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ABSTRACT. Below we summarize some items to take away from variousngnadéuate classes. In
particular, what are one time tricks and methods, and wieagianeral techniques to solve a variety
of problems, as well as what have we used from various cla€s@aments and additions welcome!
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1. CaLcuLus | AND Il (M ATH 103 AND 104)

We used a variety of results and techniques from 103 and 104:

(1) Standard integration theory: For us, the most important technique is integration by parts
one of many places it is used is in computing the moments oGtnessian. Integration by
parts is a very powerful technique, and is frequently useldil&\most of the time it is clear
how to choose the functionsanddv, sometimes we need to be a bit clever. For example,
consider the second moment of the standard norfaaly /2 [*°_z? exp(—2?/2)dz. The
natural choices are to take= z? or u = exp(—x?/2), but neither of these work as they
lead to choices fotlv that do not have a closed form integral. What we need to ddliis sp
the two ‘natural’ functions up, and let= x anddv = exp(—z?/2)xdx. The reason is that
while there is no closed form expression for the anti-deirresof the standard normal, once
we haverdzx instead ofixz then we can obtain nice integrals. One final remark on integya
by parts: itis a key ingredient in the ‘Bring it over’ methaa{ich will be discussed below).
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(2) Definition of the derivative: Recall

o) — g FE D )

h—0 h

In upper level classes, the definition of the derivative igipalarly useful when there is a
split in the definition of a function. For example, consider

_ Jexp(—=1/2?) ifx#0
f(x)_{o if & = 0.

This function has all derivatives zeroat= 0, but is non-zero for: # 0. Thus the Taylor
series (see below) does not converge in a neighborhood d@fveoength containing the
origin. This function shows how different real analysisngnh complex analysis. Explic-
itly, here we have an infinitely differentiable function whiis not equal to its Taylor series
in a neighborhood of = 0; if a complex function is differentiable once it is infiniyedlif-
ferentiable and it equals its derivative in a neighborhobithat point.

(3) Taylor series: Taylor expansions are very useful, allowing us to replaceplaated func-
tions (locally) by simpler ones. The moment generating fimmcof a random variable is a
Taylor series whose coefficients are the moments of thalalisiton. Another instance is in
proving the Central Limit Theorem from probabilityaylor's Theorem: If f is differen-
tiableat least n + 1 timeson [a, b], thenfor all = € [a,b], f(z) = >, _ Of( )! (z —a)k plus
an error that is at most max,<.<, | f"V(c)| - |z — a|**.

(4) LU'Hopital's Rule: This is one of the most useful ways to compare growth ratesfefent
functions. It works for ratios of differentiable functiossich that either both tend to zero
or both tend totoo. We used this in class to see thatpass oo, (logz)? < 28 < e* for
any A, B > 0. (Recallf(z) < g(x) means there is som& such that for all: sufficiently
large,|f(z)| < Cg(z).) We also used L'Hopital to take the derivatives of the tlesbme
function i(z) = exp(—1/2?) for z # 0 and0 otherwise (this function is the key to why
real analysis is so much harder than complex analysis). Walsa use L’'Hopital’'s Rule to
determine whether or not certain sequences converge.

2. MULTIVARIABLE CALcuLus (MATH 105/106)

(1) Dot product, Cross product: If ¥ = (v1,...,v,) and @ = (wy, ..., w,) then the dot
product isT - W = vywy + - - - + vw,, and the anglé between the two vectors is given

by _F’H—W‘_ If n =3, then the cross product is defined by

- ==
i 5k
V1 Uy Vg = (v2w3 — U3Wsg, V3W1 — V1W3, V1W2 — Uzwl)-

w1, Wy W3

The cross product gives the area of the parallelogram gk v and w.
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(2) Definition of the Derivative: One Variable: Let f : R — R be a function. We say is
differentiable at:,, and denote this by’(x() or df /dz, if the following limit exists:

F(zo) = lim f(wo+h)— f(l”o)_

h—0 h

We may also write this limit by

fwo +h) = flo)

fi(xo) = lim h ’
or as
lim f(zo+h) — f(xo) = fl(wo)h 0
T—T0 h o

(3) Definition of the Derivative: Several Variables, One Output Let f : R* — R be a
function ofn variablesty, . . ., z,,. We say the partial derivative with respectitoexists at
the pointa = (a4, ..., a,) if

lim f(7 + h?i) — f(E))
h—0 h

exists, where
— —
a—l—hei = (al,...,ai_l,ai+h,ai+1,...,an).

Let f : R? — R. The tangent plane approximationtat (z, yo) is given by

= £, g0) + 5 (a0, o) = ) + 5 (2o 40)(y = o)

provided of course the two partial derivatives exist (and ttaturally generalizes to more
variables).

Finally, let f : R*> — R. We sayf is differentiable at(x,,) if the tangent plane
approximation tends to zero significantly more rapidly thidn, y) — (zo, yo)|| tends to O
as(z,y) — (xo,v0). Specifically,f is differentiable if

- (@, y) = f(zo,y0) = (w0, y0) (@ — 20) — 5L (0, 90) (5 — o)
(#:9)— (0,0) (2, y) — (20, yo)ll
Note the above is truly the generalization of the derivaitivene variable. The distance
x — xq is replaced with|(x, y) — (zo,v0)||; while this is always positive, the fact that the
limit must equal zero for the function to be differentiableans we could have used— x|
in the denominator in the definition of the derivative of oseiable. Also note that the last
two parts of the tangent plane approximation can be writses @ot product of two vectors:

0 0 0 0
a—i(%’ Yo) (@ — o) + 8—5(%7 Yo)(y — Yo) = (a—i(l”o,yo)» 8—£($0>y0)) (T —20,Y — Y0)-

= 0.

(4) Gradient: The gradient of a functiorf : R® — R is the vector of the partial derivatives
with respect to each variable. We write

wwﬂ=vf=<

of o
Oxry’  0x, )
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The gradient points in the direction of maximum change ferftinctionf.

(5) Definition of the Derivative: Several Variables, Several Otputs: Let f : R” — R™; we

may write
f(@) = (AT, fu(T)).
y (D f)( 0) we mean the matrix whose flrst row (yf )(7), whose second row is
(Vf)( ), and so on until the last row, which (& f,,,)(Z). In full glory, we have
(@) - @)

ox1

(DN = | 1
(@) - (@)

Note (D f)() is a matrix with/n rows andn columns. We say is differentiable afa if
the tangent hyperplane approximation for each componadst® zero significantly more
rapidly than|| 2 — || tends to 0 as&’ — @ . Specifically,f is differentiable if

f(@) — f(@) - (D )(a)-(7— ) _ 3

lim —
. e 17— @ !

where we regard’ — @ as a column vector being acted on by the matfix)(@).

