
SOLUTION KEYS FOR MATH 150 HW (SPRING 2018)

STEVEN J. MILLER

1. HW #1: DUE MONDAY, FEBRUARY 5, 2018

1.1. Problems: HW #1: Due Monday, February 5, 2018.

Problem 1: What is wrong with the following argument (from Mathematical Fallacies, Flaws, and Flimflam - by Edward Barbeau):
There is no point on the parabola16y = x2 closest to(0, 5). This is because the distance-squared from (0,5) to a point(x, y) on the
parabola isx2+(y− 5)2. As 16y = x2, the distance-squared isf(y) = 16y+(y− 5)2. Asdf/dy = 2y+6, there is only one critical
point, aty = −3; however, there is nox such that(x,−3) is on the parabola. Thus there is no shortest distance!

Problem 2: Compute the derivative ofcos(sin(3x2 + 2x lnx)). Note that if you can do this derivative correctly, your knowledge of
derivatives should be fine for the course.

Problem 3: Let f(x) = x2+8x+16 andg(x) = x2+2x− 8. Compute the limits asx goes to 0, 3 and∞ of f(x)+ g(x), f(x)g(x)
andf(x)/g(x).

1.2. Solutions: HW #1: Due Monday, February 5, 2018.

Problem 1: What is wrong with the following argument (from Mathematical Fallacies, Flaws, and Flimflam - by Edward Barbeau):
There is no point on the parabola16y = x2 closest to(0, 5). This is because the distance-squared from (0,5) to a point(x, y) on the
parabola isx2+(y− 5)2. As 16y = x2, the distance-squared isf(y) = 16y+(y− 5)2. Asdf/dy = 2y+6, there is only one critical
point, aty = −3; however, there is nox such that(x,−3) is on the parabola. Thus there is no shortest distance!

Solution: The error in the argument is that, to find maxima and minima, itis not enough to just check the critical points; you must
also check the boundary points. The boundary points here arey = 0 andy = ∞ (ok, justy = 0). We thus see thaty = 0 gives the
closest point, whiley → ∞ gives ever increasing distances, indicating that there is no maximum.

Problem 2: Compute the derivative ofcos(sin(3x2 + 2x lnx)). Note that if you can do this derivative correctly, your knowledge of
derivatives should be fine for the course.

Solution: We use the chain rule multiple times. Remember that the derivative of f(g(x)) is f ′(g(x)) ∗ g′(x).The derivative of
cos(sin(3x2 + 2x lnx)) is two chain rules (with a sum rule and a product rule inside):

− sin(sin(3x2 + 2x lnx)) ∗ d

dx

[

sin(3x2 + 2x lnx)
]

,

which is

− sin(sin(3x2 + 2x lnx)) ∗ cos(3x2 + 2x lnx) ∗ d

dx

[

3x2 + 2x lnx
]

,

which is just
− sin(sin(3x2 + 2x lnx)) ∗ cos(3x2 + 2x lnx) ∗ (6x+ 2 lnx+ 2).

Problem 3: Let f(x) = x2 +8x+16 andg(x) = x2 +2x− 8. Compute the limits asx goes to 0, 3 and 8 off(x) + g(x), f(x)g(x)
andf(x)/g(x).

Solution: We havef(0) = 16, f(3) = 49, andf(∞) = ∞, while g(0) = −8, g(3) = 7 andg(∞) = ∞. Using the limit of a sum
(product, quotient) is the sum (product, quotient) of the limit (so long as everything is defined), we see there is no problem at 0 or 3.
For the first,f(x)+g(x) goes to 16-8 = 8 asx goes to 0, 49 + 7 = 56 asx goes to 3, and∞+∞ asx goes to∞ (note that while∞−∞
is not defined,∞+∞ is and just equals∞). Forf(x)g(x), this tends to 16 * (-8) = -128 asx goes to 0, to 49 * 7 = 343 asx goes to 3,
and∞∗∞ = ∞ asx goes to∞. For the quotient, it is important that we do not have 0/0 or∞/∞. Thus we can immediately do the
first two cases, and seef(x)/g(x) goes to16/(−8) = −2 asx tends to 0 and 49/7 = 7 asx tends to 3. For the last, as we have∞/∞
we need to work a bit harder. Asf(x) = x2 +8x+16 andg(x) = x2 +2x− 8, f(x)/g(x) = (1+ 8/x+16/x2)/(1+ 2/x− 8/x2)
(from pulling out anx2 from the numerator and denominator). Now each piece has a well-defined and finite limit asx tends to∞,
and we see thatf(x)/g(x) tends to 1 asx tends to∞.
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2 STEVEN J. MILLER

Note you could also do Problem 3 by expanding out the expressions, but that is much harder. For example,f(x)g(x) is a polyno-
mial of degree 4 that can be analyzed directly. Also, forf(x)/g(x) one could proceed by L’Hopital’s rule. That said, the point of this
exercise was to remind you that the limit of a sum is the sum of the limits, and so on.

2. HW #2: DUE WEDNESDAY, FEBRUARY 7, 2018

2.1. Problems: HW #2: Due Wednesday, February 7, 2018.

Page 823: #9::Find |−→a |, | − 2
−→
b |, |−→a −−→

b |, −→a +
−→
b and3−→a − 2

−→
b for −→a = 〈1,−2〉 and

−→
b = 〈−3, 2〉.

Page 823: #18::Find a unit vector−→u in the same direction as−→a = 〈5,−12〉. Express−→u in terms of
−→
i and

−→
j , and find a vector−→v

in the opposite direction as that of−→a .

Page 823: #38::Given three pointsA(2, 3), B(−5, 7) andC(1,−5), verify by direct computation that
−−→
AB +

−−→
BC +

−→
CA is the zero

vector.

Page 824: #42::Let−→a = 〈a1, a2〉 and
−→
b = 〈b1, b2〉. Prove by componentwise arguments that if−→a +

−→
b = −→a then

−→
b =

−→
0 .

Page 833: #1::Let −→a = 〈2, 5,−4〉 and
−→
b = 〈1,−2,−3〉. Find2−→a +

−→
b , 3−→a − 4

−→
b , −→a · −→b , |−→a −−→

b | and−→a /|−→a |.

Page 834: 39:Two vectors are parallel provided that one is a scalar multiple of the other. Determine whether the vectors−→a =

〈4,−2, 6〉 and
−→
b = 〈6,−3, 9〉 are parallel, perpendicular or neither.

Additional Problem: Find the cosine of the angle between−→a = 〈2, 5,−4〉 and
−→
b = 〈1,−2,−3〉.
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2.2. HW #2: Due Wednesday, February 7, 2018: Solutions:

Page 823: #9::Find |−→a |, | − 2
−→
b |, |−→a −−→

b |, −→a +
−→
b and3−→a − 2

−→
b for −→a = 〈1,−2〉 and

−→
b = 〈−3, 2〉.

Solution: We have|−→a | =
√

12 + (−2)2 =
√
5. As−2

−→
b = 〈6,−4〉, | − 2

−→
b | =

√

62 + (−4)2 =
√
52. Since−→a − −→

b = 〈4,−4〉,
|−→a −−→

b | =
√

42 + (−4)2 =
√
32. Finally,−→a +

−→
b = 〈−2, 0〉 and

3−→a − 2
−→
b = 〈3,−6〉 − 〈−6, 4〉 = 〈9,−10〉.

Page 823: #18::Find a unit vector−→u in the same direction as−→a = 〈5,−12〉. Express−→u in terms of
−→
i and

−→
j , and find a vector−→v

in the opposite direction as that of−→a .

Solution: We have|−→a | =
√

52 + (−12)2 =
√
169 = 13. A unit vector is−→u = −→a /|−→a |, or −→u = 〈5/13,−12/13〉. As

−→
i = 〈1, 0〉

and
−→
j = 〈0, 1〉, we have−→u = 5

13

−→
i − 12

13

−→
j . As−−→a has the opposite direction as−→a , we see we may take−→v = −−→a = 〈−5, 12〉.

Of course, there are multiple answers. We could also take−→v = −−→u , as−→u and−→a are in the same direction.

Page 823: #38::Given three pointsA(2, 3), B(−5, 7) andC(1,−5), verify by direct computation that
−−→
AB +

−−→
BC +

−→
CA is the zero

vector.

Solution: Given two pointsP = (p1, p2) andQ = (q1, q2), by
−−→
PQ we mean the vector fromP toQ, which is〈q1 − p1, q2 − p2〉. We

thus have
−−→
AB = 〈−5, 7〉 − 〈2, 3〉 = 〈−7, 4〉
−−→
BC = 〈1,−5〉 − 〈−5, 7〉 = 〈6,−12〉
−→
CA = 〈2, 3〉 − 〈1,−5〉 = 〈1, 8〉,

which implies −−→
AB +

−−→
BC +

−→
CA = 〈−7, 4〉+ 〈6,−12〉+ 〈1, 8〉 = 〈0, 0〉.

Why is this true? We are traveling in a directed way along the three edges of a triangle, and we return to where we started.

Page 824: #42::Let−→a = 〈a1, a2〉 and
−→
b = 〈b1, b2〉. Prove by componentwise arguments that if−→a +

−→
b = −→a then

−→
b =

−→
0 .

Solution: Assume−→a +
−→
b = −→a . Substituting for these vectors yields

〈a1, a2〉+ 〈b1, b2〉 = 〈a1, a2〉,
or equivalently

〈a1 + b1, a2 + b2〉 = 〈a1, a2〉.
This is a pair of equations:

a1 + b1 = a1, a2 + b2 = a2.

We now have simple equations of numbers and not vectors. For the first, subtractinga1 from both sides givesb1 = 0, while for the
second subtractinga2 from both sides givesb2 = 0. Thus our vector

−→
b = 〈0, 0〉. The key observation here is that we can reduce a

vector question to a system of equations about numbers, and we know how to handle / analyze numbers.

Page 833: #1::Let −→a = 〈2, 5,−4〉 and
−→
b = 〈1,−2,−3〉. Find2−→a +

−→
b , 3−→a − 4

−→
b , −→a · −→b , |−→a −−→

b | and−→a /|−→a |.

Solution: First,
2−→a +

−→
b = 〈4, 10,−8〉+ 〈1,−2,−3〉 = 〈5, 8,−11〉

3−→a − 4
−→
b = 〈6, 15,−12〉 − 〈4,−8,−12〉 = 〈2, 23, 0〉.
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Next,
−→a · −→b = 2 · 1 + 5 · (−2) + (−4) · (−3) = 2− 10 + 12 = 4.

As−→a −−→
b = 〈1, 7,−1〉,

|−→a −−→
b | =

√

12 + 72 + (−1)2 =
√
51.

Finally, as|−→a | =
√

22 + 52 + (−4)2 =
√
45, we see−→a /|−→a | = 〈2/

√
45, 5/

√
45,−4/

√
45〉.

Page 834: 39:Two vectors are parallel provided that one is a scalar multiple of the other. Determine whether the vectors−→a =

〈4,−2, 6〉 and
−→
b = 〈6,−3, 9〉 are parallel, perpendicular or neither.

Solution: We have
−→a · −→b = 4 · 6 + (−2) · (−3) + 6 · 9 = 24 + 6 + 54 = 84.

If the two vectors were perpendicular, the dot product should be zero. As it isn’t zero, we know the vectors are not perpendicular. We
now check to see if they are parallel; that means the cosine ofthe angle should be 1 or -1. To compute this, we need the lengths of the
two vectors. We have

|−→a | =
√

42 + (−2)2 + 62 =
√
16 + 4 + 36 =

√
56

and
|−→b | =

√

62 + (−3)2 + 92 =
√
36 + 9 + 81 =

√
126.

Thus ifθ is the angle between the two vectors,

cos θ =
−→a · −→b
|−→a | |−→b |

=
94√

56
√
126

=
84

84
= 1,

so the two vectors are indeed parallel.

Additional Problem: Find the cosine of the angle between−→a = 〈2, 5,−4〉 and
−→
b = 〈1,−2,−3〉.

Solution: If θ denotes the angle, then

cos θ =
−→a · −→b
|−→a | |−→b |

.

We worked with these two vectors in Problem 1, and saw−→a · −→b = 4 and |−→a | =
√
45. A similar calculation gives|−→b | =

√

12 + (−2)2 + (−3)2 =
√
14. Thus

cos θ =
4√

45
√
14

.

3. HW #3: DUE MONDAY, FEBRUARY 12, 2018

3.1. Problems: HW #3: Due Monday, February 12, 2018.

Section 11.2: Question 1:The corollary on page 830 states two vectors are perpendicular if and only if their dot product is zero.
Find a non-zero vector, say−→u , that is perpendicular to〈1, 1, 1〉. (Extra credit: find another vector perpendicular to〈1, 1, 1〉 and the
vector−→u that you just found. This extra credit should be written right after this problem, or as part of this problem.)
Question 2:Consider a triangle with sides of length 4, 5 and 6. Which two sides surround the largest angle, and what is the cosine of
that angle?
Section 11.3: Question 3:Find the determinant of the2×2 matrix

(

1 2
3 4

)

; in other words, we filled in the entries with the numbers

1, 2, 3 and 4 in that order, row by row. Similarly, find the determinant of the3× 3 matrix
(

1 2 3
4 5 6
7 8 9

)

; in other words, we fill in the

numbers by 1, 2, 3, 4, 5, 6, 7, 8, 9.(Extra credit: find a nice formula for the determinant of then × n matrix where the entries are 1,
2, ...,n2 filled as above, and prove your claim. This extra credit should be turned in on a separate sheet of paper.)
Question 4:Find the area of the parallelogram with vertices (0,0), (2,4), (1,6), (3,10).
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3.2. HW #3: Due Monday, February 12, 2018: Solutions:

Section 11.2: Question 1:The corollary on page 830 states two vectors are perpendicular if and only if their dot product is zero. Find a non-zero
vector, say−→u , that is perpendicular to〈1, 1, 1〉. (Extra credit: find another vector perpendicular to〈1, 1, 1〉 and the vector−→u that you just found.
This extra credit should be written right after this problem, or as part of this problem.)

Solution: Let’s say−→u = 〈x, y, z〉. Then−→u · 〈1, 1, 1〉 = 0 means

x · 1 + y · 1 + z · 1 = 0.

If we takez = −(x+ y), we see the dot product is zero. There are thus many possibilities, such as−→u = 〈1, 1,−2〉. Another possibility is to take
z = 0 and theny = −x, giving us〈1,−1, 0〉. Notice the solution space is two-dimensional; we’ll see later it’s a plane. There are three dimensions
initially; we lose one in the direction〈1, 1, 1〉 and thus two dimensions remain.

Let’s say now we want to find a vector−→w = 〈x, y, z〉 perpendicular to〈1, 1, 1〉 and〈1,−1, 0〉. We then have

x · 1 + y · 1 + z · 1 = 0 and x · 1 + y · (−1) + z · 0 = 0.

The first gives usx + y + z = 0, while the second gives usx − y = 0 or x = y. Substituting this into the first gives2x + z = 0 soz = −2x.
Takingx = 1 we seey = 1 andz = −2, for the vector〈1, 1,−2〉 is perpendicular to both〈1, 1, 1〉 and〈1,−1, 0〉.

Question 2: Consider a triangle with sides of length 4, 5 and 6. Which two sides surround the largest angle, and what is the cosine of that angle?

Solution: Let θij denote the angle between the sides of lengthi andj. By the law of cosines, ifc2 = a2 + b2 − 2ab cos θab, thencos θab =
(a2 + b2 − c2)/2ab, so the cosines are

cos θ45 =
42 + 52 − 62

2 · 4 · 5 =
1

8
=

2

16
cos θ46 =

42 + 62 − 52

2 · 4 · 6 =
9

16
cos θ56 =

52 + 62 − 42

2 · 5 · 6 =
3

4
=

12

16
.

