Math 150: Calculus Ill: Multivariable Calculus

Professor Steven J Miller: siml1@williams.edu

https://web.williams.edu/Mathematics/similler/pu
blic html|/150Sp22/

LECtU e 17: 3‘16‘2022: https://youtu.be/grtkHEIdIkU

https://web.williams.edu/Mathematics/similler/public html/150Sp22/talks2022/Math150Sp22 lecturel?7.pdf
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https://web.williams.edu/Mathematics/sjmiller/public_html/150Sp22/talks2022/Math150Sp22_lecture17.pdf

Plan for the day: Lecture 17: March 16, 2022:

Topics:

Directional Derivatives
Exponential Function

Trig in a Day

(as time permits: Lagrange Multipliers introduction)
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https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff formula

Baker—Campbell-Hausdorff formula

From Wikipedia, the free encyclopedia

In mathematics, the Baker—-Campbell-Hausdorff formula is the solution for Z to the equation

XY — o?

for possibly noncommutative X and Y in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultimately yield an expression for Z in Lie algebraic terms, that

is, as a formal series (not necessarily convergent) in X and Y and iterated commutators thereof. The first few terms of this series are:

Z=X+Y+ Z[XY]+ (X (X, Y] - ¥, X Y]] 4o
where " - ." indicates terms involving higher commutators of X and Y. If X and ¥ are sufficiently small elements of the Lie algebra g of a Lie group G, the series is convergent.
Meanwhile, every element g sufficiently close to the identity in G can be expressed as g = eX for a small X in g. Thus, we can say that near the identity the group multiplication in G—
written as eX e¥ = eZ—can be expressed in purely Lie algebraic terms. The Baker—Campbell-Hausdorff formula can be used to give comparatively simple proofs of deep results in the

Lie group—Lie algebra correspondence.

If X and Y are sufficiently small n x n matrices, then Z can be computed as the logarithm of exey, where the exponentials and the logarithm can be computed as power series. The

point of the Baker—Campbell-Hausdorff formula is then the highly nonobvious claim that Z := log (exey) can be expressed as a series in repeated commutators of X and Y.

Modern expositions of the formula can be found in, among other places, the books of Rossmann!!! and Hall.[2]
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https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula

GRE Practice #9: The following is Problem #14 from https://www.ets.org/s/gre/

tice_book_math.pdf: Suppose g is a continuous real-valued function such that

3r° + 96 = / g(t)dt

for each x € R, where ¢ is a constant. What is the value of ¢?
(a)-96 (b)-2 (c)4 (d) 15 (e) 32.
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