(6) Main Theorem on Differentiation The following implications hold (note the reverse im-
plications may fail): (1) implies (2) implies (3), where
¢ (1) The partial derivatives of are continuous.
¢ (2) The functionf is differentiable.
¢ (3) The partial derivatives of exist.
For counterexamples when reversing the implication, aersi(z) = 22 sin(1/z) if
r#0and0if x = 0, andg(xz, y) = (zy)'/>.
(7) Chain Rule Letg : R — R™ and f : R™ — RP be differentiable functions, and set
h = f o g (the composition). Then
(DR)(T) = (Df)(9(T))(Dg)(T).
Important special cases are:
olLetc:R — R*andf : R®* — R, and seti(t) = f(c(t)). Then
dh , 0fdx 8fdy 8fdz
o = VW) A = s oy a T s ar

Note that we could have writtenf /0x for df /dzx.

oLetg(zy,...,zn) = (ui(xy, ..., x0), ... Um(z1, ..., 2,) and seth(zy,...,z,) =
f(g(zq,...,2,)), wheref : R™ — R. Then
Oh _ Of Ouy  Of Oup ~ Of Oup

Or;  Ouy Ox;  Ousg Oz ou,, Ox;
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(8) Equality of Mixed Partial Derivatives: Let f : R* — R be a function of clas€? (which
means that all the partial derivatives of order at most 2texid are continuous). Then for
any two variables; andx; we have

0?f 0?f

Oxlﬁxj n 0@8& .

(9) Tricks for Taylor Series Expansions: We give a few examples of some powerful tricks to
find Taylor series expansions. The idea is to use Taylorsesipansions in one-variable.
These work when we have functions suchiagz + y) but notsin(\/z + y).

ocos(x+y):1_(x;_!y)2+(xz'y) o

. 2
ocosx51ny:(1_“é’_!+...)( _y )
Oew_ycos(x+y) — (1+ (x _y) + (1’2'?/) + . )(1 _ (1’42-'31)2 n )

(10) Method of Lagrange Multipliers: Let f,g : U — R, whereU is an open subset @&".
Let S be the level set of valuefor the functiong, and letf|s be the functlory‘ restricted to

S (in other words, we only evaluateat @ € U). Assume(Vg)(7,) # 0. Thenf|s has
an extremum &t if and only if there is a\ such thal V f)(Zo) = A(Vg)(Z).

(11) [Method of Least Squares:Given a set of observations

($1>y1)7 ($2>y2)7 R (xvaN)
and a proposed linear relationship betweeandy, namely
y = ax + b,

then the best fit values afandb (according to the Method of Least Squares) are given by
minimizing the error function given by

E(a,b) = ) (yn — (azn +1))*.

The best fit values are
N N N N
Zn 1 1 En 1 x”yn - Zn:l In Zn:l Yn
N N
Zn 1 1 Zn 1 n Zn:l Tn Zn:l Tn

Qa =

p o — 25:1 Ln 25:1 LnYn — ZnN—l x; ZnNzl Yn 2.1)
25:1 Tn 25:1 Ln — ij L T 7];;1 1
Frequently by taking logarithms we can use this method forlineear relations. For exam-
ple, if T'= BL% thenif T = logT, £ = log L andb = log B thenT = aL + b, a linear
relation.

(12) Metric dependence of answersA very important fact, made clear in the previous subject,
is that depending on the metric used to evaluate / answerdgpnone can reach different
conclusions. What do we ‘mean’ by best-fit line? Dependindiow we measure the data
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(ranging from just summing the signed errors to absolutaesto squares), we can get a
different answer. It is very important to be aware of thesgasions.

(13) Monte Carlo Integration: Let D be a nice region ifR", and assume for simplicity that it
is contained in the-dimensional unit hyperculjé, 1] x [0, 1] x - - - x [0, 1]. Assume further
that it is easy to verify if a given poirgtzy, ..., z,,) isin D or notin D. Draw N points from
the n-dimensional uniform distribution; in other words, eachttedn coordinates of thév
points is uniformly distributed of0, 1]. Then asV — oo the n-dimensional volume oD
is well approximated by the number of points insidelivided by the total number of points.

(14) Fubini Theorem (or Fubini-Tonelli): Frequently we want to / need to justify interchanging
two integrals (or an integral and a sum). Doing such intargea is one of the most frequent
tricks in mathematics; whenever you see a double sum, a eaotigigral, or a sum and an
integral you should consider this. While we cannot alwaysrchange orders, we can if the
double sum (or double integral) of the absolute value of threreand (or the integrand) is
finite. For example,

1 1 1 1
/ [/ e_“’yxdx} dy = / [/ e_xyxdy} dx
y=0 =0 =0 y=0
) 0
= / e—:By
=0 1

= /1 (1 - e_:”) de = 2—¢e 7. (2.2)

=0
Note how much easier it is when we integrate with respegtftst — we bypass having to
use Integration by Parts. For completeness, we state:

dx

Fubini’'s Theorem: Assume f is continuous and

/ b / |y ldady < o, (2.3)

[ waw]as = [[[ s6cpie] 2.4)

Smilar statements hold if we instead have

Then

Ny d N1 M,
S [t S S S (2.5)
n=Ng ¥ ¢ n=No m=Mj

(15) Whenever you have a theorem, you should always explore wregigens if you remove
a condition. Frequently (though not always) the claim no Iger holds; sometimes the
claim is still true but the proof is harder. Rarely, but it cahappen, removing a condition
causes you to look at a problem in a new light, and find a simppgpof. We apply this
principle to Fubini’'s theorem; specifically, we remove thmténess condition and construct
a counter-example.
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For simplicity, we give a sequeneg,, such thad " (> amn) # >, (02, @mn). FOr

m,n > 0 let
1 ifn=m
U = §—1 ifn=m+1 (2.6)
0 otherwise.

We can show that the two different orders of summation yiéfemknt answers; if we sum

over the columns first we get O for each column, and then ddiegsum of the column

sums gives 0; however, if we do the row sums first, than alldlaesums vanish but the first
(which is 1), and hence the sum of the row sums isdt,0. The reason for this difference
is that the sum of the absolute value of the terms diverges.

(16) Interchanging derivatives and sums: It is frequently useful to interchange a derivative
and an infinite sum. The first place this is met is in provingdbgvative ofe” is e*; using
the series expansion fef, it is trivial to find the derivativef we can differentiate term by
term and then add.

Interchanging differentiation and integration: Let f(z,¢) and df(x,t)/0x be continuous
on arectangle [z, 1] X [to, t1] With [a, b] C [to, t1]. Then

/ flz, t)dt = tb g—i(x,t)dt. (2.7)

Frequently one wants to interchange differentiation anthreation; this leads to the
method of differentiating identities, which is extremelgeful in computing moments of
probability distributions. For example, consider the ittgn

@+QV==§3<Zﬁﬂf*- (2.8)

k=0
Applying the operatop; < to both sides we find

n(p+q)" §:k<) (2.9)

Settingg = 1 — p yields the mean of a binomial random variable:

np = Z k(Z)pk(l —p)" . (2.10)
k=0

It is very important that initiallyp andq are distinct, free variables, and only at the end do
wesetg=1—p

(17) Dangers when interchanging: One has to be very careful in interchanging operations.
Consider, for example, the family of probability densiti¢s(z), wheref, is a triangular
density on1/n, 3/n| with midpoint (i.e., maximum value). While eachf,, is continuous

A functionpis a probability density ip(x) > 0 andp integrates to 1.
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(as is the limitf(x), which is identically 0), eaclf,, is a probability density (as each inte-
grates to 1); however, the limit density is identically Oddhus not a density! We can easily
modify our example so that the limit is not continuous:

n|x| if0<|z|<1/n
[ < <
) = 1 . !f I/n<|z|<1/2 (2.11)
n(s+2—|z) if1/2<z<1/2+1/n
0 otherwise.