Note all the angles are between 0 and 90 degrees (i.e., all angles are acute). The larger the angle, the smaller the cosine.Thus the largest angle has
thesmallestcosine, so the largest angle is the one between the sides of length 4 and 5.

Section 11.3: Question 3:Find the determinant of the2 × 2 matrix
(

1 2
3 4

)

; in other words, we filled in the entries with the numbers 1,

2, 3 and 4 in that order, row by row. Similarly, find the determinant of the3 × 3 matrix
(

1 2 3
4 5 6
7 8 9

)

;in other words, we fill in the

numbers by 1, 2, 3, 4, 5, 6, 7, 8, 9.(Extra credit: find a nice formula for the determinant of then × n matrix where the entries are 1,
2, ...,n2 filled as above, and prove your claim. This extra credit should be turned in on a separate sheet of paper.)

Solution: For the2× 2 matrix, the determinant is just1 · 4− 2 · 3 = −2. For the3 × 3 matrix, we write the first two columns again
and find the determinant is

1 · 5 · 9 + 2 · 6 · 7 + 3 · 4 · 8− 7 · 5 · 3− 8 · 6 · 1− 9 · 4 · 2 = 0.

A little inspection illustrates why this is zero. Note that twice the second row is the sum of the first and third row. Thus the three vectors
do notreally form a 3-dimensional parallelpiped, but rather justa 2-dimensional parallelogram, and the volume of a 2-dimensional
parallelogram in 3-dimensional space is just zero. Similarly, the determinant for then×n matrix is zero ifn ≥ 3 as twice the second
row is always the first row plus the third.

Building on this observation, we can show the determinant ofthen × n matrix with entries from 1 ton2 is zero forn ≥ 3, even
though we don’t have a formula to compute these determinantsfor n ≥ 4! The reason is we have the geometric definition of the
determinant, namely that it gives then-dimensional volume of the region spanned by the rows. Notice that whenn ≥ 3, the sum of
the first and third rows equals twice the sum of the second row.Thus these three vectors all lie in a plane, and we have lost atleast
one dimension. This implies then-dimensional volume is zero.

Question 4:Find the area of the parallelogram with vertices (0,0), (2,4), (1,6), (3,10).
Solution: The parallelogram is generated by the vectors−→v = 〈2, 4〉 and−→w = 〈1, 6〉; we find these by looking at〈2, 4〉 − 〈0, 0〉 and
〈1, 6〉 − 〈0, 0〉; note that〈3, 10〉 = 〈2, 4〉 + 〈1, 6〉. We know the area is equal to the determinant of the matrix with first row−→v and
second row−→w . Thus we need the determinant of the matrix

(

2 4
1 6

)

,which is2 · 6− 1 · 4 = 8. Note that if we wrote the vectors in

the other order we would have the matrixA′ =
(

1 6
2 4

)

,which has determinant1 · 4 − 6 · 2 = −8. What went wrong? We have to
remember it is the absolute value of the determinant that is the area.
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4. HW #4: DUE WEDNESDAY, FEBRUARY 14, 2018

4.1. HW #4: Due Wednesday, February 14, 2018: Problems:

Page 842: #1:Find−→a ×−→
b with −→a = 〈5,−1,−2〉 and

−→
b = 〈−3, 2, 4〉

Page 842: #5:Find the cross product of the−→a = 〈2,−3〉 and
−→
b = 〈4, 5〉 by extending them to 3-dimensional vectors−→a = 〈2,−3, 0〉

and
−→
b = 〈4, 5, 0〉.

Page 842: #11:Prove that the vector product is not associative by comparing−→a × (
−→
b ×−→c ) with (−→a ×−→

b )×−→c in the case−→a =
−→
i ,−→

b =
−→
i +

−→
j , and−→c =

−→
i +

−→
j +

−→
k .

Page 842: #12:Find nonzero vectors−→a ,
−→
b and−→c such that−→a ×−→

b = −→a ×−→c , but
−→
b 6= −→c .

Section 11.4: Question 1:Write parametric equations of the straight line that passesthrough the pointP and is parallel to the vector
−→v , with P the point (0,0,0) and−→v the vectori + 2j + 3k 〈1, 2, 3〉.

Section 11.4: Question 2:Write parametric equations of the straight line that passesthrough the pointP and is parallel to the vector
−→v , with P equal to (3,-4,5) and−→v = -2i + 7j + 3k = 〈−2, 7, 3〉.

Section 11.4: Question 3:Write parametric equations of the straight line that passesthrough the pointP and is parallel to the vector
−→v , with P equal to (4,13,-3) and−→v = 2i - 3k = 〈2, 0,−3〉.

Section 11.4: Question 22:Write an equation of the plane with normal vector−→n = 〈−2, 7, 3〉 that passes through the point
P = (3,−4, 5).
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4.2. HW #4: Due Wednesday, February 14, 2018: Solutions:

Page 842: #1:Find−→a ×−→
b with −→a = 〈5,−1,−2〉 and

−→
b = 〈−3, 2, 4〉

Solution: We have−→a ×−→
b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉, which in this case is

〈(−1) · 4− (−2) · 2, (−2) · (−3)− 5 · 4, 5 · 2− (−1) · (−3)〉 = 〈0,−14, 7〉.
We could also do the determinant approach, and write the firsttwo columns again:

−→
i

−→
j

−→
k

−→
i

−→
j

5 -1 -2 5 -1
-3 2 4 -3 2

and then do the three diagonals (from upper left to bottom right) with positive signs, and then the three diagonals (from bottom left to
upper right) with negative signs.

Page 842: #5:Find the cross product of the−→a = 〈2,−3〉 and
−→
b = 〈4, 5〉 by extending them to 3-dimensional vectors−→a = 〈2,−3, 0〉

and
−→
b = 〈4, 5, 0〉.

Solution: Again we have−→a ×−→
b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉, which in this case is

〈(−3) · 0− 0 · 5, 0 · 4− 2 · 0, 2 · 5− (−3) · 4〉 = 〈0, 0, 22〉.
This is a very powerful technique, and allows us to use the cross product, initially defined only in three dimensions, in two dimensions.

Page 842: #11:Prove that the vector product is not associative by comparing−→a × (
−→
b ×−→c ) with (−→a ×−→

b )×−→c in the case−→a =
−→
i ,−→

b =
−→
i +

−→
j , and−→c =

−→
i +

−→
j +

−→
k .

Solution: Rewriting−→a ,
−→
b , and−→c in terms of their components we have

−→a = 〈1, 0, 0〉, −→
b = 〈1, 1, 0〉, −→c = 〈1, 1, 1〉.

Using the definition of the cross product, we find that
−→
b ×−→c = 〈1,−1, 0〉 and therefore−→a × (

−→
b ×−→c ) = 〈0, 0,−1〉.

Similarly, we see that−→a ×−→
b = 〈0, 0, 1〉, which gives(−→a ×−→

b )×−→c = 〈−1, 1, 0〉. Since〈−1, 1, 0〉 6= 〈0, 0,−1〉, we see that the
cross product is not associative.

Page 842: #12:Find nonzero vectors−→a ,
−→
b and−→c such that−→a ×−→

b = −→a ×−→c , but
−→
b 6= −→c .

Solution: Here’s one solution. Let’s start with a specific−→a and see what happens. The simplest−→a to take would be−→a = 〈1, 0, 0〉
(we can’t take the zero vector, so let’s have two components zero). This is a great way to build intuition. Then for any vector−→
b = 〈b1, b2, b3〉, we have−→a × −→

b = 〈0,−b3, b2〉. Notice that−→a × −→
b does not depend onb1! Therefore let

−→
b = 〈1, 1, 1〉 and

−→c = 〈2011, 1, 1〉. We see that−→a ×−→
b = 〈0,−1, 1〉 = −→a ×−→c , but

−→
b 6= −→c .

For another solution, recall that−→a ×−→a =
−→
0 . Thus, if−→a is anyvector, we always have

−→a ×−→
b = −→a ×

(−→
b +−→a

)

,

so we can take−→a and
−→
b arbitrary, and set−→c =

−→
b + −→a . (Okay, we can’t take the zero vector for〈a〉.) An interesting question

becomes: given−→a , describe all vectors
−→
b and−→c such that−→a ×−→

b = −→a ×−→c . If you want, you may do this for extra credit.

Section 11.4: Question 1:Write parametric equations of the straight line that passesthrough the pointP and is parallel to the vector
−→v , with P the point (0,0,0) and−→v the vectori + 2j + 3k = 〈1, 2, 3〉.
Solution: The equation is〈x, y, z〉 = P + t−→v with t ranging over all real numbers. Substituting forP and−→v yields 〈x, y, z〉 =
〈0, 0, 0〉+ t〈1, 2, 3〉, so〈x, y, z〉 = 〈t, 2t, 3t〉, or equivalentlyx= t, y= 2t andz = 3t.

Section 11.4: Question 2:Write parametric equations of the straight line that passesthrough the pointP and is parallel to the vector
−→v , with P equal to (3,-4,5) and−→v = -2i + 7j + 3k = 〈−2, 7, 3〉.
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Solution: Again the equation of the line is〈x, y, z〉 = P + t−→v . Substituting forP and−→v yields〈x, y, z〉 = 〈3,−4, 5〉+ t〈−2, 7, 3〉.
Thus〈x, y, z〉 = 〈3− 2t,−4 + 7t, 5 + 37〉, or expandingx= 3-2t, y= -4+7t andz= 5+3t.

Section 11.4: Question 3:Write parametric equations of the straight line that passesthrough the pointP and is parallel to the vector
−→v , with P equal to (4,13,-3) and−→v = 2i - 3k = 〈2, 0,−3〉.
Solution: Again the equation of the line is〈x, y, z〉 = P + t−→v . Substituting forP and−→v yields〈x, y, z〉 = 〈4, 13,−3〉+ t〈2, 0, 3〉.
Thus〈x, y, z〉 = 〈3− 2t, 13,−3 + 3t〉, orx= 3-2t, y= 13 andz= -3+3t.

Section 11.4: Question 22:Write an equation of the plane with normal vector−→n = 〈−2, 7, 3〉 that passes through the point
P = (3,−4, 5).

Solution: The equation of the plane is(〈x, y, z〉 − −→
P ) · −→n = 0, or 〈x, y, z〉 · −→n =

−→
P · −→n . Substituting gives〈x, y, z〉 · 〈−2, 7, 3〉 =

〈3,−4, 5〉 · 〈−2, 7, 3〉. Thus−2x+ 7y + 3z = 3(−2) + (−4)7 + 5(3) = −19, so−2x+ 7y + 3z = −19.

5. HW #5: DUE MONDAY, FEBRUARY 19, 2018

5.1. Problems: HW #5: Due Monday, February 19, 2018.

Section 11.8: Question 1:Find the rectangular coordinates of the point with the givencylindrical coordinates. (1,π2 , 2 ).

Section 11.8: Question 26:Describe the graph of the given equation:ρ = 5.

Page 908: #2::Find the largest possible domain forf(x, y) =
√

x2 + 2y2.

Page 908: #4::Find the largest possible domain forf(x, y) = 1/(x− y).

Page 908: #5::Find the largest possible domain forf(x, y) = (y − x2)1/3.

Page 908: # 27::Describe the graph off(x, y) =
√

4− x2 − y2.

Page 908: #32::Sketch level sets off(x, y) = x2 − y2.
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FIGURE 1. Contour Plot for Problem #32 on page 908.

5.2. Solutions: HW #5: Due Monday, February 19, 2018.

Section 11.8: Question 1:Find the rectangular coordinates of the point with the givencylindrical coordinates. (1,π
2

, 2 )
Solution: In cylindrical coordinates,x= r cos θ, y= r sin θ andz= z. We know thatr= 1 andθ = π

2
because cylindrical coordinates are written as

(r, θ, z). Thusx = 1 cos π
2
= 0, y = 1 sin π

2
= 1, andz = 2, and the rectangular coordinates are (0,1,2).

Section 11.8: Question 26:Describe the graph of the given equation:ρ = 5.
Solution: The graph of the equation of the formρ= c (c being a constant) can be described as sphere of radiusc centered at the origin, thus the graph
is a sphere with a radius 5 centered at the origin. In spherical coordinates we havex = ρ sinφ cos θ, y = ρ sinφ sin θ andz = ρ cos φ. Using the
Pythagorean Theorem twice, we see thatx2 + y2 + z2 = ρ2 in spherical coordinates. Thus ifρ = 5, which is the same asρ2 = 25 (sinceρ ≥ 0),
in Cartesian coordinates this becomesx2 + y2 + z2 = 25, which is the equation for the surface of a sphere of radius 5.

Page 908: #2::Find the largest possible domain forf(x, y) =
√

x2 + 2y2.
Solution: The function is defined for all values ofx andy (thus the domain is all ofR2). The reason is that the only danger with the square-root
function are negative numbers, andx2 + 2y2 is always non-negative.

Page 908: #4::Find the largest possible domain forf(x, y) = 1/(x − y).
Solution: The only danger with the reciprocal function is when the denominator is zero. Thus, so long asx 6= y the function is defined. We can
write this in set notation as the domain is{(x, y) ∈ R

2 : x 6= y}.

Page 908: #5::Find the largest possible domain forf(x, y) = (y − x2)1/3.
Solution: Note the cube-root of a negative number is a negative number,the cube-root of zero is zero, and the cube-root of a positivenumber is a
positive number. In other words, the cube-root is defined forall real numbers. Thus the domain of this function is all ofR

2.

Page 908: # 27::Describe the graph off(x, y) =
√

4− x2 − y2.
Solution: Note that the height only depends onx2 + y2; in other words, any two pairs(x1, y1) and(x2, y2) that are the same distance from the
origin (0, 0) give the same value to our function. There is thus enormous angular symmetry, and we see that there will be lots of circles in our plot.
If we look at level sets, we want to solve

√

4− x2 − y2 = c or 4− x2 − y2 = c2 or x2 + y2 = 4 − c2. Remembering that
√· · · means take the

positive square-root, we see that the admissible values ofc are0 ≤ c ≤ 2. For each of these we get a circle of radius
√
42 − c2 as the level set. The

smallest is whenc = 2, which is over the origin; the largest circle is whenc = 0 and then we get a circle of radius 2 in thexy-plane. Another way
of looking at this problem is to writez = f(x, y). If we do this we getz2 = 4− x2 − y2 or x2 + y2 + z2 = 4. Remembering thatz ≥ 0 (due to
the square-root), we see this is just the upper hemisphere ofa sphere of radius 2.

Page 908: #32::Sketch level sets off(x, y) = x2 − y2.
Solution: If we havex2 − y2 = c, notec can be anything. We get a series of hyperbolasunlessc = 0, in which case we get two lines (x2 − y2 = 0
meansx = ±y). See Figure 1. The Mathematica code is:

ContourPlot[x^2-y^2, {x,-10,10}, {y,-10,10}]

(you can run Mathematica code online: go tohttp://www.wolframalpha.com/).

6. HW #6: DUE WEDNESDAY, FEBRUARY 21, 2018

6.1. Problems: HW #6: Due Wednesday, February 21, 2018.

Page 917: #1::Find lim(x,y)→(0,0)(7− x2 + 5xy).

http://www.wolframalpha.com/
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Page 917: #8::Find lim(x,y)→(2,−1) ln
(

1+x+2y
3y2−x

)

.

Page 917: #10::Find lim(x,y)→(0,0)
cos(x2+y2)

1−x2−y2 .

Page 918: #24::Find the limit or show that it does not exist:lim(x,y,z)→(1,−1,1)
yz+xz+xy

1+xyz
.

Page 918: #38::Evaluate the limitlim(x,y)→(0,0)
x3−y3

x2+y2 by making the polar coordinates substitution.

Page 919: #54::Discuss the continuity of the functionf(x, y) that is sinxy
xy

if xy 6= 0 and 1 ifxy = 0.

