May 5, 2014.

Problem 10-8 (Cain-Herod): Find the limit of the serie$ "> | .

Solution: This is the same as finding the sum of the infinite geometricesecgl + 1/3 + (1/3)% + (1/3)® + --- and then subtracting off 1, as
we want to start the sum at= 1 and notn = 0. We can use the formula that the sum of infinite geometric secgl with ratia- starting atn = 0

is 7=—, provided of course that| < 1. For usr = 1/3, and thus the sum, starting from= 0, is1/(1 — 3) = 1/(2/3) = 3/2; however, we

want the sum to start with the = 1 term and not the. = 0 term, so we must subtract the= 0 term, which is 1. Thus the answerdg2—1 = 1/2.

Problem 10-10: Find a value of. that will insure thatl + 1/2 + 1/3 4 --- 4 1/n > 10°. Prove your value works.
Solution: By a result stated in class, we know that férlarge

A
nz::lﬁ ~ InN.

So we must solvén N = 10°; the solution isN' = exp(10°), which is abou®.8 - 10*34294,

It is possible to solve this without using the asymptoti@atiein for the sum. We showed in class that if we group the tdrfisand1/4 we get
at leastl /2, and if we group terms/5,1/6,1/7,1/8 we get at least /2, and so on. If we go up to the term= 2* we have at least 1/2 two times,
if we go up ton = 2° we have 1/2 at least 3 times, and in general if we go up'tthen we have 1/2 at leakttimes. If we want to have the sum at
least10°, we just need to také = 2 - 10°, which means: = 221°° = 41°° which is approximately.0 - 109°2°5°  Note how much larger this is
than the answer we get from using the sum of the firderms is abouln N.

Page 10-8: Question 14Determine if the serie}_ .~ m converges or diverges.
Solution: We will use the comparison test to determine if this seriesemes or diverges. The serigg” m is less than the seri¢s;” | -3,

which is less than the convergent sef}€g” | & = S0 o(1/e)”. This last series is a geometric series with ratie 1/e, as|r| < 1, the geometric
series converges. Thus, by the comparison test, the orggagaience converges becam§sl+—k| <1

Page 10-8: Question 15Determine if the serie3_ .~ ﬁ converges or diverges.
Solution: We will use the comparison test to determine if this seriewemes or diverges. We want to compare this to a multipl@@harmonic
series; we know the harmonic series diverges, and multiglgach term by a constant won’t change if it converges orgase We havek > 2k+1
forall k > 1. Thisimpliess;i5 > 47 = 7. Thus our series is greater, term by term, than the harmeriess(multiplied by 1/4). As the harmonic
series diverges, so too does our series.

Another proof is to note that the sum over the odd indexedsdmiich are just the odd terms) in the harmonic series isaat les large as the

sum over the even terms, and since the total sum diverge® soust the sum over just the odd indexed terms.

Page 10-8: Question 16Determine if the serie}_ ;- , @ converges or diverges.
Solution: We will use the comparison test to determine if this series/emes or diverges. The growth of a log function is sloweanth linear
function: log k < k; taking the reciprocal reverses the relation,l—oé.gg; > % Thus our series is greater, term by term, than the harmeniess As

the harmonic series diverges, so too does our series.

Additional question: Let f(z) = cos x, and compute the first eight derivativesfifr) atz = 0, and determine the™ derivative.
Solution: We will begin by computing the first eight derivatives.

f(x) = —sinz
f'(zr) = —cosx
f"(z) = sinz

fNz) = cosw

) = —sinz

) = —cosz
fU(z) = sinz
F () = cosa.

Now compute the derivatives #f0).

f(0) = —sin0=0, f’(0)=—cos0=—1
F70) = sin0=0, f(0)=cos0=1
F0) = —sin0=0, f“70)=—cos0=-1
FU0) = sin0=0, fOU(0)=cos0=1.

We see the pattern: 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1 and sopercifically, the even derivatives vanish, and {fc) = cos x then f(4*+1) (0)=-1
while f4*+3)(0) = 1.
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22. HW #23: DJE FRIDAY, MAY 9, 2014
22.1. Problems: HW #23: Due Friday, May 9, 2014.

Problem Cain-Herod 10-18:Is the serie$ ", _ 1,8—:“ convergent or divergent? Prove your answer.
Problem Cain-Herod 10-21:1s the following series convergent or divergent (and of seysrove your answer)?

iigk
k(4
Lo BR (kT K +1)

Problem 3: Leta,, = —— (one divided by» times the natural log at). Prove that this series divergésint: what is the derivative of the natural

nlnn

log of 2? Useu-substitution.

Problem 4: Leta,, = Wgn (one divided by n times the square of the natural log)ofProve that this series convergéint: use the same method
as the previous problem.