Note thatg, (0) = 0 for all n, but as we approach 0 from above or below, in the limit we get
1.

(18) Change of Variables Theorem:Let V and W be bounded open setsinR"™. Leth : V. — W
be a 1-1 and onto map, given by

h(u, .. un) = (h(ur, .oy un)s oy hp(ug, oo uy)) . (2.12)

Let f : W — R be a continuous, bounded function. Then

/.../Wf(xl,...,xn)dxl---da:n

_ /.../Vf(h(ul,...,un))\J(ul,...,uv)\dur“dum (2.13)

where .J isthe Jacobian

Ohy ., Oh
Ouy Oun
J = : . (2.14)
Ohy ., Ohn
Ouy Oun

We used this result to simplify the algebra in many problegnpdssing to an easier set of
variables.

(19) Counting two different ways: Calculating something two different ways is one of the most
important ideas in math. A good part of combinatorics is ttertbat there are two ways to
compute something, one of which is easy and one of which isWetthen use our knowl-
edge of the easy calculation to deduce the hard. For exahple, (Z)2 = (*); the right
side is easy to compute, the left side not so clear. Why arevhiequal? It involves finding
a story, which we leave to the reader.

(20) Memoryless processWhen proving the geometric series formula by playing a bésile
game, we used the fact that after two misses it was as if wesjagied playing the game
then. This idea is used in many problems.

(21) Ratio, root, integral and comparison tests: These are used to determine if a series or
integral converges. We frequently used the geometricsérenula) "~ 2" =1/(1 —z)
if |z < 1.
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o Comparison TestlLet {b,}>°, be a sequence of non-negative terms{so> 0).
Assume the series converges, duag }>° , is another sequence such thaf| < b, for all
n. Then the series attached{e, }°° , also converges.

o Ratio TestConsider a sequende,, }>° , of positive terms. Let

. An+1
r = lim .
n—oo CLn

If » exists and- < 1 then the series converges, whilerit> 1 then the series diverges; if

r = 1 then this test provides no information on the convergenabvargence of the series.
o Root TestConsider a sequende,, }°>° , of positive terms. Let

1/n

n Y

p = lim a
n—oo

then' root ofa,,. If p < 1 then the series converges, whilgif- 1 then the series diverges;
if p = 1 then the test does not provide any information.

o Integral Test Consider a sequende,, }°° ; of non-negative terms. Assume there is
some functionf such thatf(n) = a,, and f is non-increasing. Then the series

00
> an
n=1

converges if and only if the integral
/ f(z)dz
1

3. DIFFERENTIAL EQUATIONS (MATH 209)

converges.

(1) The method of Divine Inspiration and Difference Equations:Difference equations, such
as the Fibonacci equatiaty,; = a,,.1 + a,, arise throughout nature. There is a rich theory
when we have linear recurrence relations. To find a solutien'guess’ that,, = " and
take linear combinations.

Specifically, letk be a fixed integer and, . . ., ¢, given real numbers. Then the general
solution of the difference equation

(p+1 = C10p + C20p—1 + C3Ap—2 + -+ + Cplp—k+1
is
p = 7T AN
if the characteristic polynomial

rF—erF Tt et g = 0

hask distinct roots. Here the, ..., v, are anyk real numbers; if initial conditions are
given, these conditions determine thegs. If there are repeated roots, we add terms such
asnr™, ..., n™ " wherem is the multiplicity of the root-.

For example, consider the equatien ; = 5a,, — 6a,,_;. In this case: = 2 and we find
the characteristic polynomial i§ — 5r+ 6 = (r — 2)(r — 3), which clearly has roots, = 2
andr, = 3. Thus the general solution is, = 72" + ~»3". If we are givernag = 1 and
a, = 2, this leads to the system of equatidns: ~; + v, and2 = v, - 2 + 75 - 3, which has
the solutiomy; = 1 andy, = 0.
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Applications include population growth (such as the Filmmnaquation) and why double-
plus-one is a bad strategy in roulette.

4. ANALYSIS (MATH 301)

(1) Continuity: General continuity properties, in particular some of ¢the 6 arguments to
bound quantities, are frequently used to prove resultserOfte use these to study mo-
ments or other properties of densities. Most important, éva, was probably when we
can interchange operations, typically interchanginggraks, sums, or an infinite sum and
a derivative. For the derivative of the geometric series,¢hn be done by noting the tail is
another geometric series; in general this is proved by asing the contribution from the
tail of the sum). See the multivariable calculus sectiomiore comments on these subjects.

(2) Proofs by Induction: Induction is a terrific way to prove formulas for generaf we have
a conjecture as to what the answer should be. Assume for eadlivp integem we have
a statemenf’(n) which we desire to show is true for all P(n) is true for all positive
integersn if the following two statements hold: (Basis Step: P(1) is true; (ii) Inductive
Step wheneverP(n) is true, P(n + 1) is true. Such proofs are called proofs by induction
or induction (or inductive) proofs.

The standard examples are to show results such as, k = . It turns out that
> r_o k™ is a polynomial inn of degreem + 1 with leading coefficient./(m + 1) (one
can see that this is reasonable by using the integral tesptage the sum with an integral);
however, the remaining coefficients of the polynomial aneléato find, and without them
it is quite hard to run the induction argument for say= 20009.

n(n+1)

(3) Dirichlet’s Pigeonhole principle: Let A;, A,, ..., A, be a collection of sets with the prop-
erty thatA; U---U A, has at least + 1 elements. Then at least one of the sétdas at
least two elements. We frequently use the Pigeonhole ptetd ensure that some event
happens.

5. COMPLEX ANALYSIS (MATH 302) AND FOURIER ANALYSIS (MATH 308 AND 406)

(1) Integral transforms: If K(s,t) andg(t) are nice functions, we define the integral trans-
form of g with kernel K to be [*_g¢(t)K (s, t)dt. What this does is, given a function as
input, generates a new function. Two particularly usefah&forms are the Fourrer trans-
form (f(y = [ f(z)e ?™*¥dx) and the Laplace transformigf)(s) = [;° f(t)e 'dt).
Dependlng on the problem it may be worthwhile to take a fnmsof both srdes as often
the transformed quantity is easier to analyze. For exanipl&, andY are independent
random variables with densitigs and fy, then the density of their sum is the convolution

fxov(t) = (fx* fr)(t / Ix(u) fy (t —u)du

As the Fourier transform of a convolution is the pointwisedarct of the Fourier transforms,
we have

Fxov(®) = Fx(t)- fr(t);
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thus the convolution integral has been replaced with stahdaltiplication (the integration
has not vanished — we must take the Fourier transfornig aind fy, and then we must take
the inverse Fourier transform to recov@r, y; however, this is still often progress). There
are many other nice properties of the Fourier transform.eixample, lep be a probability
density. Then

p) = [ sl

—00

Taking the derivative yields

Ply) = / " ple) - (~2miz)e Ty,

o

and then setting = 0 yields

p(0) = —27m'/ xp(x)de = —2miE[X].
We note two important items: the Fourier transform-afriz times the functiorp is the
derivative of the Fourier transform of and the derivative of the Fourier transform at 0 is a
simple multiple of the mean (and a generalization holds ighér moments).