Page 928: #1::Compute the first-order partial derivatives off(x, y) = x4 − x3y + x2y2 − xy3 + y4.

Page 928: #4::Compute the first-order partial derivatives off(x, y) = e2exy.

Page 928: #5::Compute the first-order partial derivatives off(x, y) = x+y
x−y

.
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6.2. Solutions: HW #6: Due Wednesday, February 21, 2018.

Page 917: #1::Find lim(x,y)→(0,0)(7− x2 + 5xy).
Solution: The limit laws tell us that the limit of a sum is the sum of the limits, and similarly for the difference or a product (so long as all limits are
finite, and for the quotient the denominator is non-zero). Wethus have

lim
(x,y)→(0,0)

(7− x2 + 5xy) = lim
(x,y)→(0,0)

7− lim
(x,y)→(0,0)

x2 + lim
(x,y)→(0,0)

5 lim
(x,y)→(0,0)

x lim
(x,y)→(0,0)

y

7− 02 + 5 · 0 · 0 = 7.

Page 917: #8::Find lim(x,y)→(2,−1) ln
(

1+x+2y
3y2−x

)

.

Solution: As (x, y) → (2,−1) the denominator goes to3(−1)2 − 2 = 1 and the numerator goes to1 + 2 + 2(−1) = 1. Thus we are taking
the natural logarithm of a quantity getting closer and closer to 1. As ln 1 = 0, the limit is zero. We could also attack this problem by noting
ln(a/b) = ln a− ln b and then using the difference rule.

Page 917: #10::Find lim(x,y)→(0,0)
cos(x2+y2)

1−x2−y2 .
Solution: As the limit of the denominator is 1, we can use the limit of a quotient is the quotient of the limits. What is the limit of the numerator?
We’re evaluating cosine at values closer and closer to 0. As cosine is continuous, this equalscos 0 which is 1. Thus our limit is1/1 or 1.
Page 918: #24::Find the limit or show that it does not exist:lim(x,y,z)→(1,−1,1)

yz+xz+xy
1+xyz

.

Solution: lim(x,y,z)→(1,−1,1)
yz+xz+xy

1+xyz

The limit does not exist. As(x, y, z) approaches (1,-1,1), the numerator approaches(−1) · 1 + 1 · 1 + 1 · (−1) = −1, while the denominator
approaches1 + 1 · (−1) · 1 = 0. Thus our quantity looks like−1/0 in the limit, which is undefined.

Page 918: #38::Evaluate the limitlim(x,y)→(0,0)
x3−y3

x2+y2 by making the polar coordinates substitution.
Solution: Using the textbook’s advice to convert from cartesian coordinates to polar coordinates (x = r cos θ, y = r sin θ), the problem becomes
significantly easier to manage. Note that(x, y) → (0, 0) becomesr → 0 andθ is free. The limit equalslimr→0

r3 cos3 θ−r3 sin3 θ
r2 cos2 θ+r2 sin2 θ

. By factoring out

ther2 from both the numerator and denominator, and using the identity cos2 θ + sin2 θ = 1, the limit equalslimr→0
r(cos3 θ−sin3 θ)

1
. Here we can

see the limit approaches 0, because| cos3 θ = sin3 θ| ≤ 2 andr → 0.

Page 919: #54::Discuss the continuity of the functionf(x, y) that is sinxy
xy

if xy 6= 0 and 1 ifxy = 0.
Solution: This function is continuous. By the definition of continuity, a functionf is continuous at(a, b) if it is defined at(a, b) and the limit is
equal to the value there. The only troublesome points are when a = 0, b = 0 or botha andb equal 0. Assume first that our point is(a, 0) with a 6= 0.
Then(x, y) → (a, 0) means that eventuallyx is non-zero and close toa, andy may or may not be zero but is close to 0. We havef(a, 0) = 1.
If y = 0 thenf(x, y) = 1. If y 6= 0 andx is close toa and non-zero andy is close to 0, then we must showf(x, y) is close to 1. We have
f(x, y) = sinxy

xy
with xy 6= 0 and small; however, sincelimt→0

sin t
t

= 1, we see that as(x, y) → (a, 0) wheneverxy 6= 0 we havexy → 0 and

thus, settingt = xy, we’ll have sinxy
xy

arbitrarily close to 1. The analysis for points(0, b) with b 6= 0, as well as the point(0, 0), is similar.

Page 928: #1::Compute the first-order partial derivatives off(x, y) = x4 − x3y + x2y2 − xy3 + y4.
Solution: To find the partial derivative with respect tox, we considery constant and apply the standard rules of differentiation, and find ∂f

∂x
=

4x3 − 3x2y + 2xy − y3. To find the partial derivative with respect toy, we considerx constant and find∂f
∂y

= −x3 + 2x2y − 3xy2 + 4y3

Page 928: #4::Compute the first-order partial derivatives off(x, y) = e2exy.
Solution: Note thate2 is just a constant; there is no need to use the product rule – just use the constant rule. We have∂f

∂x
= ye2exy and∂f

∂y
= xe2exy.

Page 928: #5::Compute the first-order partial derivatives off(x, y) = x+y
x−y

.

Solution: Applying the quotient rule of differentiation gives∂f
∂x

= 1(x−y)−1(x+y)

(x−y)2
= −2y

(x−y)2
and ∂f

∂y
= −1(x+y)+1(x−y)

(x−y)2
= 2x

(x−y)2
. Another way

to do this problem is to observe the following:

x+ y

x− y
=

x− y + 2y

x− y
=

x− y

x− y
+

2y

x− y
= 1 +

2y

x− y
.

This is a little nicer than using the quotient rule; if we wantthe derivative with respect tox note we just need to use the reciprocal rule, and find
∂f
∂x

= 2y · (−1)(x− y)−2, as before.

7. HW #7: DUE MONDAY, FEBRUARY 26, 2018

You should have watched the video and read the book. To help you with these problems, I will do a few similar problems as a guide. I’m choosing
slightly longer problems than necessary as a way to review your calculus. Doing these exercises is a great way to study forthe test!

Practice Problem #1: Multiple Derivatives: Let z(x, y) = x2exy + sin(x2 + 3xy) + 2. Findzx, zy , zxy andzyx.
Solution: We havezx = ∂z

∂x
, the partial derivative of the functionz(x, y) with respect tox. This means we holdy fixed, and we find

zx = 2xexy + x2exyy + cos(x2 + 3xy) · (2x+ 3y),
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where we used the product rule for the first piece and the quotient rule for the second. Similarly we find

zy = x2exyx+ cos(x2 + 3xy) · 3x = x3exy + 3x cos(x2 + 3xy).

Note the notationzxy means∂zx
∂y

; so first we take the derivative ofz with respect tox and getzx = ∂z
∂x

, and then we take the derivative of

zx = ∂z
∂x

with respect toy and getzxy = ∂zx
∂y

. To make the notation clearer as to the order, we can use parentheses:zxy = (zx)y; note we’re using
our variables as subscripts to indicate the variable of differentiation. We find

zxy =
∂zx
∂y

= 2xexyx+ x2 (exyxy + exy)− sin(x2 + 3xy) · 3x(2x+ 3y) + cos(x2 + 3xy)3

= 3x2exy + x3yexy + 3 cos(x2 + 3xy)− 3x(2x+ 3y) sin(x2 + 3xy),

zyx =
∂zy
∂x

= 3x2exy + x3exyy + 3 cos(x2 + 3xy)− 3x sin(x2 + 3xy) · (2x+ 3y);

notezxy = zyx. This last equality frequently holds; it is a theorem that itholds if the mixed partial derivatives exist and are continuous. Thus we
need only computezxy to knowzyx in many cases, but it’s good to do both as a check for calculus and algebra errors.

Below are Mathematica commands for these derivatives. Notewe write exy asExp[x y] (it’s important to put a space betweenx andy, as
otherwise Mathematica reads it asonevariable and not a product. Similarly sine is encoded asSin[3x2 + 3x y] (note the use of square brackets).
We useD[function, variable] to denote the derivative of a function with respect to a variable; to do two derivatives we can nest the expressions.

D[x^2 Exp[x y] + Sin[x^2 + 3 x y] + 2, x]
D[x^2 Exp[x y] + Sin[x^2 + 3 x y] + 2, y]
D[D[x^2 Exp[x y] + Sin[x^2 + 3 x y] + 2, x], y]
D[D[x^2 Exp[x y] + Sin[x^2 + 3 x y] + 2, y], x]

Practice Problem #2: Tangent Planes:Find the tangent plane toz = ex−y cos(xy2π) at the point(1, 1,−1).
Solution: First, we check that this point is on the surface; it is as−1 = e1−1 cos(1 · 12π). From the book or my lecture notes for Chapter 12 (see
http://web.williams.edu/Mathematics/sjmiller/public_html/150/currentnotes/Math105LecNotes_Chap12.pdf
page 11 for the equation of the tangent plane), we see that ifz = f(x, y) (also denoted byz(x, y) at times) then the tangent plane at the point
(x0, y0, z0) (with z0 = f(x0, y0)) is just

z = f(x0, y0) +

[

∂f

∂x
(x0, y0)

]

· (x− x0) +

[

∂f

∂y
(x0, y0)

]

· (y − y0).

Here ∂f
∂x

(x0, y0) means we take the partial derivative off with respect tox and evaluate that at the point(x0, y0); if we wanted we could writez0
instead off(x0, y0) above asz0 = f(x0, y0). We have(x0, y0) = (1, 1), z0 = −1, and

∂f

∂x
= ex−y cos(xy2π) + ex−y (− sin(xy2π) · y2π

)

, so
∂f

∂x
(1, 1) = 1.

Similarly we find
∂f

∂y
= ex−y(−1) cos(xy2π) + ex−y

(

− sin(xy2π) · 2xyπ
)

, so
∂f

∂y
(1, 1) = −1.

Thus the tangent plane is

z = f(x0, y0) +

[

∂f

∂x
(x0, y0)

]

· (x− x0) +

[

∂f

∂y
(x0, y0)

]

· (y − y0) = −1 + 1(x− 1)− 1(y − 1),

which simplifies to
z = −1 + (x− 1) − (y − 1) or x− y − z = 1.

7.1. Problems: HW #7: Due Monday, February 26, 2018.

Page 928: #21::Showzxy = zyx with z(x, y) = x2 − 4xy + 3y2.

Page 928: #25::Showzxy = zyx with z(x, y) = ln(x+ y).

Page 928: #33::Find the tangent plane toz = sin πxy
2

at the point(3, 5,−1).

Page 928: #36::Find the tangent plane toz = 3x+ 4y at the point(1, 1, 7).

Page 928: #63::The ideal gas law sayspV = nRT . Show ∂p
∂V

∂V
∂T

∂T
∂p

= −1. Is this surprising?

http://web.williams.edu/Mathematics/sjmiller/public_html/150/currentnotes/Math105LecNotes_Chap12.pdf
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7.2. Solutions: HW #7: Due Monday, February 26, 2018.

Page 928: #21::Showzxy = zyx with z(x, y) = x2 − 4xy + 3y2.
Solution: We havezx = 2x− 4y and thenzxy = −4, while zy = −4x+ 6y and thenzyx = −4 = zxy.

Page 928: #25::Showzxy = zyx with z(x, y) = ln(x+ y).
Solution: First, remember thatln(x + y) 6= lnx + ln y; it is ln(xy) that equals this. We havezx = 1

x+y = (x + y)−1 and thus

zxy = −(x+ y)−2. Similarly,zy = 1
x+y = (x+ y)−1 andzyx = −(x+ y)−2 = zxy.

Page 928: #33::Find the tangent plane toz = sin πxy
2 at the point(3, 5,−1).

Solution: First, we check that this point is on the surface; it is as−1 = sin 15π
2 . Thusx0 = 3, y0 = 5 andz0 = f(x0, y0) = −1, with

f(x, y) = sin πxy
2 . We have∂f∂x = πy

2 cos πxy
2 , so ∂f

∂x

∣

∣

∣

(3,5)
= 0. Similarly ∂f

∂y = πx
2 cos πxy

2 , so ∂f
∂y

∣

∣

∣

(3,5)
= 0. The tangent plane is

z = f(3, 5) +
∂f

∂x

∣

∣

∣

(3,5)
(x− 3) +

∂f

∂y

∣

∣

∣

(3,5)
(y − 5) = −1

(since the two partial derivatives vanish at the point of interest).

Page 928: #36::Find the tangent plane toz = 3x+ 4y at the point(1, 1, 7).
Solution: Note this is the equation of a plane, so we expect this to be theanswer (this problem is thus a good check of the reasonable-
ness of our definition of the tangent plane). First, we do observe that7 = 3 · 1 + 4 · 1. Lettingf(x, y) = 3x + 4y, we havex0 = 1,

y0 = 1, z0 = f(x0, y0) = 7, ∂f
∂x = 3 so ∂f

∂x

∣

∣

∣

(1,1)
= 3, and∂f

∂y = 4 so ∂f
∂y

∣

∣

∣

(1,1)
= 4. The tangent plane is

z = f(1, 1)
∂f

∂x

∣

∣

∣

(1,1)
(x− 1) +

∂f

∂y

∣

∣

∣

(1,1)
(y − 1) = 7 + 3(x− 1) + 4(y − 1) = 3x+ 4y.

Page 928: #63::The ideal gas law sayspV = nRT . Show ∂p
∂V

∂V
∂T

∂T
∂p = −1.

Solution: We may writep = nRT/V , V = nRT/p andT = pV/nR. Direct computation gives∂p∂V = −nRT/V 2, ∂V
∂T = nR/p

and ∂T
∂p = V/nR. Thus

∂p

∂V

∂V

∂T

∂T

∂p
= −nRT

V 2

nR

p

V

nR
= −nRT

V p
= −1,

where the last equality follows frompV = nRT . Surprising! “Canceling” the differentials gives∂p∂p , which is 1.

8. HOMEWORK #8: DUE WEDNESDAY, FEBRUARY 28:

Skim my notes on the Method of Least Squares; link on the course homepage, or go to
http://www.williams.edu/Mathematics/sjmiller/public_html/150/handouts/MethodLeastSquares.pdf.
Make sure you are comfortable with all the material from the exam. Try practice problems from the course homepage and the book.
http://web.williams.edu/Mathematics/sjmiller/public_html/150/practiceexamindex.htm.

8.1. Problems: HW #8: Due Wednesday, February 28:

Exercise 3.3:Consider the observed data(0, 0), (1, 1), (2, 2). Show that if we use (2.10) from the Least Squares handout to mea-
sure error then the liney = 1 yields zero error, and clearly this should not be the best fit line!

Exercise 3.9:Show that the Method of Least Squares predicts the period of orbits of planets in our system is proportional to the
length of the semi-major axis to the 3/2 power.

Homework from handout
http://www.williams.edu/Mathematics/sjmiller/public_html/150/handouts/MethodLeastSquares.pdf.

http://www.williams.edu/Mathematics/sjmiller/public_html/150/handouts/MethodLeastSquares.pdf
http://web.williams.edu/Mathematics/sjmiller/public_html/150/practiceexamindex.htm
http://www.williams.edu/Mathematics/sjmiller/public_html/150/handouts/MethodLeastSquares.pdf
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8.2. Solutions: HW #8: Due Wednesday, February 28:

Exercise 3.3:Consider the observed data(0, 0), (1, 1), (2, 2). Show that if we use (2.10) from the Least Squares handout to mea-
sure error then the liney = 1 yields zero error, and clearly this should not be the best fit line!
Solution: We will use equation (2.10) to calculate the error of the liney = 1. This gives an error functionE2(a, b) =

∑N
n=0 (yi − (axi + b)).

Evaluating the sum with the liney = 1 (which meansa = 0 andb = 1) gives an error of

E2(0, 1) = (0− 1) + (1− 1) + (2− 1) = 0.

The problem with (2.10) is that the errors are signed quantities, so during the calculation the positive errors cancel out the negative
errors.