Problem 5: Give an example of a sequence or series that you have seeothreanlass, in something you've read, in something youh&eoved in
the world, ....
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22.2. Solutions: HW #23: Due Friday, May 9, 2014.

Problem 10-18:Is the SGI‘IES(Zk —0 T ) convergent or divergent?

Solution: We use the ratio test:
10k+1

- kfﬂo'(k+1)!

k!
‘W

= lim ‘—10 '=0<17

ag k—oo |k +1

so the series converges as the ratis less than 1.

Problem 10-21:Is the following series convergent or divergent?

2737“
k(4
£ B (kT + K +1)

Solution: We use the Comparison Test:

n 3 k n
Z(S) (k4+k:+ <; k4+k+1)<zk4’

k=1

which converges (it is a-series withp = 4), and thus the original series also converges. Alternigtivee havea, < (3/5)%, and we obtain
convergence by comparing with a geometric series with ggtfo

Problem 3: Leta, = (nl—in) (one divided byn times the natural log ofl). Prove that this series divergellint: what is the derivative of the
natural log ofz? Useu-substitution.

Solution: We use the integral test. We start the series with 2 asln 1 = 0 and we cannot divide by zero. Sgfz) = notef( ) = an.

1lnx’

we haveu = Inz, du = %, andz : 2 — oo becomes: : In2 — oo. Then

>~ 1d <1
[ [ L i,
5 Inz =z no U

As this clearly diverges, the original series diverges a we

Problem 4: Leta,, = (n1n2 ) (one divided by n times the square of the natural log:of Prove that this series convergdsint: use the same
method as the previous problem.

Solution: We integratef2°° ﬁdm where we cannot have = 1 (see previous problem). Throughsubstitution, we have = Inz, du = %
andx : 2 — oo becomes: : In2 — co. Then
< 1 dx <1 1= 1
—— = —du= |-~ = —.
5 In“z x lno U Ul In2

As this converges, the original series converges as well.

Problem 5: Give an example of a sequence or series that you have seeotireanlass, in something you've read, in something youh&eoved in
the world, ....

23. HW #24: DUE WEDNESDAY, MAY 14, 2014
23.1. Problems: HW #24: Due Wednesday, May 14, 2014.

Cain-Herod: Question 20: Does the serie} 1 converge or diverge?

Additional Question 1: Compute the first five terms of the Taylor series expansiom@f — z) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.

Additional Question 2: Compute the first five terms of the Taylor series expansiom@f + ) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.

Additional Question 3: Give an example of a sequence or series you like.

Additional Question 4: Find the second order Taylor series expansioeosfxy) about(0, 0).

Additional Question 5: Find the second order Taylor Series expansioaosf./z + y) about(0, 0).

Additional Question 6: Find the second order Taylor series expansiocosfz®y*) about(0, 0).

Problem Extra Credit 1:: Give a product of infinitely many distinct, positive termshkuhat the product converges to a numberith 0 < ¢ < co.

Problem Extra Credit 2:: Let {a,},21 be a sequence of positive numbers such }iat , 1/a, converges. LeB,, = 1/n>"}_, ax. Prove that
> o2, 1/Bn converges.
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23.2. Solutions: HW #24: Due Wednesday, May 14, 2014.

. . . 22k+41 .
Cain-Herod: Question 20: Does the seriey - , '310;@ converge or diverge?

Solution: We will use the ratio test. Take the limit éf;:—l (we don't need absolute values as everything is positive).

st 32(k+D+1 ok 32k+3 32 9
lim = = =

koo ap  10FTL 3%F1  10.32K41 10 10
Since the limit is less than 1, this series converges by i@ test. Alternatively, note this is the same as

e =) . oo
32k+1 32k gk

> = 32@ = 32@ =3 (9/10)";

n=1 n=1 n=1 n=1

as this is a geometric series with ratio less than 1, it cgyager

Additional Question 1: Compute the first five terms of the Taylor series expansiom@f — ) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.

Solution: The Taylor series expansion formula is givenf&s) + %(w —a)+ f/;(!“) (x—a)®+ fﬁ;f“) (z — a)® + ... . We will begin by taking
the first four derivatives of () = In(1 — z).

1

f@) = =5 P =g @)=

—2 " _ —6
T T

Now by substituting: = 0 into the derivatives, we can find the expansion of the firsti®sdan the Taylor series.

o= 0+ 00+ T oy s L0 g L0 gp
= () + @) + S + @) + )
ZL’2 ZL’3 ZL’4
S T S

Hence the expansion of the first five terms of the Taylor serfda(1 — z) atez = 0is0 — =z — 2 _ é — %. It seems like the terms are all

2
negative and the coefficient of* is 1/n; this is correct and we hayg >, =2=.

n

Additional Question 2: Compute the first five terms of the Taylor series expansiom@f + ) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.