(2) Complex differentiability: A function of a complex variable is said to be complex differ-

entiable at if
NICEROESIC)
h—0 h

exists ash # 0 tends to 0 along any path. Functions such as the polynomigls, cz*
are differentiable, while functions such&sare not (remember = x — iy if z = = + i7).

If a complex function is differentiable once, it is infinjetifferentiable and it equals
its Taylor series; this is remarkably different than reaslgsis (remember the function
f(z) = exp(—1/2?) for z # 0 and0 for x = 0; this function is infinitely differentiable, but
only equals its Taylor series at= 0 (which is not impressive, as by definition all functions
equal their Taylor series at the expansion point!).

(3) Analytic continuation: Given a functionf defined in some subset of the complex plane, its
analytic continuation is a new function which agrees witl dd in the original region, but
makes sense elsewhere. The standard example is the geoseeies formula) >~ 2" =
1/(1—=z); the right hand side makes sense for all values gf 1, while the left hand side is
only defined if|z| < 1. This leads to the interpretation thiat- 2 + 4+ 8+ 16 + - - - = —1!

(4) Accumulation points: Let f be a complex differentiable function defined on an open set

U; assumef(z,) = 0 for some sequence of poin{s, }°° , that has an accumulation point
in U (i.e., there is some* such that a subsequence of thgs converge to:*). Then a
beautiful result from complex analysis says tlfas identically zero! Again, this is very
different than real analysis: the functigitz) = z3sin(1/z) for z # 0 and0 for z = 0

is zero whenevexr = 1/nm, and is zero att = 0; however, clearly this function is not
identically zero even near the origin (just consider 2/n7 for n odd). In probability,
this result is used to study the moment problem, namely, hamyrmoments are needed to
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(5)

(6)

STEVEN J. MILLER

uniquely determine a probability density.

Poisson summation:for nice functions,) f(n) = > f(n). Often this allows us to re-

place a long sum of slowly decaying terms with a short sum piflig decaying terms. We

used this in obtaining very good estimates on the probglmfibeing far from the mean for

normal random variables, as well as proving the functiogala¢éion of the Riemann zeta
function.

A nice function can be uniformly approximated by a trigaretric polynomial (Fejer’s
theorem). One great use of this issific mod 1, as trig functions are particularly nice to
work with.

6. PROBABLITY THEORY (MATH 341)

6.1. Combinatorics.

1)

(2)

3)

Combinatorics: There are several items to remember for combinatorial prabl The first
is to be careful and avoid double counting. The second isfteguently a difficult sum
can be interpreted two different ways; one of the interpi@ta is what we want, while the
other is something we can do. We have seen many examplesotthe is that

n 2 n
n n n
() =265
k=0 k=0
is the middle coefficient ofz + )*", and thus equal’).

‘Auxiliary lines’: In geometry, one frequently encounters proofs where theoasitadd an
auxiliary line not originally in the picture; once the linge added things are clear, but it is
often a bit of a mystery as to how someone would think of additige in that place. In
combinatorics we have an analogue of this. Consider thsiclasokie problem: we wish
to divide 10 identical cookies among 5 distinct people. Ongpte way to do this is to
imagine we have 141¢ = 10 + 5 — 1) cookies, and eat 4 of them. This partitions the
remaining cookies into 5 sets, with the first set going to tfet fierson and so on.

For example, if we havé0 cookies and people, say we choose cookigst, 7 and13
of the10 + 5 — 1 cookies:

OORXIROORIOOOOOKKO

This corresponds to persdrreceiving two cookies, persdhreceiving zero, persod re-
ceiving two, persod receiving five and persomnreceiving one cookie.

This implies that the answer to our problen(1§°"), or in genera(“ ;"7 ).

pP-1

Find an interpretation: Consider the following sumy-<_ (“t77"). By the arguments

above, we are summing the number of ways of dividingpokies amongP people for

c € {0,...,C} (or we divideC' cookies amongP people, but we do not assume each
cookie is given). A nice way to solve this is to imagine tharthis aP + 15 person who
receives”’ — ¢ cookies, in which case this sum is now the same as countinguimder of
ways of dividingC' cookies among® + 1 people where each cookie must be assigned to
a person, of“1”). (See also the ‘tell a story’ entry in §6.2 and the ‘convaatientry in
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§6.3.)

(4) Inclusion - Exclusion Principle: Supposed,, A,, ..., A, is a collection of sets. Then the
Inclusion-Exclusion Principle asserts that

Al = Z|A|—Z|A NA+ ) A N A; N A -

i=1 1,5,k

This has many uses for countlng probabilities. We used ieternine the probability of a
generic integer is square-free, as well as the probabitijneom permutation of1, ..., n}
returns at least one element to its initial location.

(5) Binomial Theorem: We have

T no_ ”) 2Rk — <”) 2Ry k.
(x+y) ; < e ; L)
in probability we usually take = p andy = 1 — p. The coefficients(Z) = k,(n il have
the interpretation as counting the number of ways of chapsiobjects fromn When order
does not matter. A better definition of this coefficient is
n\y nmn-1)--(n—(k-1))
<k> B k(k—1)---1 '

The reason this definition is superior is tr@) makes sense with this definition, and is just
zero. One can easily shofff) = 0 whenever: > n, which makes sense with our combina-
torial interpretation: there is no way to chodsebjects fromn whenn < k, regardless of
whether or not order matters.

6.2. General Techniques of Probability.

(1) Differentiating Identities: Equalities are the bread and butter of mathematics; diftere
ating identities allows us to generate infinitely many maoaarf one, which is a very good
deal! For example, consider the identity

p+q" = (k)p’“q" g (6.1)

k=0
Applying the operatopdi to both sides we find

n(p+q)" Zk( ) (6.2)

Settingg = 1 — p yields the mean of a binomial random variable:

np =y k(:)p"”(l —-p)" (6.3)
k=0

It is very important that initiallyp andq are distinct, free variables, and only at the end do
we sety = 1 — p. Another example is differentiating - =" = 1/(1 — z) by applying the
operatorr-L givesy >2 nz" = x/(1 — z)?. While we can prove them™ moment of the
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standard normal im—1)!! by induction, we can also do this with differentiating idées.

(2) Law of Total Probability: This is perhaps one of the most useful observati®nsb(A°¢) =
1 — Prob(A), whereA¢ is the complementary event. It is frequently easier to camphe
probability that something does not happen than the préibaibidoes. Standard examples
include hands of bridge or other card games.