Exercise 3.9:Show that the Method of Least Squares predicts the period of orbits of planets in our system is proportional to the
length of the semi-major axis to the 3/2 power.
Solution: Using the numbers from the handout, namely

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn

∑N
n=1 1

∑N
n=1 x

2
n −∑N

n=1 xn

∑N
n=1 xn

, b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x

2
n

∑N
n=1 yn

∑N
n=1 xn

∑N
n=1 xn −∑N

n=1 x
2
n

∑N
n=1 1

,

we findN = 8,
∑8

n=1 1 = 8,
∑8

n=1 xn = 9.409461,
∑8

n=1 yn = 14.1140384,
∑8

n=1 x
2
n = 29.29844102 and

∑8
n=1 xnyn =

43.94486382. Feeding these into the equations fora andb in the handout give best fit values ofa = 1.49985642andb = 0.000149738
(the reasonb is so close to zero is we have chosen to measure distances in astronomical units, precisely to make the proportionality
constant nice).Note that this is not a cookbook problem; this is one of the most important calculations in the history of science, as it
was one of the three guideposts that helped lead Newton to hislaw of universal gravitation.

8.3. Problems: HW #9: Due Friday, March 2:

Page 940: #5:Find every point on the surfacef(x, y) = x2 + y2 − 6x+ 2y + 5 at which the tangent plane is horizontal.

Page 940: #11:Find every point on the surfacef(x, y) = (2x2 + 3y2) exp(−x2 − y2) at which the tangent plane is horizontal.

Page 940: #29:Find the first octant point on the surface12x+ 4y + 3z = 169 closest to the point(0, 0, 0).

Page 941: #61a.:Suppose Alpha Inc and Beta Ltd have profit functions given by

P (x, y) = −2x2 + 12x+ xy − y − 10, Q(x, y) = −3y2 + 18y + 2xy − 2x− 15,

wherex is the price of Alpha Inc’s good andy is the price of Beta Ltd’s good. Supposing that the managers of Alpha and Beta know
calculus and know that the other manager knows calculus as well, what price will the two companies set to maximize their profits?

Page 941: #61b.:Now suppose that Alpha Inc and Beta Ltd set their prices so as to maximize their combined profit. Now what will
the optimalx andy be?
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8.4. Solutions: HW #9: Due Friday, March 2:

Page 940: #5:Find every point on the surfacef(x, y) = x2 + y2 − 6x+ 2y + 5 at which the tangent plane is horizontal.
Solution: Remember that the equation for the plane tangent to the surfacez = f(x, y) at the point(a, b) is given by

z − f(a, b) = fx(a, b)(x− a) + fy(a, b)(y − b),

with fx = ∂f
∂x andfy = ∂f

∂y . Therefore, if we want the tangent plane to be horizontal, weneed to find all points(x, y) such that both
partial derivatives vanish at that point, orfx(x, y) = fy(x, y) = 0. We have

∂f

∂x
= 2x− 6,

∂f

∂y
= 2y + 2.

We seefx(x, y) = 0 whenx = 3 andfy(x, y) = 0 wheny = −1 (this is the example done in class), so the only point at whichthe
tangent plane is horizontal is(3,−1).

Page 940: #11:Find every point on the surfacef(x, y) = (2x2 + 3y2) exp(−x2 − y2) at which the tangent plane is horizontal.
Solution: The equation for the plane tangent to the surfacef(x, y) at the point(a, b) is given by

z − f(a, b) = fx(a, b)(x− a) + fy(a, b)(y − b).

Therefore, if we want the tangent plane to be horizontal, we need to find all points(x, y) such thatfx(x, y) = fy(x, y) = 0. Taking
the partial off with respect tox, we have

∂f

∂x
= (2x2 + 3y2)e−x2−y2

(−2x) + 4xe−x2−y2

= 2xe−x2−y2

(2− 2x2 − 3y2).

Sincee−x2−y2 6= 0 for all pairs of real numbers(x, y), we see thatfx(x, y) = 0 whenx = 0 or 2− 2x2 − 3y2 = 0. Similarly taking
the partial derivative off with respect toy gives

∂f

∂y
= (2x2 + 3y2)e−x2−y2

(−2y) + 6ye−x2−y2

= 2ye−x2−y2

(3− 2x2 − 3y2).

Thereforefy(x, y) = 0 wheny = 0 or when3− 2x2 − 3y2 = 0.
We now need to find the points where bothfx andfy are 0. Since we knowfx(x, y) = 0 wheneverx = 0, let’s first letx = 0. For

fy to be 0 given thatx = 0, we need2y(3 − 3y2) = 0, soy = 0 or y = ±1. Therefore the tangent plane is horizontal at the three
points(0, 0, 0), (0, 1, 3/e) and(0,−1, 3/e) (thez-component is found by evaluatingf at thex andy values).

We also know thatfy(x, y) = 0 whenevery = 0, so now let’s lety = 0. Forfx to be 0, we need2x(2 − 2x2) = 0, sox = 0 or
x = ±1. Therefore the tangent plane is also horizontal at the points(0, 0, 0), (1, 0, 2/e) and(−1, 0, 2e−1).

Finally, we need to make sure there aren’t any other solutions we’re missing. Notice that we’ve found every possible solution
wherex or y is 0. Thus any other solution we could find would havex andy not equal to 0. In this case, forfy to be 0 we need
3 − 2x2 − 3y2 = 0. Similarly, for fx to be 0 we need2 − 2x2 − 3y2 = 0. However, it is impossible for both of these equations
to be satisfied at the same time. Subtracting the two equations we find1 = 0, which is a clear contradiction. Therefore there are no
additional solutions with bothx andy not equal to 0.

Page 940: #29:Find the first octant point on the surface12x+ 4y + 3z = 169 closest to the point(0, 0, 0).
Solution: We want to express the distance from a point on the surface to the origin as a function ofx andy. Once we’ve done that,
we can use our optimization techniques to find the pair(x, y) which minimizes this distance. Notice that we can rewrite the equation
of the plane as

z =
169

3
− 4x− 4

3
y.

Therefore any point on the plane can be written as(x, y, 169/3− 4x − 4y/3). The distance squared from this point to the origin is
given by

h(x, y) = x2 + y2 +

(

169

3
− 4x− 4

3
y

)2

.

Notice that the point(x, y) which minimizes the distance from the origin to the plane also minimizes the distance squared from the
origin to the plane. Therefore we can just minimizeh(x, y) to find our optimal point, instead of having to deal with the nasty square
roots that come into play with actual distance. To minimizeh(x, y), we take the partial derivatives with respect tox andy, and set
them equal to 0. We have

∂h

∂x
= 2x− 8

(

169

3
− 4x− 4

3
y

)

,
∂h

∂y
= 2y − 8

3

(

169

3
− 4x− 4

3
y

)

.
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So we want to solve the system of equations

2x− 8

(

169

3
− 4x− 4

3
y

)

= 0

2y − 8

3

(

169

3
− 4x− 4

3
y

)

= 0.

Multiplying the second equation by 3 and we get

2x− 8

(

169

3
− 4x− 4

3
y

)

= 0

6y − 8

(

169

3
− 4x− 4

3
y

)

= 0.

Subtracting the second equation from the first gives2x− 6y = 0, sox = 3y. Substitutingx = 3y into the first equation gives

6y − 8

(

169

3
− 12y − 4

3
y

)

= 0,

which simplifies toy = 4. Thereforex = 3y = 12, andz = 169/3−4·12−4·4/3 = 3, so the point on the plane12x+4y+3z = 169
which is closest to the origin is(12, 4, 3).

Page 941: #61a.:Suppose Alpha Inc and Beta Ltd have profit functions given by

P (x, y) = −2x2 + 12x+ xy − y − 10

Q(x, y) = −3y2 + 18y + 2xy − 2x− 15,

wherex is the price of Alpha Inc’s good andy is the price of Beta Ltd’s good. Supposing that the managers of Alpha Inc and Beta Ltd
know calculus & know that the other manager knows calc as well, what price will the two companies set to maximize their profits?
Solution: Since Alpha Inc can only control its own price, it will set itsprice to the point wherePx = 0. Similarly, Beta Ltd will set
its price to the point whereQy = 0. That is,

∂P

∂x
= −4x+ 12 + y = 0,

∂Q

∂y
= −6y + 18 + 2x = 0.

From the first equation we findy = 4x − 12. Substituting this into the second equation gives−6(4x − 12) + 18 + 2x = 0, which
simplifies tox = 45/11. Plugging this back into the first equation then givesy = 48/11.

Page 941: #61b.:Now suppose that Alpha Inc and Beta Ltd set their prices so as to maximize their combined profit. Now what will
the optimalx andy be?
Solution: Now our profit function isR(x, y) = P (x, y) + Q(x, y) = −2x2 + 10x + −3y2 + 17y + 3xy − 25. To maximize this
function with respect tox andy, we will take the partials with respect tox andy and set them equal to 0. This gives

∂R

∂x
= −4x+ 10 + 3y = 0,

∂R

∂y
= −6y + 17 + 3x = 0.

The first equation givesx = (3y+10)/4. Plugging this into the second equation yieldsy = 98/15. Substituting this value fory back
into the first equation givesx = 37/5. Note that, with profit sharing, one company is quite willingto take one for the team!

9. HW #10: DUE MONDAY, MARCH 5, 2018

9.1. Problems: HW #10: Due Monday, March 5, 2018:

Page 949: #18::Use the exact value off(P ) and the differentialdf to approximate the valuef(Q), wheref(x, y) =
√

x2 − y2,
with pointsP (13, 5) andQ(13.2, 4.9).

Page 949: #23::Use the exact value off(P ) and the differentialdf to approximate the valuef(Q), wheref(x, y, z) = e−xyz with
the pointsP = (1, 0,−2) andQ = (1.02, 0.03,−2.02).

Problem #3: Briefly describe what Newton’s Method is used for, and roughly how it works.

Extra Credit: to be handed in on a separate paper:Let f(x) = exp(−1/x2) if |x| > 0 and 0 ifx = 0. Prove thatf (n)(0) = 0
(i.e., that all the derivatives at the origin are zero). Thisimplies the Taylor series approximation tof(x) is the function which is
identically zero. Asf(x) = 0 only for x = 0, this means the Taylor series (which converges for allx) only agrees with the function
atx = 0, a very unimpressive feat (as it is forced to agree there).
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9.2. Solutions: HW #10: Due Monday, March 5, 2018:

Page 949: #18::Use the exact value off(P ) and the differentialdf to approximate the valuef(Q), wheref(x, y) =
√

x2 − y2,
with pointsP (13, 5) andQ(13.2, 4.9).
Solution: Applying the differentialdf = fx(a, b)∆x + fy(a, b)∆y, we can approximate the valuef(Q). We havef(x, y) =
√

x2 − y2, with pointsP (13, 5) andQ(13.2, 4.9). This means∆x = 0.2 and∆y = −0.1. Take the partial derivatives off with

respect tox andy. We get ∂f∂x = 2x

2
√

x2−y2
= x√

x2−y2
and ∂f

∂y = −2y

2
√

x2−y2
= −y√

x2−y2
. We find df = x√

x2−y2

∣

∣

∣

(13,5)
∆x +

−y√
x2−y2

∣

∣

∣

(13,5)
∆y. Evaluating the partial derivatives at the points and putting in the values of∆x and∆y givesdf = 13√

132−52
(0.2)−

5√
132−52

(−0.1), or equivalentlydf = 2.6
12 + .5

12 = 0.2583. Now we just have to add the differentialdf to f(P ) to obtain an

approximation off(Q), and obtainf(P ) =
√
132 − 52 = 12. Thus an approximation off(Q) is 12 + .2583 = 12.2583. If you

prefer to use the notation of the tangent plane, what we have is

z = f(13, 5) +
∂f

∂x

∣

∣

∣

(13,5)
(13.2− 13) +

∂f

∂y

∣

∣

∣

(13,5)
(4.9− 5).

Page 949: #23::Use the exact value off(P ) and the differentialdf to approximate the valuef(Q), wheref(x, y, z) = e−xyz with
the pointsP = (1, 0,−2) andQ = (1.02, 0.03,−2.02).
Solution: Similar to Problem 18, we use the differentialdf = fx(a, b)∆x+ fy(a, b)∆y to approximatef(Q). We havef(x, y, z) =
e−xyz with the pointsP = (1, 0,−2) andQ = (1.02, 0.03,−2.02). Take the partial derivatives off with respect tox, y, andz. This
gives ∂f

∂x = −yze−xyz, ∂f
∂y = −xze−xyz, ∂f

∂z = −zye−xyz. We now find the differentialdf . Notice that any terms multiplied byy

will be 0 because point P is(1, 0, 2). This simplifies the math significantly.df = −yze−xyz
∣

∣

∣

(1,0,−2)
∆x − xze−xyz

∣

∣

∣

(1,0,−2)
∆y −

zye−xyz
∣

∣

∣

(1,0,−2)
∆z. Evaluating the partial derivatives givesdf = 0 − (1)(−2)e−(1)(0)(−2)(0.03) − 0 = 2e0(0.03) = 0.06.

We calculatef(P ) and add it to the differentialdf to obtain an approximation off(Q): f(P ) = e−(1)(0)(2) = e0 = 1, so
f(Q) ≈ 1 + 0.06 = 1.06.

Problem #3: Briefly describe what Newton’s Method is used for, and roughly how it works.
Solution: We use Newton’s Method to findx such thatf(x) = 0. We start with an initial guess,x0, and use the tangent line to
approximate our function with a line, and see where that intersects thex-axis. Calling that pointx1, we then find the new point on
the curve with this as itsx-coordinate, and approximate again with the tangent line. We look for the new intersection with thex-axis,
and call that pointx2. We keep iterating and hopefully the sequence{x0, x1, x2, . . . , } converges to a solution tof(x) = 0.

Extra Credit: to be handed in on a separate paper:Let f(x) = exp(−1/x2) if |x| > 0 and 0 ifx = 0. Prove thatf (n)(0) = 0
(i.e., that all the derivatives at the origin are zero). Thisimplies the Taylor series approximation tof(x) is the function which is
identically zero. Asf(x) = 0 only for x = 0, this means the Taylor series (which converges for allx) only agrees with the function
atx = 0, a very unimpressive feat (as it is forced to agree there).

First Proof (Professor Miller): The proof follows by induction. If you haven’t seen induction, you can look it up online, check out
my notes, or see me. Basically, induction is a way to prove statements for alln. Let’s use L’Hopital’s rule to find the derivative at 0.
We start with the definition of the derivative, noting thatf(0) = 0. We find

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0

exp(−1/h2)

h
.

We now change variables; letk = 1/h, so ash → 0 we havek → ∞. We find

f ′(0) = lim
k→∞

exp(−k2)

1/k
= lim

k→∞

k

exp(k2)
.

Note this is of the form∞/∞, and we can use L’Hopital’s rule. We find

f ′(0) = lim
k→∞

k

exp(k2)
= lim

k→∞

1

2k exp(k2)
.

As we no longer have∞/∞ we stop, and see thatf ′(0) = 0.
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To find the second derivative, we argue similarly. We now knowthat

f ′(x) =

{

− 1
x3 exp(−1/x2) if x 6= 0

0 if x = 0.

We again use the definition of the derivative and L’Hopital’srule. In general thenth derivative is of the formpn(1/x) exp(−1/x2)
for x 6= 0 and0 if x = 0, wherepn is polynomial with finitely many terms. We then just use L’Hopital!