Solution: The Taylor series expansion of thig(x + 1) is very similar to the previous question. The only changettaeesigns of the derivatives of
In(x + 1). The four derivatives are listed below.

I@) = e )=

=6
(1 +z)*

2 1m
Axa)p () =

(71)n+1zn

_1 "
TSR [ (@) =

We can solve this by replacingwith —z in the previous problem, and are ledX9™> , -
Additional Question 3: Give an example of a sequence or series you like.

Solution: So many to choose from. Here's one: 1, 4, 6, 8, 9, 14, 27. Andsh@3, 12, 15, 16, 18, 04, 07. For something a bit more mattieaia
1,1,0010,010,0001,12,2,1,2,1,0,1,1,0.

Question 4: Find the second order Taylor series expansioaosfzy) about(0, 0).
Solution: Using the trick we discussed in class, let's set zy, and then expandos(u) using the univariate Taylor series. We have
2
u
cos(u)zl—i+~~
Substitutingu = xy we findcos(zy) ~ 1 — (zy)?/2! = 1 —z*y? /2. However, this is actually a fourth order expansion bec#useegree of*y>

is 4. Therefore the second order Taylor series expansioas¢ty) is justl.

Question 5: Find the second order Taylor Series expansioeost\/z + y) about(0, 0).
Solution: We again use the trick of letting = /= + y and expandingos(u) ~ 1 — u?/2! + u*/4! — u®/6! 4 - - .. Substitutingu = /= + y we
find

S (\/:C y)2 (\/:C y)4 (\/SC y)G T Y 1’2 Qxy y2 :173 3:02y 373y2 y3
O r + ~1-— + — =1- =+ +
Keeping jUSt the second order terms yields

2 2
r_y_ r _ r .y
2 2+24+12+24‘
Note that we got a little bit lucky here. Since cosine is ameumction its Taylor series consist of only even exponeBiscause of this we were

able to cancel out the presence of the square root and getiekeg Taylor series. Had we tried to do this wiln (/= + y) we would have been

1—
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out of luck, since the first term would have begh + y.

Question 6: Find the second order Taylor series expansioeosfz®y*) about(0, 0).

Solution: As before, set: = z°y*. Then we haveos(u) = 1 — u?/2 + --- = 1 — 2%®/2 + - ... After the constant term 1, the next term has
degree 14. Thus, as we saw with the first problem, the secatet @aylor series expansion afs(z>y*) about(0, 0) is just 1. While this may
seem like a poor approximation, notice that when the absaluit andy are both less than 2y* is very small, so we are evaluatings(z) near

x = 0, which of course is 1.

Problem Extra Credit 1:: Give a product of infinitely many distinct, positive termshkuhat the product converges to a numbeiith 0 < ¢ < co.
Solution: When doing problems with infinite products, it is sometimasier to pick the number you want to converge to, and thenem@a
appropriate sequence that will converge to that numbermp&ewe wanted = 1. What is a nice function that convergesit® One that comes to
mind is(n + 1) /n. Can we create a sequenge, },=; such that the product of the firgtterms is(k + 1)/k? If that were to happen, we would

need
k+1 k+2

kT R
giving a1 = k(k-+2)/(k+1)%. Let's make sure this sequence works. Take= (n—1)(n+1)/n>. First notice that:; = 0, which is a problem
because that would make our product zero. So let's justiset 2 (because we want;, = (1 4+ 1)/1 = 2), and takez,, = (n + 1)(n — 1)/n> for
n > 2. We prove by induction that
m+1
[[on =21
m

n=1
and taking the limit asn — oo gives us that the product converges to 1. Notice that theeabquation holds for the base case= 2, since
2.1-3/2% =3/2 = (2 + 1)/2. Assuming that it holds for some> 2, we show that it holds fok + 1. We have
k+1 k

k(k+2)k+1 k+2
Ha7L:ak+1Han: (I’E? ) =
n=1 n=1

+12 kO k41
which is what we wanted to show. Therefore the product camseto 1.THIS IS A TELESCOPING PRODUCT!

Problem Extra Credit 2:: Let{an}72; be a sequence of positive numbers such¥igt_, 1/a, converges. LeB,, = 1/n ) ;_, ax. Prove that
-, 1/Bn converges.

Solution: It is sufficient to consider increasing sequences, sind®ifi,'s are not increasing, rearranging them into increasingondll make B,,

smaller, meaning /B, is larger. Therefore if the sum af/ B, converges for all increasing sequenges }, then it will for all sequences. Suppose

that{a, } is an increasing sequence. We have

1 1
E(an/z-’--‘ran) SBnS E(a1++an)
1n 1
550%/2 < Bn S Enam
implying $7,,/2 < Bn < a,. In particular,l/B, < 2/a, 2, and hence by the comparison t8sf° | 1/B,, is finite. This is a very hard application

of the comparison test!
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