(3) Fundamental Theorem of Calculus (cumulative distributionfunctions and densities):
One of the most important uses of the Fundament Theorem ctiCalis the relationship
between the cumulative distribution functiéiy of a random variabl& and its density .
We have

Fx(z) = Prob(X <z) = /1’ fx(t)dt.

In particular, the Fundamental Theorem of Calculus impliest ', () = fx(z). This
means that if we know the cumulative distribution functiare can essentially deduce the
density. For example, leX have the standard exponential density (sdz) = e for

x > 0 and 0 otherwise) and s&t = X?2. Then fory > 0 we have

Fy(y) = Prob(Y <y) = Prob(X* <y) = Prob(X <. /y) = Fx(1/9).
We now differentiate, using the Fundamental Theorem of @ascand the Chain Rule, and
find that fory > 0

d 1 e~ VY

Wly) = F&(x/ﬁ%d—y(\/@) = fx(x/@'ﬁ N

(4) Binary (or indicator) random variables: For many problems, it is convenient to define a
random variable to be 1 if the event of interest happens antth€nwise. This frequently
allows us to reduce a complicated problem to many simpleblpros. For example, con-
sider a binomial process with parametereandp. We may view this as flipping a coin
with probability p of heads a total of: times, and recording the number of heads. We
may letX; = 1 if the i" toss is heads and 0 otherwise; then the total number of heads i
X = X;+ -+ X,. Inother words, we have represented a binomial randombianaith
parameters andp as a sum of: independent Bernoulli random variables. This facilitates
calculating quantities such as the mean or variance, as wdaeeE[X| = nE[X;] = np
andVar(X) = nVar(X;) = np(1 — p). Explicitly, to compute the mean we need to eval-
uateE[X;] = 1-p+ 0- (1 — p) and then multiply byr; this is significantly easier than
directly evaluating the mean of the binomial random vagaklthich requires us to deter-
mined ", _ k- (})p*(1 —p)"*.

(5) Linearity of Expectation: One of the worst complications in probability is that random
variables might not be independent. This greatly compigdihe analysis in a variety of
cases; however, if all we care about is the expected valasettiifficulties can vanish! The
reason is that the expected values of a sum is the sum of tleetexpvalues; explicitly, if
X =X+ -+ X, thenE[X] = E[X4] + --- + E[X,,]. One great example of this was
in the coupon or prize problem. Imagine we hawifferent prizes, and each day we are
randomly given one and only of theprizes. We assume the choice of prize is independent
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of what we have, with each prize being chosen with probahilit. How long will it take

to have one of each prize? If we |&t denote the random variable which is how long we
must wait, giveni — 1 prizes, until we obtain the next new prize, th&n is a geometric
random variable with parametgy = 1 — % and expected valug%; = — (Z T . Thus the
expected number of days we must wait until we have one of eazh is S|mply

E[X] = ZE[Xi] =] ﬁ = CZ

whereH, = 1/1+1/2+ ---+1/cis thec" harmonic number (anfl,. ~ log c for c large).
Note we do not need to consider elaborate combinations ottherizes are awarded. Of
course, if we want to compute the variance or the mediama ifgferent story and we can’t
just use linearity of expectation.

(6) Bring it Over: We have seen two different applications of this method. Gmeévaluating
integrals. Let/ be a complicated integral. What often happens is that, aftere number of
integration by parts, we obtain an expression of the forma+b1; solong a$ # 1 we can
rewrite this ag1 — b)! = a and then solve fof (I = %;). This frequently occurs for inte-
grals involving sines and cosines, as two derivatives (egirals) basically returns us to our
starting point. We also saw applications of this in mema@ylgames, to be described below.

(7) Memoryless games / processesthere are many situations where to analyze future be-
havior, we do not need to know how we got to a given state or gordtion, but rather
just what the current game state is. A terrific example isippasketball, with the first
person to make a basket winning. Sayshoots first and always gets a basket with proba-
bility p, and B shoots second and always makes a basket with probadilityand B keep
shooting,A then B then A then B and so on, until someone makes a basket. What is the
probability A wins? The long was is to note that the probabilityvins on hem™ shot is
(1= p)(1—q)"" p,and thus

o0

Prob(A wins) = Y ((1=p)(1—a))" "' p;

n=0

while we can evaluate this with the geometric series, the@nieasier way. How caA
win? She can win by making her first basket, which happens prtibability p. If she
misses, then to win she neeBg0 miss as well. At this point, it isl’s turn to shoot again,
and it is as if we've just started the game. It does not mategriioth have missed! Thus

Prob(A wins) = p+ (1 — p)(1 — ¢)Prob(A wins).
Note this is exactly the set-up for using ‘Bring it over’, awe find
p .
1-(1-p)(1—-¢q)’
in fact, we can use this to provide a proof of the geometrieesdormula! The key idea

here is that once both miss, it is as if we've just started Hrag This is a very fruitful way
of looking at many problems.

Prob(A wins) =
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(8) Standardization: Given a random variabl& with finite mean and variance, itis almost al-
ways a good idea to consider the standardized random vakiabl (X —E[X])/StDev(X),
especially if X is a sum of independent random variables. The reason i'thew has
mean 0 and variance 1, and this sets us up to compare quatitibe same scale. Equiv-
alently, when we discuss the Central Limit Theorem evenghwill converge to the same
distribution, a standard normal. We thus will only need tautate the probabilities for one
normal, and not a plethora or even an infinitude. The sitnasigimilar to logarithm tables.
We only need to know logarithms in one base to know them iraalthe Change of Base
formula giveslog, x = log, x/ log, ¢ (and thus if we know logarithms in basewe know
then in base).

(9) Tell a story: One of our exam questions was whether or fiot) = ("**~1)(1 — p)"p* for
ne€{0,1,2,...},p € (0,1) is a probability mass function. One way to approach a problem
like this is to try and tell a story. How should we interpres flactors? Well, let's makgthe
probability of getting a head when we toss a coin, or we coefid Idenote the probability
of a success. Thefl — p)"p* is the probability of a string with exactly failures andk

successes. There 6(@ ways to choose which of n+ k places to be the failures; however,

we have("**~"). What's going on? The difference is that we are not consideall possi-
ble strings, but only strings where thest event is a success. Thus we must have exactly
failures (or exactlyc — 1 successes) in the first- k£ — 1 tosses followed by a success on trial
n+ k. By finding a story like this, we know it is a probability masmttion; it is possible to
directly sum this, but that is significantly harder. (Se®@dhe ‘find an interpretation’ entry
in 86.1 and the ‘convolution’ entry in §6.3.)

(10) Probabilistic Models: We can often gain intuition about complex but determinigtie-
nomena by employing a random model. For example, the Prirmeld¢u Theorem tells us
that there are about/ log = primes at most, leading to the estimation that anyis prime
with probability aboutl/logn (this is known as the Cramer model). Using this, we can
estimate various number theoretic quantities. For exangil&’,, be a random binary indi-
cator variable which is 1 with probabilitfgé and0 with probability 1 — @ If we want to
estimate how many numbers upit@start a twin prime pair (i.en andn + 2 are both prime)
then the answer would be given by the random variagble Xy X+ X5 X5+ -+ X,,_2X,,.