Second Proof (2011 TA David Thompson):Let f(x) = exp(−1/x2) for x 6= 0 andf(x) = 0 for x = 0. We want to show that
all of the derivatives off(x) vanish whenx = 0. Notice that it’s not even clear whether this function is once differentiable, let only
infinitely differentiable! However, it can be shown (using techniques from real analysis) thatf(x) is indeed infinitely differentiable.
We will simply assume this to be true. Sincef(x) is infinitely differentiable (meaning all of its derivatives are continuous), we need
only show that the limit off (n)(x) = 0 asx → 0; by continuity, this will implyf (n)(0) = 0. Making the change of variables
x 7→ 1/y, we see that this is equivalent to showing that all the derivatives of the functiong(y) = exp(−y2) approach 0 asy → ∞.

Let’s think about derivatives ofg(y). We see

g′(y) = −2y exp(−y2) = −2yg(y).

Remember that the exponential function decays faster than any polynomial; that is, ifp(y) = a0 + a1y + · · · + any
n with ai ∈ R,

then

lim
y→∞

p(y)

exp(y)
= 0.

Thereforeg′(y) → 0 asy → ∞, since we can writeg′(y) as a polynomial iny divided by an exponential function. Suppose we knew
thateveryderivative ofg(y) could be written as a polynomial iny timesg(y). By the same argument as above, this would imply that
every derivative ofg(y) decays to 0 asy goes to infinity. Remember this would imply that every derivative of f(x) is 0 whenx = 0,
which is what we want to show. Our new task, then, is to show that every derivative ong(y) can be written as a polynomial iny times
g(y).

To prove this claim we are going to use mathematical induction (if you haven’t seen this before, check out Professor Miller’s notes
online). Our claim is that for all positive integersn, thenth derivative ofg(y), gn(y), can be written ashn(y)g(y) wherehn(y) is a
polynomial iny. Notice that we’ve already shown the base casen = 1. Suppose that our claim holds for somen = k ≥ 1; we show
it holds forn = k + 1.

If gk(y) = hk(y)g(y), then we have

gk+1(y) = h′
k(y)g(y) + g′(y)hk(y)

= h′
k(y)g(y)− 2yg(y)hk(y)

= g(y)(h′
k(y)− 2yhk(y)).

Letting hk+1(y) = h′
k(y) − 2yhk(y), we see thatgk+1(y) = hk+1(y)g(y), so we can indeed writegk+1(y) as a product of a

polynomial iny timesg(y), and we’ve proven our claim.
Thereforef(x) really is as strange as we claimed: despite having all of its derivatives equal 0 at the origin,f(x) only equals 0

whenx = 0. Thus the Taylor Series expansion off(x) aboutx = 0 only agrees withf(x) at one point!

10. HW #11: DUE WEDNESDAY, MARCH 7, 2018

10.1. Problems: HW #11: Due Wednesday, March 7, 2018:Note: the notation for this homework is a bit annoying. For example,
imagine we have a functionf : R3 → R andx, y, z : R2 → R, so we haveA(u, v) = f(x(u, v), y(u, v), z(u, v)). If we want to
figure out how this compound function changes withu, I prefer to write∂A

∂u ; however, the book will often overload the notation and
write ∂f

∂u . I think this greatly increases the chance of making an error, andstronglysuggest introducing another function name.

Page 960: #2:Finddw/dt both by using the chain rule and by expressingw explicitly as a function oft before differentiating, with
w = 1

u2+v2 , u = cos(2t), v = sin(2t).

Page 960: #5:Find∂w/∂s and∂w/∂t with w = ln(x2 + y2 + z2), x = s− t, y = s+ t, z = 2
√
st.

Page 960: #8:Find∂w/∂s and∂w/∂t with w = yz + zx+ xy, x = s2 − t2, y = s2 + t2, z = s2t2.
Page 960: #34:A rectangular box has a square base. Find the rate at which itsvolume and surface area are changing if its base is
increasing at 2 cm/min and its height is decreasing at 3cm/min at the instant when each dimension is 1 meter.
Page 960 #41:Suppose thatw = f(u) and thatu = x+ y. Show that∂w/∂x = ∂w/∂y.
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10.2. Solutions: HW #11: Due Wednesday, March 7, 2018:Note: the notation for this homework is a bit annoying. For example,
imagine we have a functionf : R3 → R andx, y, z : R2 → R, so we haveA(u, v) = f(x(u, v), y(u, v), z(u, v)). If we want to
figure out how this compound function changes withu, I prefer to write∂A

∂u ; however, the book will often overload the notation and
write ∂f

∂u . I think this greatly increases the chance of making an error, andstronglysuggest introducing another function name.

Page 960: #2:Finddw/dt both by using the chain rule and by expressingw explicitly as a function oft before differentiating, with
w = 1

u2+v2 , u = cos(2t), v = sin(2t).

Solution: To use the chain rule, we need to considerw as a function ofu andv, which are in turn functions oft; here ∂w
∂t = dw

dt ,
∂u
∂t = du

dt and ∂v
∂y = dv

dt as all are functions of just one variable. Let us writew(t) = f(u(t), v(t)), with f(u, v) = 1/(u2 + v2),
u(t) = cos(2t), v(t) = sin(2t). We have

∂w

∂t
=

∂f

∂u

∣

∣

∣

(u(t),v(t))

∂u

∂t
+

∂f

∂v

∣

∣

∣

(u(t),v(t))

∂v

∂t
or

dw

dt
=

∂f

∂u

∣

∣

∣

(u(t),v(t))

du

dt
+

∂f

∂v

∣

∣

∣

(u(t),v(t))

dv

dt
.

We seefu = ∂f/∂u = −(u2 + v2)−2 · 2u, fy = ∂f/∂v = −(u2 + v2)−2 · 2v, du/dt = −2 sin(2t) anddv/dt = 2 cos(2t).
Remembering to evaluatefu andfv at (u(t), v(t)) = (cos 2t, sin 2t), we find

dw

dt
=

4 cos(2t) sin(2t)

cos2(2t) + sin2(2t)
− 4 sin(2t) cos(2t)

cos2(2t) + sin2(2t)
= 0.

For the second approach, we writew as a function oft and differentiate. We see

w(t) =
1

cos2(2t) + sin(2t)2
= 1.

Asw(t) is constant, differentiating givesdw/dt = 0, as we found above.

Page 960: #5:Find∂w/∂s and∂w/∂t with w = ln(x2 + y2 + z2), x = s− t, y = s+ t, z = 2
√
st.

Solution: Again, to minimize the chance of error, we’ll introducing a placeholding functionf , and havew(s, t) = f(x(s, t), y(s, t), z(s, t). As we
vary s keepingt fixed,w can change for three reasons: a change ins can cause a change inx, which can cause a change inf ; a change ins can
cause a change iny, which can cause a change inf ; or a change ins can cause a change inz, which can cause a change inf . The Chain Rule says

∂w

∂s
=

∂f

∂x

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂x

∂s
+

∂f

∂y

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂y

∂s
+

∂f

∂z

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂z

∂s
.

Therefore we have

∂w

∂s
=

2x(t, s)

x(t, s)2 + y(t, s)2 + z(t, s)2
+

2y(t, s)

x(t, s)2 + y(t, s)2 + z(t, s)2
+

2z(t, s)

x(t, s)2 + y(t, s)2 + z(t, s)2
2
√
t

2
√
s
.

Substituting forx(t, s), y(t, s), andz(t, s) gives ∂w
∂s

= 2s+2t
(s+t)2

= 2
s+t

.
Similarly, we can write

∂w

∂t
=

∂f

∂x

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂x

∂t
+

∂f

∂y

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂y

∂t
+

∂f

∂z

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂z

∂t
,

giving
∂w

∂t
=

−2x(t, s)

x(t, s)2 + y(t, s)2 + z(t, s)2
+

2y(t, s)

x(t, s)2 + y(t, s)2 + z(t, s)2
+

2z(t, s)

x(t, s)2 + y(t, s)2 + z(t, s)2
2
√
s

2
√
t
.

Substituting forx(t, s), y(t, s), andz(t, s) gives ∂w
∂t

= 2
s+t

.

Page 960: #8:Find∂w/∂s and∂w/∂t with w = yz + zx+ xy, x = s2 − t2, y = s2 + t2, z = s2t2.
Solution: Let’s writew(s, t) = f(x(s, t), y(s, t), z(s, t)). The Chain Rule gives

∂w

∂s
=

∂f

∂x

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂x

∂s
+

∂f

∂y

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂y

∂s
+

∂f

∂z

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂z

∂s
.

As
∂f

∂x
= z + y,

∂f

∂y
= z + x,

∂f

∂z
= y + z

and
∂x

∂s
= 2s,

∂y

∂s
= 2s,

∂z

∂s
= 2t2s,

we have
∂w

∂s
= (z(s, t) + y(s, t))(2s) + (z(s, t) + x(s, t))(2s) + (y(s, t) + x(s, t))(2t2s).

Substituting forx(s, t), y(s, t), andz(s, t) gives

∂w

∂s
= (s2t2 + s2 + t2)(2s) + (s2t2 + s2 − t2)(2s) + (2s2)(2t2s) = 4s3(1 + 2t2).
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Similarly, we can write

∂w

∂t
=

∂f

∂x

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂x

∂t
+

∂f

∂y

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂y

∂t
+

∂f

∂z

∣

∣

∣

(x(s,t),y(s,t),z(s,t))

∂z

∂t
.

Using our values for the partials off from above gives

∂w

∂t
= (z(s, t) + y(s, t))(−2t) + (z(s, t) + x(s, t))(2t) + (x(s, t) + y(s, t))(2s2t),

and then using
∂x

∂t
= −2t,

∂y

∂t
= 2t,

∂z

∂t
= 2s2t

and substituting forx(s, t), y(s, t) andz(s, t) gives

∂w

∂t
= (s2t2 + s2 + t2)(−2t) + (s2t2 + s2 − t2)(2t) + (2s2)(2s2t) = 4t(s4 − t2),

Page 960: #34:A rectangular box has a square base. Find the rate at which itsvolume and surface area are changing if its base is increasing at 2
cm/min and its height is decreasing at 3cm/min at the instantwhen each dimension is 1 meter.

Solution: Let’s call the box’s lengthx, its widthy, and its heightz. Since the box has a square base, we havex = y. The volume of the box is given
by xyz = x2z. We’re also going to think ofx andz as functions of timet, soV (t) = f(x(t), z(t)) with f(x, z) = x2z. The Chain Rule gives

∂V

∂t
=

∂f

∂x

∣

∣

∣

(x(t),z(t))

∂x

∂t
+

∂f

∂z

∣

∣

∣

(x(t),z(t))

∂z

∂t
or

dV

dt
=

∂f

∂x

∣

∣

∣

(x(t),z(t))

dx

dt
+

∂f

∂z

∣

∣

∣

(x(t),z(t))

dz

dt
.

From the statement of the problem, we knowdx/dt = 2 anddz/dt = −3. Differentiating givesfx = 2xz andfz = x2. ThereforedV
dt

=

4x(t)z(t)− 3x(t)2. Whenx(t) = z(t) = 1, we havedV/dt = 1, meaning the volume is increasing at a rate of one cubic centimeter per second.
To calculate the rate at which the surface area is changing, recall the surface area is2(xy + xz + yz) = 2(x2 + 2xz) (sincex = y). Set

A(t) = g(x(t), z(t)) with g(x, z) = 2(x2 + 2xz). The Chain rule gives

∂S

∂t
=

∂g

∂x

∣

∣

∣

(x(t),z(t))

∂x

∂t
+

∂g

∂z

∣

∣

∣

(x(t),z(t))

∂z

∂t
or

dS

dt
=

∂g

∂x

∣

∣

∣

(x(t),z(t))

dx

dt
+

∂g

∂z

∣

∣

∣

(x(t),z(t))

dz

dt
.

Taking the derivatives and usingdx/dt = 2 anddz/dt = −3 gives

dS

dt
= 4(2x(t) + 2z(t))− 12x(t) = 8z(t)− 4x(t).

Therefore, whenx(t) = z(t) = 1, the surface area is changing at a rate of 4 square centimeters per second.

Page 960 #41:Suppose thatw = f(u) and thatu = x+ y. Show that∂w/∂x = ∂w/∂y.
Solution: Let’s first think about what this problem means. We havew as a function of one variable,u, which we know want to think of as a function
of two variables,x andy, using the relationshipu = x+ y. Claiming that∂w/∂x = ∂w/∂y essentially means that we achieve the same effect by
varyingy a little bit as we do by varyingx that same little bit. This makes sense, since if we increasex by 0.1 and leavey constant,u increases by
0.1; alternatively, if we increasey by 0.1 and leavex constant,u again increases by 0.1.

More formally, let’s writew(x, y) = f(u(x, y)), so

∂w

∂x
=

∂f

∂u

∣

∣

∣

u(x,y)

∂u

∂x
= f ′(u(x, y)) · 1 = f ′(u(x, y)),

∂w

∂y
=

∂f

∂u

∣

∣

∣

u(x,y)

∂u

∂y
= f ′(u(x, y)) · 1 = f ′(u(x, y)).

So∂w/∂x is indeed equal to∂w/∂y.

11. HW #12: DUE FRIDAY, MARCH 9, 2018

11.1. Problems: HW #12: Due Friday, March 9, 2018:

Page 971: Question 3::Find the gradient∇f atP wheref(x, y) = exp(−x2 − y2) andP is (0,0).

Page 971: Question 10::Find the gradient∇f atP wheref(x, y, z) = (2x− 3y + 5z)5 andP is (-5,1,3).

Page 971: Question 11::Find the directional derivative off(x, y) = x2 + 2xy + 3y2 at P (2, 1) in the direction~v = 〈1, 1〉. In other words,
compute(D~uf)(P ) where~u = ~v/|~v|.

Page 971: Question 19::Find the directional derivative off(x, y, z) = exp(xyz) atP (4, 0,−3) in the direction~v = 〈0, 1,−1〉 (which is j − k).
In other words, compute(D~uf)(P ) where~u = ~v/|~v|.

Page 971: Question 21::Find the maximum directional derivative off(x, y) = 2x2 + 3xy + 4y2 atP (1, 1) and the direction in which it occurs.
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11.2. Solutions: HW #12: Due Friday, March 9, 2018. Page 971: Question 3:: Find the gradient∇f atP wheref(x, y) = exp(−x2 − y2)
andP is (0,0).
Solution: 〈fx, fy〉 = 〈−2x exp(−x2 − y2),−2y exp(−x2 − y2)〉. Plugging inP (0, 0), we have the gradient atP is 〈0, 0〉.

Page 971: Question 10::Find the gradient∇f atP wheref(x, y, z) = (2x− 3y + 5z)5 andP is (-5,1,3).
Solution: 〈fx, fy, fz〉 = 〈10(2x − 3y + 5z)4,−15(2x − 3y + 5z)4, 25(2x − 3y + 5z)4〉, and evaluating atP gives the gradient there is just
〈10(16),−15(16), 25(16)〉 or 〈160,−240, 400〉.

Page 971: Question 11::Find the directional derivative off(x, y) = x2 + 2xy + 3y2 at P (2, 1) in the direction~v = 〈1, 1〉. In other words,
compute(D~uf)(P ) where~u = ~v/|~v|.
Solution: As |~v| =

√
12 + 12 =

√
2, normalizing gives~u = ~v/

√
2 = 〈1/

√
2, 1/

√
2〉. Using our formula we have(D~uf)(P ) = 〈fx, fy〉

∣

∣

∣

P
· ~u =

〈2x+ 2y, 2x+ 6y〉
∣

∣

∣

P
· 〈1/

√
2, 1/

√
2〉. Plugging in the values forx andy, we have(D~uf)(P ) = 〈6, 10〉 · 〈1/

√
2, 1/

√
2〉 = 8

√
2.

Page 971: Question 19::Find the directional derivative off(x, y, z) = exp(xyz) atP (4, 0,−3) in the direction~v = 〈0, 1,−1〉 (which is j − k).
In other words, compute(D~uf)(P ) where~u = ~v/|~v|.
Solution: As |~v| =

√

12 + (−1)2 =
√
2, we have~u = 〈0, 1,−1〉/

√
2 = 〈0, 1/

√
2,−1/

√
2〉. The gradient is

Df = 〈yzexyz, xzexyz, xyexyz〉 = 〈0,−12e0, 0〉 = 〈0,−12, 0〉,
soDuf(P ) = 〈0,−12, 0〉〈0, 1/

√
2,−1/

√
2〉 = −6

√
2.