As everything is independent afidX ;] = gk, we have
n—2 n—2 n—2
dt x
EX] = E[X:]E[X, R~ R~ )
[X] ; X b2 Zz log log (k +2) /2 log?t log? x

The actual (conjectured!) answer is ab@ut:/ log” 2, where

- 11 | ol 12) ~ 66016,
e (P 1)
p prime
What's important is to note that the simple heurislid capture the correct dependence,
namely a constant times/ log” z. Of course, one must be very careful about how far one
pushes and trusts these models. For example, it would prideie are aboufsz/ log® «
prime triples(n,n + 2,n + 4) up tox for some non-zer@’';, whereas in actuality there
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is only the triple(3,5,7)! The problem is this model misses arithmetic, and in anyethre
consecutive odd numbers exactly one of them is divisible.by 3

(11) Simplifying sums: Often we encounter a sum which is related to a standard sum; th
is particularly true in trying to evaluate moment genenationctions. Some of the more
common (and important) identities are

2 3 x© n

. x
e’ = 1+x+§+§+ %n,
1 2, .3
— = lta+t 4t Zx
1 3 3 — (n n—1
(1—2)? = 1+42x+3x° +42° = ;(1)x
1 = /n I
A—aF Z(k)
—1
(x_'_y)n — xn —l—nxn_ly—i- n(n2 )xn—2 2

S22 ()

The goal is to ‘see’ a compllcated expression is one of thevalffor a special choice
of z). For example, letX be a Poisson with paramet@r thus fx(n) = xA"e " /n! if
n €40,1,2,...} and0 otherwise. Then

M = E tX1 __ = tn )\ne—A
x(t) = El¥] = Y e
n=0
Fortunately, this looks like one of the expressions aboamely the one foe”. Rearranging

a bit gives

- exp ()\et) = exp ()\et — )\) .

6.3. Moments.

(1) Convolution: Let X andY be independent random variables with densifigsand fy .
Then the density ok + Y is

Frav(w) = (fx * fy)( / P (W) fy (t — u)du

we call fx * fy the convolution ofX andY. While we can prove by brute force that
fx = fy = fy * fx, a faster interpretation is obtained by noting that sincaitamh is
commutative X +Y =Y + X and hencefx.y = fy,x, which implies convolution is
commutative. Convolutions give us a handle on the densitgdms of independent random
variables, and is a key ingredient in the proof of the Certtiralit Theorem.
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(2) Generating Functions: Given a sequencg, }>° ,, we define its generating function by

Ga(s) = f: aps"
n=0

for all s where the sum converges. For discrete random variablesateabn values at the
non-negative integers, an excellent choice is to tgke= Prob(X = n), and the result

is called the generating function of the random variakle Using convolutions, we find
that if X; and X, be independent discrete random variables taking on non-negative inte-
ger values, with corresponding probability generatingcfions Gy, (s) andGx, (s), then

GX1+X2 (S> = GXl (S>GX2 (S>

(3) Moment Generating Functions: For many probability problems, the moment generating
function M (¢) is more convenient to study than the generating functiors defined by
Mx (t) = E[e*X], which implies (if everything converges!) that

pat® | pst?

Mx(t) = 14 pjt+ o a0

_|_...7

where yi), = d*Mx(t)/dtk is the £ moment of X. Key properties of the moment
t=0
generating function are: (i) Let and be constants. Then

MaX-i—B (t) = 6BtMX (Oét)

@) if Xy,..., Xy are independent random variables with moment generatingtibns
Mx, (t) which converge foft| < §, then

MX1+~~~+XN (t) = MX1 (t)MX2 (t) T MXN (t)

If the random variables all have the same moment generatingtibn M (t), then the
right hand side become¥ x (¢)"V. Unfortunately the moment generating function does not
always exist in a neighborhood of the origin (this can be dBenonsidering the Cauchy
distribution); this is rectified by studying the charactéd function,E[e?X], which is es-
sentially the Fourier transform of the density (thais—2"~]).

(4) Moment Problem: When does a sequence of moments uniquely determine a pligbabi
density? If our distribution is discrete and takes on onlytdig many (for definiteness,
say N) values, then only finitely many moments are needed. If thsitheis continuous,
however, infinitely many might not be enough. Consider

T — 1 e—(log2 x)/2
fl( ) \/W
folz) = fi(z) [l +sin(27 logx)].

These two densities have the same integral moments {theroments are**/2 for k& a non-
negative integer); while they also have the same half-ratagoments, all other moments
differ (thus there is no sequence of moments where they agned has an accumulation
point; see 85). Thus it is possible for two densities to héasgesame integral moments but
differ.
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6.4. Approximations and Estimations.
(1) Cauchy-Schwarz inequality: For complex-valued functionsandg,

[ st < ([ \f(w)\zdx)% (f La(sc)\%z:c)é |

One of my favorite applications of this was proving the absolvalue of the covariance of
X andY is at most the product of the square-roots of the variancég KBy step in the
proof was writing the joint densityx y (z, y) as+/fx.v (z,y)-v/fx,y(z, y) and putting one
factor with |z — px| and one withjy — iy |. The reason we do this is we cannot directly
integratez? or |x — ux|?; we need to hit it with a probability density in order to have a
chance of getting a finite value. This explains why we write diensity as a product of its
square root with its square root; it allows us to use Caudadtiyw@rz.

(2) Stirling’s Formula: Almost any combinatorial problem involves factorialsheit directly
or through binomial coefficients. Itis essential to be abledtimate:! for largen. Stirling’s
formula says

1 1 139
| = n"e™V2mn (1 _ )
s e vemn ( T 120 T 98802 T Bisdon® ) ’

thus forn large,n! ~ (n/e)?v/2mn. There are many ways to prove this, the most common
being complex analysis or stationary phase. We can get pdoklestimate by ‘summify-
ing’. We haven! = exp(logn!), and

log n! :ZIng ~ / log tdt.
k=1 1

As the anti-derivative ofogt is tlog t, we findlogn! ~ nlogn — n, son! ~ en8" ™" =
n"e~™, which is off by a factor of/27n (while this is a large number, it is small relative
ton"e~¢. If we wanted, using the integral test and a better job ofrestie upper and lower
sums (the Euler-Maclaurin formula), we could get a bett@raximation forn!.

(3) Chebyshev’'s Theorem: Chebyshev’'s theorem (or inequality) is a mixed blessings it
terrific in the sense that it works for any density that hasdinmiean and variance; however,
in many applications its estimates are far from the truthe fidason is that it works fall
such densities, and thus cannot exploit any specific priegesf the density to get decay.
(This is similar to the difference between using Divide ar@hQuer or Newton’s Method
to find a zero of a function; Newton’s method is magnitudetefasecause it assumes more
about the function, namely differentiability, and thusxp#its that to get better estimates.)
Chebyshev’s theorem states

1

Prob(|X — pu| > ko) < oL

Note the eventX — u| > ko is a very natural event to consider: we are seeing how far
X is from its expected value, and measuring this differenceiims of the natural units,
the standard deviation. The assumptions for Chebyshestad¢im are a little weaker than

those for the Central Limit Theorem, and there are situatishere crude bounds suffice



20 STEVEN J. MILLER

(for example, some of the problems we studied in additivelmemtheory).