Page 971: Question 21::Find the maximum directional derivative off(x, y) = 2x2 + 3xy + 4y2 atP (1, 1) and the direction in which it occurs.
Solution: The maximum directional derivative is in the direction of the gradient (the minimum is in the opposite direction). The gradient off is
Df = 〈4x + 3y, 3x + 8y〉, which atP is 〈7, 11〉. A unit vector in this direction is~u = 〈7, 11〉/|〈7, 11〉|. As |〈7, 11〉| =

√
72 + 112 =

√
170,

the directional derivative is largest in the direction~u = 〈7/
√
170, 11/

√
170〉. To find the maximum value, we just need to compute(D~uf)(P ) =

(Df)(P ) · ~u, which is〈7, 11〉 · 7/
√
170, 11/

√
170. This is just(72 + 112)/

√
170 =

√
170; it is not a coincidence that this is the magnitude of the

gradient!

12. HW #13: DUE MONDAY, MARCH 12, 2018

12.1. Problems: HW #13: Due Monday, March 12, 2018.

Question 1: Use Newton’s Method to find a rational number that estimates the square-root of 5 correctly to at least 4 decimal places.

Question 2: Let w(r, s, t) = f(u(r, s, t), v(r, s, t)) with f(u, v) = u2 + v2, u(r, s, t) = t cos(rs) andv(r, s, t) = t sin(rs). Find the partial
derivatives ofw with respect tor, s andt both by direct substitution (which is very nice here!) and bythe chain rule.

Question 3: Write (1/2,
√
3/2) in polar coordinates.

Question 4: Find the tangent plane toz = f(x, y) with f(x, y) = x2y +
√
x+ y at (1, 3), and approximate the function at(.9, 1.2).

General comments: These problems are all done the same way. Let’s say we have functions of three variables,x, y, z. Find the function to
maximize f , the constraint function g, and then solve∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = c. Explicitly, solve:

∂f

∂x
(x, y, z) = λ

∂g

∂x
(x, y, z)

∂f

∂y
(x, y, z) = λ

∂g

∂y
(x, y, z)

∂f

∂z
(x, y, z) = λ

∂g

∂z
(x, y, z)

g(x, y, z) = c.

For example, if we want to maximizexy2z3 subject tox+ y + z = 4, then f(x, y, z) = xy2z3 and g(x, y, z) = x+ y + z = 4. The hardest
part is the algebra to solve the system of equations.Remember to be on the lookout for dividing by zero. That is never allowed, and thus you
need to deal with those cases separately. Specifically, if the quantity you want to divide by can be zero, you have to consider as a separate case
what happens when it is zero, and as another case what happenswhen it is not zero.

Page 981: Question 1:Find the maximum and minimum values, if any, off(x, y) = 2x+ y subject to the constraintx2 + y2 = 1.

Page 981: Question 14:Find the maximum and minimum values, if any, off(x, y, z) = x2 + y2 + z2 subject to the constraintx4 + y4 + z4 = 3.
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12.2. Solutions: HW #13: Due Monday, March 12, 2018. Question 1:Use Newton’s Method to find a rational number that estimates the square-
root of 5 correctly to at least 4 decimal places.
Solution: We use the functionf(x) = x2 − 5 and we start withx0 = 2. The equation of the tangent line isy − f(x0) = f ′(x0)(x − x0). As
f(2) = −1 andf ′(2) = 4, the tangent line isy − (−1) = 4(x− 2). We find thex-intercept by settingy = 0 in the tangent line, and this gives us
our next guess,x1. Thus1 = 4(x1 − 2) or x1 = 9/4. If we worked more formally, we would have found thatx1 = 2 − f(2)

f ′(2)
= 9/4 = 2.125.

Performing this process again givesx2 = 2.125 − f(2.125)
f ′(2.125)

= 2.238971, and one more time givesx3 = 2.238971 − f(2.238971)
f ′(2.238971)

= 2.23607. If

we instead starting withx0 = 3 as our guess, the first tangent line would bey− f(3) = f ′(3)(x− 3). As f(3) = 4 andf ′(3) = 6, the tangent line
here isy − 4 = 6(x − 3). Thex-intercept is wherey = 0, sox1 is found by solving−4 = 6(x1 − 3), which givesx1 = 14/6 = 7/3. The next
guess isx2 = 47/21, followed byx3 = 2207/987 ≈ 2.236068896.

Question 2: Let w(r, s, t) = f(u(r, s, t), v(r, s, t)) with f(u, v) = u2 + v2, u(r, s, t) = t cos(rs) andv(r, s, t) = t sin(rs). Find the partial
derivatives of w with respect to r, s and t both by direct substitution (which is very nice here!) and by the chain rule.
Solution: We substitute (plug in) the functional expressions foru andv, then we havew(r, s, t) = (t cos(rs))2 + (t sin(rs))2 = t2(cos2(rs) +
sin2(rs)) = t2. So ∂w

∂t
= 2t, ∂w

∂s
= ∂w

∂r
= 0. For the chain rule, we have

∂w

∂r
=

∂f

∂u

∣

∣

∣

(u(r,s,t),v(r,s,t))

∂u

∂r
+

∂f

∂v

∣

∣

∣

(u(r,s,t),v(r,s,t))

∂v

∂r
.

We have∂f
∂u

= 2u and ∂f
∂v

= 2v, while ∂u
∂r

= −ts sin(rs) and ∂v
∂r

= ts cos(rs). Substituting (and evaluating the derivatives at the rightpoint)
gives

∂w

∂r
= 2u

∣

∣

∣

(u(r,s,t),v(r,s,t))
(−ts sin(rs)) + 2v

∣

∣

∣

(u(r,s,t),v(r,s,t))
(ts cos(rs)) = −t2s cos(rs) sin(rs) + t2s sin(rs) cos(rs) = 0.

The other derivatives are computed similarly.

Question 3: Write (1/2,
√
3/2) in polar coordinates.

Solution: Polar coordinates arex = r cos θ andy = r sin θ, or r =
√

x2 + y2 andθ = arctan(y/x). We first find the radius:r =
√

x2 + y2 =
√

1/4 + 3/4 = 1. To find the angle, knowingr = 1 we seesin θ =
√
3/w (or tan(θ) =

√
3), soθ = π/3. Hence the expression is(1, π/3).

Question 4: Find the tangent plane toz = f(x, y) with f(x, y) = x2y +
√
x+ y at (1, 3), and approximate the function at(0.9, 1.2).

Solution: The equation of the tangent plane isz = f(1, 3) + ∂f
∂x

(1, 3)(x − 1) + ∂f
∂y

(1, 3)(y − 3). We havef(1, 3) = 5, ∂f
∂x

= 2xy + 1
2
√

x+y)
,

which at(1, 3) equals25
4

, while ∂f
∂y

= x2 + 1
2
√

x+y
, which at(1, 3) equals5+ 25

4
(.9− 1) + 5

4
(1.2− 3) = 17

8
, which is approximately 2.125. The

actual value atx = 0.9, y = 1.2 is z = − 211
80

= −2.6375. The reason our approximation is off by so much is that we are at the point(.9, 1.2), and
1.2 is a ways from 3.

General comments: These problems are all done the same way. Let’s say we have functions of three variables,x, y, z. Find the function to
maximize f , the constraint function g, and then solve∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = c. Explicitly, solve:

∂f

∂x
(x, y, z) = λ

∂g

∂x
(x, y, z)

∂f

∂y
(x, y, z) = λ

∂g

∂y
(x, y, z)

∂f

∂z
(x, y, z) = λ

∂g

∂z
(x, y, z)

g(x, y, z) = c.

For example, if we want to maximizexy2z3 subject tox+ y + z = 4, then f(x, y, z) = xy2z3 and g(x, y, z) = x+ y + z = 4. The hardest
part is the algebra to solve the system of equations.Remember to be on the lookout for dividing by zero. That is never allowed, and thus you
need to deal with those cases separately. Specifically, if the quantity you want to divide by can be zero, you have to consider as a separate case
what happens when it is zero, and as another case what happenswhen it is not zero.

Page 981: Question 1:Find the maximum and minimum values, if any, off(x, y) = 2x+ y subject to the constraintx2 + y2 = 1.
Solution: We use of the method of Lagrange multipliers to solve for constrained optimization. We set up the appropriate equations by setting the
gradients proportional to each other with proportionalityconstantλ, and remember that the constraint equation must hold as well. Thus, we are
looking for (x, y, λ) such that(∇f)(x, y) = λ(∇g)(x, y) andg(x, y) = x2 + y2 = 1. The gradient∇f(x, y) = 〈2, 1〉. This is obtained by just
taking the partial derivatives of thef(x, y) with respect to its variables. Taking the gradient of the constraint gives∇g(x, y) = 〈2x, 2y〉.

We set up the equations:∇f(x, y) = λ∇g(x, y), so 〈x, 1〉 = λ〈2x, 2y〉, and alsox2 + y2 = 1 (it is very important not to forget this, as
otherwise we have two equations in three unknowns, which is an over-determined system). We now solve the equations for each variable by setting
the components of the gradients as equal. We have three equations: 2 = λ2x, 1 = λ2y andx2 + y2 = 1.

One way to solve this is to take ratios; unfortunately, we need to be careful: what ifx or y is zero? Well, ify = 0 then the constraint equation
becomesx2 = 1 sox = ±1, leading tof(1, 0) = 2 andf(−1, 0) = −2. If insteadx = 0 then the constraint equation becomesy2 = 1 soy = ±1,
leading to the points(0, 1) and(0,−1), which evaluate underf to 1 and -1, respectively. 4 If nowx does not equal zero, then dividing the second
equation by the first eliminates theλ’s, and we find2/1 = x/y, sox = 2y. Substituting intox2 + y2 = 1 gives5y2 = 1 or y = ±1/

√
5, and thus

we get the candidate points(x, y) = (2/
√
5, 1/

√
5) and(−2/

√
5,−1/

√
5). Evaluatingf at the first gives3/

√
5 while evaluatingf at the second
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gives−3/
√
5. We thus see the maximum value off is not 3/

√
5 but rather 2, andf ’s minimum value isnot−3/

√
5 but rather -2. In other words,

it is very important to remember the candidates that can arise from dividing by zero!
Remark: looking at the function, we see we wantx to be as large (small) as possible for the maximum (minimum),and thus it is not unexpected

that these occur wheny = 0.

Page 981: Question 14:Find the maximum and minimum values, if any, off(x, y, z) = x2 + y2 + z2 subject to the constraintx4 + y4 + z4 = 3.
Solution: We use Lagrange Multipliers. The gradients are∇f(x, y) = 〈2x, 2y, 2z〉 and∇g(x, y, z) = 〈4x3, 4y3, 4z3〉. We set up the equations
∇f(x, y, z) = λ∇g(x, y, z) andg(x, y, z) = x4 + y4 + z4 = 3, leading to〈2x, 2y, 2z〉 = λ〈4x3, 4y3, 4z3〉 andg(x, y, z) = x4 + y4 + z4 = 3.
Writing things out, we have the three equations (plus the constraint, of course) 2x = λ4x3, 2y = λ4y3, and2z = λ4z3.

These functions are symmetrical and simplify the algebraicwork. Assume first that none of the variables equal zero. By dividing both sides of the
first equation by2x, both sides of the second equation by2y, and both sides of the third equation by2z, we can easily see the relationship between
the three variables:1 = λ2x2, 1 = λ2y2 and1 = λ2z2. This leads the squares of the three variables being equal. We havex = ±y andx = ±z,
since the square of any of these equals the square of another.Thusx4 + y4 + z4 = 3 becomes3x4 = 3y4 = 3z4 = 3, sox, y, z ∈ {1,−1}. The
candidate points are the eight points(±1,±1,±1), all of which evaluate to3 underf .

What about the case when some of the variables are zero? If allthree are zero, the constraint cannot be satisfied. If two arezero then the third
must equal±31/4, and this point evaluates to31/2 ≈ 1.732 underf , larger than the values seen above! What if only one variableis zero, for
definiteness sayz. Then we may divide the first equation by2x and the second by2y, finding 1 = 2λx2 = 2λy2, sox = ±y and2x4 = 3
(from x4 + y4 + z4 = 3). This givesx = ±(3/2)1/4 = ±y, and thus the candidate points(±(3/2)1/4,±(3/2)1/4, 0) evaluate underf to
√

3/2 +
√

3/2 ≈ 2.44949. There are lots more points like this:(0,±(3/2)1/4,±(3/2)1/4) and(±(3/2)1/4, 0,±(3/2)1/4), all evaluating under
f to the same. Thus the maximum is occurring at one of the pointswhere we would have divided by zero, while the minimum occursat the point
where all are equal in absolute value.

13. HW #14: DUE WEDNESDAY, MARCH 14, 2018

13.1. Problems: HW #14: Due Wednesday, March 14, 2018.

Page 981: Question 19:Find the point on the line3x+ 4y = 100 that is closest to the origin. Use Lagrange multipliers to minimize the SQUARE
of the distance.

Page 981: Question 35:Find the point or points of the surfacez = xy + 5 closest to the origin.

Page 981: Question 51:Find the point on the parabolay = (x − 1)2 that is closest to the origin.Note: after some algebra you’ll get thatx
satisfies2(x − 1)3 + x = 0 (depending on how you do the algebra it may look slightly different). You may use a calculator, computer program, ...
to numerically approximate the solution.
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13.2. Solutions: HW #14: Due Wednesday, March 14, 2018.

General comments: These problems are all done the same way. Let’s say we have functions of three variables,x, y, z. Find the function to
maximize f , the constraint function g, and then solve∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = c. Explicitly, solve:

∂f

∂x
(x, y, z) = λ

∂g

∂x
(x, y, z)

∂f

∂y
(x, y, z) = λ

∂g

∂y
(x, y, z)

∂f

∂z
(x, y, z) = λ

∂g

∂z
(x, y, z)

g(x, y, z) = c.

For example, if we want to maximizexy2z3 subject tox+ y + z = 4, then f(x, y, z) = xy2z3 and g(x, y, z) = x+ y + z = 4. The hardest
part is the algebra to solve the system of equations.Remember to be on the lookout for dividing by zero. That is never allowed, and thus you
need to deal with those cases separately. Specifically, if the quantity you want to divide by can be zero, you have to consider as a separate case
what happens when it is zero, and as another case what happenswhen it is not zero.

Page 981: Question 19:Find the point on the line3x+ 4y = 100 that is closest to the origin. Use Lagrange multipliers to minimize the SQUARE
of the distance.

Solution: Because we are solving for the square of the distance, we takef(x, y) = (
√

x2 + y2)2 = x2 + y2. Since the distance is being squared,
the square root is being canceled out, which significantly simplifies the algebra and the calculus. Our constraint is given to us as our point must lie
on the line3x+ 4y = 100. We apply the method of Lagrange multipliers and set the gradients of both functions to be proportional to each other.

The gradient∇f(x, y) = 〈2x, 2y〉, and∇g(x, y) = 〈3, 4〉. The equations to solve are∇f(x, y) = λ∇g(x, y) with 3x + 4y = 100, so
〈2x, 2y〉 = λ〈3, 4〉 with 3x + 4y = 100. We now solve the equations for each variable by setting the components of the gradients as equal. We
have the two equations2x = 3λ and2y = 4λ, plus of course the constraint3x+ 4y = 100.

We solve each of the first two equations forλ, as that will allow us to find a nice relation betweenx andy. If we divide both sides of the first
equation by 3, we can isolateλ. So2x/3 = λ; similarly the second equation givesy/2 = λ. Setting these equal to each other gives2x/3 = y/2
or x = 3y/4 or y = 4x/3. By plugging that value into the constraint function, we canfind the candidate point. We have3x + 4( 4x

3
) = 100, so

25x = 300 or x = 12, giving y = 4(12)
3

= 16. The optimal point is(12, 16).
Alternate geometric solution (advanced): We can also solvethis geometrically, if we remember the product of the slopesof perpendicular lines is

-1. As this line has slope -3/4, fromy = −3x/4+25, the slope of any perpendicular line must be 4/3. A point on that line is (0,0), thus the equation
of that line isy − 0 = (4/3)(x− 0) or y = 4x/3. We need the intersection of this and our original line, so wewant(x, y) such thaty = 4x/3 and
3x+ 4y = 100. The second equation becomes3x+ 16x/3 = 100 or 25x/3 = 100 and thusx = 12, exactly as before!NO CALCULUS!

Page 981: Question 35:Find the point or points of the surfacez = xy + 5 closest to the origin.
Solution: Again we’ll be minimizing the square of the distance to simplify the algebra. We takef(x, y, z) = (

√

x2 + y2 + z2)2 = x2 + y2 + z2.
Our constraint isz = xy + 5 or g(x, y, z) = xy − z = −5. We apply the method of Lagrange multipliers and set the gradients of both functions
proportional to each other (with proportionality constantλ). The gradients are∇f(x, y, z) = 〈2x, 2y, 2z〉 and∇g(x, y) = 〈y, x,−1〉.

We set up the equations∇f(x, y) = λ∇g(x, y) with g(x, y) = −5, so〈2x, 2y, 2z〉 = λ〈y, x,−1〉. We solve the equations for each variable by
setting the components of the gradients as equal. We have three equations:2x = λy, 2y = λx, 2z = λ(−1), and of courseg(x, y, z) = xy − z =
−5.

If x = 0 then since2x = λy we have eitherλ = 0 or y = 0 (or both). Ifλ = 0 thenz = 0 from 2z = −λ, but then the constraint cannot be
satisfied. Thusλ 6= 0, so if x = 0 then we must havey = 0. The constraint equation (withx = y = 0) implies thatz = 5, giving us the point
(0, 0, 5) whose distance-squared to the origin is 25. We get the same answer if insteady = 0.

We may thus assume now that neitherx nor y is zero. In this case we may divide the first equation by the second, and find2x/2y = λy/λx, or
x/y = y/x, orx2 = y2 which impliesx = ±y. If x = y then the first equation,2x = λy, becomes2x = λx. As x 6= 0 we seeλ = 2. The third
equation then gives2z = −λ = −2 soz = 1. The constraintxy − z = −5 becomesx2 + 2 = −5 or x2 = −7, which has no solution.

Continuing to assume neitherx nor y is zero, we see that it must be the case thatx = −y. In this case, the first equation becomes
2x = λy = −λx, soλ = −2. The third equation,2z = −λ = 2 now givesz = 1. The constraintxy − z = −5 is now−x2 − 1 = −5
or x2 = 4. Thusx = ±2, andy = −x andz = 1, giving us the candidate points(2,−2, 1) and(−2, 2, 1), whose distance-squared to the origin is
9, smaller than the 25 we saw above. Thus, these are the two closest points.

Page 981: Question 51:Find the point on the parabolay = (x − 1)2 that is closest to the origin.Note: after some algebra you’ll get thatx
satisfies2(x − 1)3 + x = 0 (depending on how you do the algebra it may look slightly different). You may use a calculator, computer program, ...
to numerically approximate the solution.
Solution: Again we’ll be solving for distance squared using the methodof Lagrange Multipliers. Ourf(x, y) = (

√

x2 + y2)2 = x2 + y2 and our
constraint isy = (x− 1)2 or g(x, y) = (x− 1)2 − y = 0. The gradients are∇f(x, y, z) = 〈2x, 2y〉 and∇g(x, y) = 〈2(x− 1),−1〉.

We set up the equations:∇f(x, y) = λ∇g(x, y) and(x−1)2−y = 0, so〈2x, 2y〉 = λ〈2(x−1),−1〉 (and of course the constraint holds). Now
solve the equation for each variable by setting the components of the gradients equal. We have two equations:2x = λ2(x − 1) and2y = λ(−1).
We use the second equation to isolateλ, which isλ = −2y. Substitute that into the first equation to obtain a relationship betweenx andy:
2x = (−2y)(2(x− 1)) or 2x

2(x−1)
= −2y, which becomes −x

2(x−1)
= y so long asx 6= 1. Note that ifx = 1 theny = 0, giving a distance-squared

of 1.
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Now solve for the optimal using the constraint function through substitution. Our constraint becomes0 = (x−1)2− −x
2(x−1)

, or cross multiplying

gives2(x − 1)3 + x = 0. Taking the advice of the book, we can enter that equation into a graphing calculator or Mathematica to solve for the
optimal point which is(0.410245, 0.347810). We could also use divide and conquer or Newton’s method to find the root!

14. HW #15: DUE WEDNESDAY, APRIL 4, 2018

14.1. Problems: HW #15: Due Wednesday, April 4, 2018. Page 1004: Question 15:Evaluate
∫ 3

0

∫ 3

0
(xy + 7x+ y)dxdy.

Page 1004: Question 24:Evaluate
∫ 1

0

∫ 1

0
ex+ydxdy

Page 1004: Question 25:Evaluate
∫ π

0

∫ π

0
(xy + sin x)dxdy.

Page 1005: Question 37:Use Riemann sums to show, without calculating the value of the integral, that0 ≤
∫ π

0

∫ π

0
sin

√
xydxdy ≤ π2.

Extra credit: LetG(x) =
∫ x3

t=0
g(t)dt. Find a nice formula forG′(x) in terms of the functions in this problem.
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14.2. Solutions: HW #15: Due Wednesday, April 4, 2018. Page 1004: Question 15:Evaluate
∫ 3

0

∫ 3

0
(xy + 7x+ y)dxdy.

Solution: We start by integrating the inside first, which gives us
∫ 3

0

∫ 3

0

(xy + 7x+ y)dxdy =

∫ 3

0

[

x2y/2 + 7x2/2 + xy
]3

x=0
dy

=

∫ 3

0

[9y/2 + 63/2 + 3y] dy

=

∫ 3

0

(15y/2 + 63/2)dy

=
15y2

4

∣

∣

∣

3

0
+

63y

2

∣

∣

∣

3

0
=

135

4
+

189

2
= 128.25.

Page 1004: Question 24:Evaluate
∫ 1

0

∫ 1

0
ex+ydxdy

Solution: We start by integrating the inside first. As we are integrating with respect tox, the anti-derivative ofex+y with respect tox is justex+y.
Note we may also write it asexey; written like this, we seeey functions like a constant. Evaluating at0 and1 givese1+y − e0+y = e · ey − ey =

ey(e− 1). We now integrate this with respect toy, and find(e− 1)ey
∣

∣

∣

1

0
= (e− 1)e− (e− 1)1. Alternatively, we may write this out as

∫ 1

0

∫ 1

0

ex+ydxdy =

∫ 1

0

[

ex+y
∣

∣

∣

1

x=0

]

dy

=

∫ 1

0

(e1+y − ey)dy

=

∫ 1

0

(e− 1)ey = (e− 1)ey
∣

∣

∣

1

0
= (e− 1)e− (e− 1)1.

Page 1004: Question 25:Evaluate
∫ π

0

∫ π

0
(xy + sin x)dxdy.

Solution: We start by integrating the inside first, which gives1
2
x2y

∣

∣

∣

π

x=0
− cos x

∣

∣

∣

π

x=0
or π2

2
y − (−1 − 1) = π2

2
y + 2. Integrating this now with

respect toy gives y2

4

∣

∣

∣

π

0
+ 2y

∣

∣

∣

π

0
= π4/4 + 2π. Alternatively, we may write this as

∫ π

0

∫ π

0

(xy + sin x)dxdy =

∫ π

0

[

1

2
x2y

∣

∣

∣

π

x=0
− cos x

∣

∣

∣

π

x=0

]

dy

=

∫ π

0

(

π2

2
y + 2

)

dy

=
y2

4

∣

∣

∣

π

0
+ 2y

∣

∣

∣

π

0
=

π4

4
+ 2π.

Page 1005: Question 37:Use Riemann sums to show, without calculating the value of the integral, that0 ≤
∫ π

0

∫ π

0
sin

√
xydxdy ≤ π2.

Solution: The idea here is to find the upper and lower bound for the integrant. We know thatsin
√
xy reaches its maximum value1 when

√
xy =

π/2. We also know that since0 ≤ x, y ≤ π, 0 ≤ √
xy ≤ π. This means that0 ≤ sin

√
xy ≤ 1. We use the simplest possible Riemann sum,

namely just one partition (so our partition is the original rectangle). As the rectangle has area
pi2, the lower sum is the minimum value timesπ2, or 0, while the upper sum is the maximum value times the areaπ2, or 1 · π2. Thus0 ≤
∫ π

0

∫ π

0
sin

√
xydxdy ≤ π2.

Extra credit: LetG(x) =
∫ x3

t=0
g(t)dt. Find a nice formula forG′(x) in terms of the functions in this problem.

Solution: We use the Fundamental Theorem of Calculus for this problem,which states that ifF is the antiderivative off , a.k.a. ifF ′ = f , then
∫ b

a
f(x) = F (b)− F (a).

Now in our case, we haveG(x) = F (x3)−F (0). We then differentiate both sides:G′(x) = F ′(x3)−F ′(0). F (0) is just a constant, soF ′(0) = 0.
BecauseF is the antiderivative off , we haveF ′(x3) = f(x3). SoG′(x) = f(x3)

15. HW #16: DUE FRIDAY, APRIL 6, 2018

15.1. Problems: HW #16: Due Friday, April 6, 2018.

Page 1011: Question 4:Evaluate
∫ 2

0

∫ 1

y/2
(x+ y)dxdy; note this is

∫ 2

y=0

∫ 1

x=y/2
(x+ y)dxdy.

Page 1012: Question 11:Evaluate
∫ 1

0

∫ x3

0
exp(y/x)dydx; note this is

∫ 1

x=0

∫ x3

y=0
exp(y/x)dydx.

Additional Problem: Let f(x) = x3 − 4x2 + cos(2x3) + sin(x+ 1701). Find a finiteB such that|f ′(x)| ≤ B for all x in [2,3].
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Page 1011: #13:Evaluate the iterated integral
∫ 3

0

∫ y

0

√

y2 + 16 dx dy =

∫ 3

y=0

∫ y

x=0

√

y2 + 16 dx dy.

Page 1011: #25:Sketch the region of integration for the integral
∫ 2

−2

∫ 4

x2

x2y dy dx =

∫ 2

x=−2

∫ 4

y=x2

x2y dy dx.

Reverse the order of integration and evaluate the integral.

Page 1011: #30:Sketch the region of integration for the integral
∫ 1

0

∫ 1

y

exp(−x2) dx dy =

∫ 1

y=0

∫ 1

x=y

exp(−x2) dx dy.

Reverse the order of integration and evaluate the integral.

Additional Problem : Give an example of a region in the plane that is neither horizontally simple nor vertically simple.
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15.2. Solutions: HW #16: Due Friday, April 6, 2018.

Page 1011: Question 4:Evaluate
∫ 2

0

∫ 1

y/2
(x+ y)dxdy; note this is

∫ 2

y=0

∫ 1

x=y/2
(x+ y)dxdy.

Solution: We start by integrating the inside first with respect tox, which gives us
∫ 2

0

∫ 1

y/2

(x+ y)dxdy =

∫ 2

0

[

x2

2
+ xy

]1

x=y/2

dy

=

∫ 2

0

[(

1

2
+ y

)

−
(

y2

8
+

y2

2

)]

dy

=

∫ 2

0

(

1

2
+ y − 5y2

8

)

dy

=

[

y

2
+

y2

2
− 5y3

24

]2

y=0

= 1 + 2− 5

3
=

4

3
.

Remember that to do multiple integrals, do them one at a time,treating the variables we aren’t integrating as constant. If you are not sure whether
your integral is correct, you can always take the derivativeand check whether it equals the original integrand.

Page 1012: Question 11:Evaluate
∫ 1

0

∫ x3

0
exp(y/x)dydx; note this is

∫ 1

x=0

∫ x3

y=0
exp(y/x)dydx.

Solution: We start by integrating the inside first with respect toy as we havedydx and notdxdy. Note that the integral ofexp(y/x) with respect
to y is x exp(y/x), as can be verified by taking the derivative with respect toy. We thus find

∫ 1

0

∫ x3

0

exp(y/x)dydx =

∫ 1

0

[x exp(y/x)]x
3

y=0 dx

=

∫ 1

0

(

xex
2

− xe0
)

dx

=

∫ 1

0

(

x exp(x2)− x
)

dx

=

[

1

2
exp(x2)− x2

2

]1

x=0

=

(

1

2
e1 − 1

2

)

−
(

1

2
e0 − 0

)

=
e− 2

2
.

For help on the integral
∫ 1

0
xex

2

dx, use the u-substitution technique. Letu = x2, sodu = 2xdx andexp(x2) = exp(u).

Additional Problem: Let f(x) = x3 − 4x2 + cos(2x3) + sin(x+ 1701). Find a finiteB such that|f ′(x)| ≤ B for all x in [2,3].
Solution: Differentiatingf with the normal differentiation rules gives

f ′(x) = 3x2 − 8x− 6x2 sin(2x3) + cos(x+ 1701).

Now we’ll find anupperbound for the absolute maximum off ′(x). We constantly use the absolute value of a sum/difference isless than or equal to
the sum of the absolute values of the pieces. We also use the maximum of the absolute value of a product is at most the productof the maximums.

|f ′(x)| =
∣

∣3x2 − 8x− 6x2 sin(2x3) + cos(x+ 1701)
∣

∣

≤ |3x2|+ |8x|+ |6x2| · | sin(2x3)|+ | cos(x+ 1701)|
= 3|x2|+ 8|x|+ 6|x2| · | sin(2x3)|+ | cos(x+ 1701)|
≤ 3(32) + 8(3) + 6(3)2 · 1 + 1 = 27 + 24 + 54 + 1 = 106.

We may take anyB greater than 106. Note the maximum of the absolute value of sine or cosine is 1, which helps in the arguments above.

Page 1011: #13:Evaluate the iterated integral

∫ 3

0

∫ y

0

√

y2 + 16 dx dy =

∫ 3

y=0

∫ y

x=0

√

y2 + 16 dx dy.

Solution: Let’s first make sure we know what region we’re integrating over. We see thaty ranges from 0 to 3, and that for a given value ofy, x
ranges from 0 toy. Therefore we’re integrating over a triangle in thexy-plane with vertices at(0, 0), (0, 3) and(3, 3). The interior integral is easy
to evaluate because

√

y2 + 16 is constant as a function ofx. Therefore
∫ y

0

√

y2 + 16 dx = x
√

y2 + 16
∣

∣

∣

y

0
= y

√

y2 + 16.
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We now need to integratey
√

y2 + 16 from 0 to 3. It isn’t immediately apparent what that integralis, although making the substitutionu = y2

makes things a lot clearer, sincedu = 2ydy:
∫ 3

0

y
√

y2 + 16 dy =
1

2

∫ 9

0

√
u+ 16 du =

1

3
(u+ 16)3/2

∣

∣

∣

9

0
=

125

3
− 64

3
=

61

3
.

Notice that this problem would have been much harder to do if we had tried to integrate with respect toy first, since we would not have had the
additionaly term that allowed us to make an easy substitution. In that case we would have had to find the integral of

√

y2 + 16 with respect toy,
which is (not obviously)y

√

y2 + 16/2 + 8 sinh−1(y/4). Remember that switching the order of integration can sometimes make your life a lot
easier!NOTE: We could also dou = y2 + 16.