(4) The Central Limit Theorem: The Central Limit Theorem (CLT) states that¥i, ..., X,
are independent, identically distributed random variglalith mearn.: and variance?, then

in many instances we have

g Xt Xe—mp Xt Xn

o/ o/

converges to having the standard normal distributiom ass co. If the moment gener-
ating function exists in a neighborhood containing the iarighat suffices for the CLT
to hold (though with additional work we the conclusion holdsler weaker assumptions
about theX;’s). In practice one often uses the normal approximatioreanc> 30. One
application is to use the CLT to estimate sums of random bkesa Another is for hy-
pothesis testing; there key thresholds are that lifas the standard normal distribution, the

Prob(|Z] < 1) ~ 68.3%, Prob(|Z| < 1.96) ~ 95.0% andProb(|Z| < 2.575) ~ 99.0%.

(5) Taylor Series: See the section from Calculus | and II. For us, particulariportant Taylor

series are
.TZ .Z’g J)A
log(1 — T S AT
og(l+ z) x 2+3 4+
J)‘Q .TS J)A
log(1 — = I I
og(l —x) <x+2+3+4+ )
P TP (1+2)"
© = T T L n
. 2 a8 . T\"
e = 1—x+§—§+---—nh_>n;10<1—g)
1
= l4+z+2®+2°+---.
11—z

6.5. Applications.

(1) Benford’s Law:

(2) Additive Number Theory:
(3) Economics:

(4) Gambling:

(5) Sabermetrics:

(6) Monte Carlo Integration:

7. NUMBER THEORY (MATH 308 AND 406)

(1) Elementary functions: ¢ = cos(f) + isin(6), ¢(q) is the number of positive integers at

mostq that are relatively prime tg, ....
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(2) The Prime Number Theorem or the Siegel-Walfisz Theoremwe used these frequently
in analyzing prime sums as these yield unconditional eséma

(3) Partial summation: allows us to pass from one known sum to another. For exampdeyk
ing > ., logp ~ x we can then evaluafe’ _, 1.

(4) Dirichlet’s Pidgeonhole principle: this was very useful in studying®a mod 1, and gave
us very good rational approximations to irrationals.

(5) Unique factorization of the integers: this was crucial in proving(s) = > 1/n® also
equals[[,(1 - p~1)~1; as we knwo where the integers are, the hope is that we carigse t
knowledge to deduce information about the primes.

8. GENERAL TECHNIQUES (FOR MANY CLASSEY

These are techniques that appear in several different class I've taught, over and over. The
notes below are written from the point of view of a student whohas taken these classes, and
thus some of the passages below may be hard to follow / may ref® advanced material.

(1) Being algebraically lazy: Another common theme is that we try to do as little work as
possible to get as good of an estimate as needed. For exawwlepmputed the mo-
ment generating function of the standard normal by compiethe square, and found
Mx(t) = E[e!X] = ¢/2. Later we needed to Fourier transform of the standard normal
while we could attack the integral which arises, it is farieat note the Fourier transform
aty is the same as the moment generating functionatiy. While we need to use some
results from complex analysis to justify this argument, wevget the Fourier transform.

(2) Problem formulation and blinders: We've also seen on a few problems how the way the
problem is formulated can influence how one attempts to salueor example, recall the
function 23 sin(1/x). The oscillation is bounded by two cubics; however, if wet josk
at the part above the-axis, the plot looks like a parabola. It is thus a good idegou're
stuck, to try and think of alternative ways of looking at algemm. Other examples include
the graph coloring problem from the HW (vertices are 2 thtodgand are connected if
they share a divisor; the HW problem was to show the coloringlver is at least 13, which
can be done by looking at powers of 2, but it's actually atti®€0, from looking at even
numbers) and the following (for each> 1 finding anm > 1 such thatm only has Os and
1s base 10; one proof is similar to the pidgeonhole probleensafbset of ay, . . ., a,} has
a sum divisible byn). It is amazing how often one can get trapped at looking abalpm
in a certain way; this is something to be aware of.

(3) Choosing approachesCertain functions become natural choices in studying teptib-
lems. For example, fon*a mod 1 we use the exponential function. The reason this is
so useful is thatxp(2rin*a) = exp(27i(n*a mod 1)). Thus we may drop the difficult
modulo 1 condition and sum more easily. Depending on thelpnobdifferent functions
and expansions will be more useful than others. The easeielWie exponential function
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handles the modulo 1 condition suggests the usefulnesgbfiag Fourier analysis.

(4) Adding zero / multiplying by one: This is perhapshe most important technique to learn,
though it is one of the hardest to master. The difficult pathese methods is figuring out
how to ‘do nothing’ in an intelligent way. The first examplewmight remember is proving
the product rule from calculus. Let(x) = f(x)g(x). Then

A(z + h) — A(z)

Alfz) = Jim h
o fa e Bl h) — f()g(@)
h—0 h
oy L Mgl £ h)H9g0xrh) +f09g0crh) — f(x)g )
h—0 h
_ gy |[fE Mgt h) - fl@)gle+h) | fle)gleth) - fl@)g(@)
- h—0 h h

flx+h) - flx)

(o) 28 h) = ()

— flzli% ; glx+h) + flng(l)f
z+h)— flx B) —
= fl(x)g(x)+ f(x)d ().

My favorite example was probably in proving the multinondadtribution is a density.

(5) Summifying or summification: We frequently replacé] a,, with exp (log[] a,,), as this
converts the product to a sum, and we have a much better wadéirsy of sums. Proba-
bly the most important use was in proving the Central Limiedtem, where we replaced
studying] [, Mx, (t) with studying) . log My, (t). We also used it to obtain an approx-
imation for Stirling’s formula, replacing! with >,_ log¢ (which we evaluated by us-
ing the integral test). We used this to provide a good lowemiofor the singular series

S(N) =1~ <1 — ﬁ) in the Circle Method (writing odd numbers as the sum of three

primes). We also used it to get a good lower bounddfy), which allowed us to see that
q/loglogq < ¢(q) < ¢ — 1.

(6) L?-norms: in the Circle Method we had the generating functign(z) = > p<nlogp

exp(2mipz). We are able to get a very good bound ffalr|FN(9:)|2d9: as |Fy(2)|> =
Fn(z)Fn(—x), and the only terms that survive the integration are whenave Ineinforce-
ment. More generally, it is often easy (or at least easiegeireasonable estimates for
quantities such a$ | F(z)[*" dz.

(7) Removing conditions: Whenever you have a theorem, you should always explore what
happens if you remove a condition. Frequently (though noags$) the claim no longer
holds; sometimes the claim is still true but the proof is lkardRarely, but it can happen,
removing a condition causes you to look at a problem in a nght,liand find a simpler
proof.
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Efficient algebra: It is frequently worthwhile to think about whether or not wancap-
proach a tedious algebra problem another way. Some exafnphegrevious courses: to
computeA” for n large, diagonalizel if possible, sayA = SAS~! with A the diagonal
matrix of eigenvalues. TheA™ = SA"S~!, andA" is readily computed. Another example
is telescoping serie$qg, —ag) + (a2 —aq) + - - -+ (a, —a,—1) = a, —ap; this is a key ingre-
dient in many proofs of the Fundamental Theorem of Calcukreguently in probability
we combine these approaches with recognizing and exgladimidentity; for example, if
we had to evaluat¢})2? + (;)2° + --- + (7')2", we might notice that this is almost the
binomial expansion ofl + 2)"; it would be, but we're missing the first two terms. The
solution is to add zero by adding and subtracting those teshigh gives

G (e () = ()= (()+()2)

= (14+2)"=(n+nn-1) = 3" —n?

note we included the factdr—* to make this match the standard binomial theorem expan-
sion.

llluminating algebra: It is very easy to obtain complicated expressions involthegpa-
rameters of interest; while the answer is correct, the finadlpct is not illuminating. It is
worthwhile to see if the answer can be simplified. For exameasider the sabermetrics
(baseball math) problem where we had Te&nscores runs from a geometric distribution
with parametep (in this caseProb(X = m) = (1 — p)p™ form € {0,1,2,...} and
allows runs to Teamy” with a geometric distribution with parametgrwe assume the two
random variables are independent. The mean number of riam Xescores is denoted

RS, and equal®S = ﬁ which impliesp = %; we letRA denote the runs allowed, and
RA = li_q which impliesq = %- After some algebra we found the probability Team
wins is
(1 —q)
p(1 —q) +q(1—p)
No one, however, things in terms of the decay probabilityfiscoringm to scoringm + 1
runs; we want a formula in terms of runs scored RS and rung@tidRA. Substituting for

p andq yields

(1- BA)Rs

1+RA

(1 + RS) ((1_13!;/&)}:28 + RA(l_lESRS)) )

14+RS 1+RA

a most unilluminating formula! With some work, we can sinfyplihis to the nice answer
we’ll describe below; however, what is important about fhrisblem (for us — major league
baseball would beg to differ!) is not the result, but how taate it efficiently. We know

thatﬁ is a nice expression, namely RS, and similarly{-@g. Thus we should take our

expression and multiply by 1 in the for(a/(1 — p)(1 — q)) / (1/(1 —p)(1—q)). Doing
so yields

1
p(l—q) Twiao _ 15 _ RS
p(1—q)+q(1—p) —irr £+  RS+RA

(1-p)(1—-q) —p
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FIGURE 1. Histogram plot of number of shots to make 341 baskets gwvé8%
chance of making a shot. The data was obtained by playingaimed 0,000 times
and recording how long it took. The sample mean is 852.05&c{wis quite close
to the predicted 852.5), the sample standard deviation.B032 (quite close to the
predicted 35.7596), and 67.4% of the time the number of sivatswithin 35 of
852.5 (quite close to our prediction).

Note we obtain a very nice formula very quickly.

(10) Numerical exploration: When given a problem, one can frequently build intuition bg-r

ning numerical experiments. For example, one of our probleancerned a person who
made 40% of all their shots. We wanted to know the probaliitigt the number of shots
required to make 341 baskets was within 35 of the mean nunfb&nats required. We

came up with an answer by seeing that this was equivalenetsum of 341 independent
geometric random variables with parametet .4, and thus the Central Limit Theorem is
applicable to estimate the probability.

To test our predictions, consider the person shooting theyl get 341 baskets a stagger-
ing 10,000 times (see Figure 1). Note the numerical dataite glose to theory. If you can
program in some environment, you can quickly gather nurakdata to help elucidate the
answer. The Mathematica code for this problem is:

testefnum]:=Modul€g/{},

count= {};

prob = 0;

mean= 852.5;

Forln = 1,n < num n++,
{

numfound= 0;

counter= 0;
While[numfound< 341,
{

counter= counter+ 1;
If[Randonf] < .4, numfound= numfound+ 1];

3
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count= AppendTdcount counte;

If [Abs|counter— mear < 35, prob= prob-+ 1];

};

PrinHistogramcount {750, 950, 10}, Probability];
Printjprob100.0/num;

I;

Of course, sometimes we are fortunate enough that, insteadtiting for numerical
answers, programs like Mathematica can find the exact answeexample, consider the
following difference equation, which arises in a problerfated to a random walk with

boundaries:
1 1—p 1

Typing
Simplify[RSolve[{T[i]==p (T[i+ 1] + 1) + (1 - p) (T[i - 1] + 1), T[0] == 0, T[M] == 0},
T, ]

. HM((I_;p)i_l) _i(%p)”f
((%’)M - 1) (2p —1)

(11) Test functions: You should always consider testing the limits of a theoreomj@cture or
intuition. Does it hold for the standard normal? For the ®@g@c How important is the
finiteness of moments? Usually a result is false if you remeeendition; however, when
you are trying to figure out what the conditions should be inetem, you're in a different
mindset. In this case, it is worthwhile to play with variousitions and see what happens.

into Mathematica yields

(12) Check for reasonablenessWhenever we have a formula, it is a very good idea to check
special cases to see if it is reasonable. For example, canrtbiel sabermetrics formula from
the previous point: if a team scores on average RS runs pex gachallows on average RA
per game (with RS and RA independent geometric random \asatith respective means
RS and RA), then its probability of winning 8S/(RS + RA). Is this formula reasonable?
There are many checks we can do. The first is that we alwaysrgehber between 0 and 1
(which is a must for a probability!). Further, if RS is zeroibRA tends to infinity than we
have no chance of winning, exactly as we would expect. If vageson average more runs
than we allow, our winning percentage is greater than 50%ewfiwe score and allow the
same number on average than the winning percentage is 5@84,@gte reasonable.

For another example, imagine we flip a fair coin with probiabip of heads and — p
of tailsn times, and we ask how many runs (alterations between headsis) there are;
for example, if the outcome were HHTTHTHTTTTTHTHHHH theretlke were 18 tosses,
9 heads and 9 tails and 9 runs, the shortest being a run ohldnghd the longest being
a run of length 5. The expected number of run$ is (n — 1)2p(1 — p). Is this formula
reasonable? Note thatjf= 0 or p = 1 then because of the factp(l — p) the expected
number of runs is 1; we should be shocked if this is not the, Gesi the coin always lands
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on heads, how could there ever be an alteration? A littleubadcshows that the maximum
expected value is whem= 1/2, which also seems reasonable. Finally, in the special case
p = 1/2 the expected number is essentiall§2; there are: tosses and each toss has a 50%
chance of being different than the previous (and thus stadirun), so again our answer
makes sense.

(13) Check all conditions: Whenever you want to use a theorem, make sure all the conslitio
are satisfied. For example, if you are summing the geomedriesl + x + 22 + 2% + - - -
then you better haver| < 1. If you are asked whether or not something is a probability
distribution, it must satisfy both requirements (non-riegsand sums to 1; it is not enough
to just sum to one). If you want something to be a group, it rsasisfy all four properties
(closure, identity, associativity, inverse). Frequersityne but not all of the conditions are
met.
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