Page 1011: #25:Sketch the region of integration for the integral
∫ 2

−2

∫ 4

x2

x2y dy dx =

∫ 2

x=−2

∫ 4

y=x2

x2y dy dx.

Reverse the order of integration and evaluate the integral.

Solution: Notice thatx ranges from−2 to 2. For a fixed value ofx, y ranges fromx2 to 4. Notice that whenx = ±2, y = 4. Therefore the
boundary of the region of integration is defined by the curvesy = 4 andy = x2. To reverse the order of integration, we need to considerx as a

-2 -1 1 2

1

2

3

4

FIGURE 2. Region for Problem #25.

function ofy. First notice that the minimum value ofy is 0, and the maximum value ofy is 4. For a fixed value ofy, what values doesx take? Since
the bottom curve of our region of integration is given byy = x2, we havex = ±√

y. Thus for a given value ofy, x ranges from−√
y to

√
y. Our

new integral is given by:
∫ 2

−2

∫ 4

x2

x2y dy dx =

∫ 4

0

∫

√
y

−
√

y

x2y dx dy.

We see the inner integral evaluates to
∫

√
y

−
√

y

x2y dx =
x3y

3

∣

∣

∣

√
y

−
√

y
=

2y5/2

3
,

giving our double integral as
∫ 4

0

2y5/2

3
dy =

2

3

2

7
y7/2

∣

∣

∣

4

0
=

512

21
.

Page 1011: #30:Sketch the region of integration for the integral
∫ 1

0

∫ 1

y

exp(−x2) dx dy =

∫ 1

y=0

∫ 1

x=y

exp(−x2) dx dy.

Reverse the order of integration and evaluate the integral.

Solution: Notice thaty ranges from 0 to 1, and that for a given value ofy, x ranges fromy to 1. Therefore our region of integration is a triangle
with vertices(0, 0), (1, 0), and(1, 1). To reverse the order of integration, notice that the minimum value ofx is 0 and the maximum value ofx is 1.
For a given value ofx, y ranges from0 to x. Therefore our integral can be written as

∫ 1

0

∫ 1

y

exp(−x2) dx dy =

∫ 1

0

∫ x

0

exp(−x2) dy dx.

To evaluate this integral, notice that the interior integral is
∫ x

0

exp(−x2) dy = y exp(−x2)
∣

∣

∣

x

0
= x exp(−x2),

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FIGURE 3. Region for Problem #30.
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-2 -1 1 2

-2

-1

1

2

FIGURE 4. Region for Additional Problem.

so our double integral is given by
∫ 1

0

x exp(−x2) dx.

Again, this might not be immediately obvious, but lettingu = x2, we seedu = 2xdx or xdx = 1
2
du, so our integral simplifies to

∫ 1

0

x exp(−x2) dx =
1

2

∫ 1

0

exp(−u) du = −1

2
exp(−u)

∣

∣

∣

1

0
=

1

2

(

1− 1

e

)

.

As we saw in Problem 13, this integral is significantly easierto evaluate after we changed the order of integration. Without switching the order, we
would have had to integrateexp(−x2) with respect tox, which has no elementary antiderivative!

Additional Problem : Give an example of a region in the plane that is neither horizontally simple nor vertically simple.
Solution: Recall what it means for a region to be horizontally or vertically simple. A region is horizontally simply if we can express the range ofx
values for a giveny as allx such thatg1(y) ≤ x ≤ g2(y), whereg1 andg2 are two continuous functions withg1(y) ≤ g2(y). Intuitively, a region
is horizontally simple if any horizontal line intersects the region at most twice. Similarly, a region is vertically simple if any vertical line intersects
the region at most twice.

One way to construct a region which is neither horizontally simple nor vertically simple is to insert a hole into a region which is horizontally
and vertically simple. For example, consider the annulus inthexy plane with inner radius 1 and outer radius 2 (that is, the collection of all points
between 1 and 2 units away from the origin). This region is notvertically simple, since the vertical linex = 0 intersects the annulus in 4 places.
This region is also not horizontally simple, since the horizontal liney = 0 intersects the annulus in 4 places as well. Thus by taking a nice region
(the circle of radius 2) and inserting a hole, we have made a region which is neither horizontally simple nor vertically simple.

16. HW #17: DUE MONDAY, APRIL 9, 2018

16.1. Problems: HW #17: Due Monday, April 9, 2018.

Page 1018: #13:Find the volume of the solid that lies below the surfacez = f(x, y) = y + ex and above the region in thexy-plane bounded by
the given curves:x = 0, x = 1, y = 0, y = 2.

Page 1018: #42:Find the volume of the solid bounded by the two paraboloidsz = x2 + 2y2 andz = 12− 2x2 − y2.

Page 1026: #13:Evaluate the given integral by first converting to polar coordinates:
∫ 1

0

∫

√
1−y2

0

1

1 + x2 + y2
dxdy.

Additional Question 1: Find
∫ 1

y=0

∫ y

x=−y
x9y8dxdy.

Page 1026: Question 4:Evaluate
∫ π/4

−π/4

∫ 2 cos 2θ

0
rdrdθ.

Additional Question 2: Evaluate
∫ 1

0

∫ y

−y
sin(xy) · exp(x2y2)dxdy. Hint: in what way is this similar to an earlier problem on thishomework

assignment?

Additional Question 3: Let f(x, y, z) = cos(xy + z2). Find(Df)(x, y, z).

Additional Question 4: Find the maximum value off(x, y) = xy given thatg(x, y) = x2 + 4y2 = 1.
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16.2. Solutions: HW #17: Due Monday, April 9, 2018.

Page 1018: #13:Find the volume of the solid that lies below the surfacez = f(x, y) = y + ex and above the region in thexy-plane bounded by
the given curves:x = 0, x = 1, y = 0, y = 2.
Solution: Note the region in thexy-plane is the rectangle[0, 1]× [0, 2], or 0 ≤ x ≤ 1 and0 ≤ y ≤ 2. The height isz = f(x, y) = y + ex (which
is always above thexy-axis. Thus the volume is equal to

∫ 1

x=0

∫ 2

y=0
(y + ex)dydx; we could have done thex-integral first since the region is both

horizontally and vertically simple. They-integral gives1
2
y2 + yex, which we must evaluate at 0 and 2. We thus find the volume equals

∫ 1

x=0

∫ 2

y=0

(y + ex) dydx =

∫ 1

x=0

[

y2

2
+ yex

]2

y=0

dx

=

∫ 1

x=0

(2 + 2ex)dx

=
[

2x+ 2ex
]1

x=0

= 2 + 2e− 2 = 2e

Page 1018: #42:Find the volume of the solid bounded by the two paraboloidsz = x2 + 2y2 andz = 12− 2x2 − y2.
Solution: NOTE: Should havex from −2 to 2, and then fix the rest....We first solve for the intersection of the two paraboloids. Note the first is
the bottom and the second is the top. Setting the two equal, wefind z = x2 + 2y2 = 12− 2x2 − y2. Doing some algebra gives3x2 + 3y2 = 12,
or x2 + y2 = 4. Note this is the equation of a circle of radius 2; unlike the problems in class the height is not constant here. The distance between
the top and the bottom curves at an(x, y) is ztop − zbottom, which is12− 2x2 − y2 − (x2 − y2) = 12− 3x2 − 3y2. We have

∫ 1

x=−1

∫

√
1−x2

y=−
√

1−x2

(12− 3x2 − 3y2)dydx.

We convert this to polar coordinates. Letf(x, y) = 12− 3x3 − 3y2. We are integrating over the unit disk, which is easily converted to a rectangle
in polar coordinates. We havef(r cos θ, r sin θ) = 12− 3r2, and thus the volume is

∫ 2π

θ=0

∫ 2

r=0

(12− 3r2)rdrdθ.

We useu-substitution. Letu = 12− 3r2 sodu = −6rdr or rdr = (−1/6)du. We replacer : 0 → 2 with u : 12 → 0, and thus the volume is
∫ 2π

θ=0

∫ 0

u=12

(−1/6)ududθ = −1

6

∫ 2π

θ=0

u2

2

∣

∣

∣

0

12
dθ

= −1

6

−144

2

∫ 2π

θ=0

dθ

= 12

∫ 2π

θ=0

dθ = 12 · 2π = 24π.

If you do not want to convert to polar, you can follow the hint on the book for problems 39 to 45, which says to consult the table of integrals in the
back of the book for the anti-derivativfe of(a2 − x2)3/2, and use that to finish solving the problem.

If you’ve read this far, however, you have forgotten the verysage advice of the Patron Saint of Mathematics, Henry David Thoreau, who advises
us all to ‘Simplify, simplify’. Instead of trying to useu-substitution, let’s just multiply things out! Then(12− 3r2)r becomes12r − 3r3, which can
be integrated directly! Thus the solution to this problem isalso

∫ 2π

θ=0

∫ 2

r=0

(12− 3r2)rdrdθ =

∫ 2π

θ=0

∫ 2

r=0

(12r − 3r3)drdθ

=

∫ 2π

θ=0

[

12r2

2
− 3r4

4

]2

r=0

dθ

=

∫ 2π

θ=0

(24− 12) dθ

= 12

∫ 2π

θ=0

dθ

= 12 · 2π = 24π,

not surprisingly the same answer as before.

Page 1026; #13:Evaluate the given integral by first converting to polar coordinates:

∫ 1

0

∫

√
1−y2

0

1

1 + x2 + y2
.dxdy
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Solution: We notice that the region is the first-quadrant part the unit circle. Thus0 ≤ r ≤ 1 and0 ≤ θ ≤ π/2. The function isf(x, y) =
1/(1 + x2 + y2), sof(r cos θ, r sin θ) = 1/(1 + r2). We thus have the integral equals

∫ π/2

θ=0

∫ 1

r=0

1

1 + r2
rdrdθ =

1

2

∫ π/2

θ=0

[ln(1 + r2)]1r=0dθ

=
1

2

∫ π/2

θ=0

[ln 2− ln 1] dθ

=
ln 2

2

∫ π/2

θ=0

dθ =
ln 2

2
· π
2

=
π ln 2

4
.

The key step was au-substitution. We had to integrate
∫ 1

r=0
rdr
1+r2

. If we takeu = 1 + r2, du = 2rdr sordr = (1/2)du, r : − → 1 becomes

u : 1 → 2, and thus ther-integral becomes
∫ 2

u=1
du/u = ln u

∣

∣

∣

2

u=1
= ln 2.

Additional Question #1: Find
∫ 1

y=0

∫ y

x=−y
x9y8dxdy.

Solution: We start by integrating with respect tox, so we have:
∫ 1

y=0

∫ y

x=−y

x9y8dxdy =
1

10

∫ 1

y=0

[y8x10]yx=−ydy

=
1

10

∫ 1

y=0

(y18 − y18)dy

= 0.

Note we are integrating an odd function about a symmetric interval, and thus we do get zero.

Page 1026: Question 4:Evaluate
∫ π/4

−π/4

∫ 2 cos 2θ

0
rdrdθ.

Solution: We start by integrating the inside first with respect tor, which gives us
∫ π/4

−π/4

∫ 2 cos 2θ

0

rdrdθ =

∫ π/4

−π/4

[

r2

2

]2 cos 2θ

0

dθ

=

∫ π/4

−π/4

2 cos2 2θdθ

=

∫ π/2

−π/2

cos2 udu,

where we didu-substitution:u = 2θ, du = 2dθ, andθ : −π/4 → π/4 meansu : −π/2 → π/2. We now use a trig-identity. As

cos(2u) = cos(u+ u) = cos u cosu− sin u sin u = cos2 u− sin2 u = 2 cos2 u− 1

(where the last followed fromsin2 u = 1− cos2 u), we see thatcos2 u = cos(2u)+1
2

. In the arguments below we’ll do another substitution; we’ll let
v = 2u sodv = 2du andu : −π/2 → π/2 will mean thatv : −π/ → π. Continuing we find

∫ π/4

−π/4

∫ 2 cos 2θ

0

rdrdθ =

∫ π/2

−π/2

cos2 udu =

∫ π/2

−π/2

[

cos 2u

2
+

1

2

]

du

=
1

4

∫ π

−π

cos vdv +
1

2

∫ π/2

−π/2

du

=
1

4
[sin v]πv=−π +

1

2
[u]

π/2
u=−π/2

=
1

4
(0) +

1

2

(π

2
+

π

2

)

=
π

2
.

Remember that when usingu-substitution, be sure to change the bounds correctly.
There are other ways to do this problem. We could use the tableof integrals in the front cover to find the anti-derivative ofcos2 u; to put our

expression in a form where we could do this, we would need to doau-substitution first. Thus we have
∫ π/4

−π/4

∫ 2 cos 2θ

0

rdrdθ =

∫ π/4

−π/4

2 cos2 2θdθ =

∫ π/2

−π/2

cos2 udu = 2

∫ π/2

0

cos2 udu,

where we used theu-substitutionu = 2θ, du = 2dθ, and asθ : −π/4 → π/4, u : −π/2 → π/2. We then noted the integrand was even and the
range symmetric, so we could just integrate from0 to π/2 and double. Note that

∫ π/2

0

cos2 udu =
1

4

∫ 2π

0

cos2 udu,

∫ 2π

0

cos2 udu =

∫ 2π

0

sin2 du.

Thus
∫ π/2

0

cos2 udu =
1

4

∫ 2π

0

cos2 udu =
1

4

1

2

∫ 2π

0

[

cos2 u+ sin2 u
]

du =
2π

8
,
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ascos2 u+ sin2 u = 1, and so the answer is2 · (2π/8) = π/2.

Additional Question 2: Evaluate
∫ 1

0

∫ y

−y
sin(xy) · exp(x2y2)dxdy. Hint: in what way is this similar to an earlier problem on thishomework

assignment?
Solution: The key to this question is to realize thatsin(xy) is an odd function and thatexp(x2y2) is an even function. Recallf(x) is odd if
f(−x) = −f(x) and even iff(−x) = f(x). The product of an even function and an odd function is an odd function. Since we are first integrating
over the bound [−y, y] we can use the symmetry properties of integrals to simplifythe calculation: the integral of an odd function over a symmetric
region is zero, as the positive parts cancel with the negative parts.

∫ 1

0

∫ y

−y

sin(xy) · exp(x2y2)dxdy =

∫ 1

0

0dy = 0

For example,
∫ 2

x=−2
xdx = x2

2

∣

∣

∣

2

x=−2
= 0. What is very nice is that we do not need to know what the antiderivative is; the antiderivative of an odd

function is an even function, and thus the difference is zerowhen we subtract with symmetric boundary points.

Additional Question 3: Let f(x, y, z) = cos(xy + z2). Find (Df)(x, y, z).
Solution: Since we are calculating the gradient of this function, we simply need to apply the normal differentiation rules to determine the partial
derivatives off(x, y, z).

∂f

∂x
(x, y, z) = −y sin(xy + z2)

∂f

∂y
(x, y, z) = −x sin(xy + z2)

∂f

∂z
(x, y, z) = −2z sin(xy + z2)

Df(x, y, z) = 〈−y sin(xy + z2),−x sin(xy + z2),−2z sin(xy + z2)〉

Additional Question 4: Find the maximum value off(x, y) = xy given that g(x, y) = x2 + 4y2 = 1.
Solution: We will use the method of Lagrange multipliers to calculate the constrained maximum. Set up the appropriate equations bysetting the
gradients equal to each other with the constantλ. In other words, we must solve∇f = λ∇g andg(x, y) = 1. As∇f = 〈y, x〉 and∇g = 〈2x, 8y〉,
we see we must solve

∂f

∂x
(x, y) = λ

∂g

∂x
(x, y),

∂f

∂y
(x, y) = λ

∂g

∂y
(x, y), g(x, y) = c,

or substituting

y = λ2x, x = λ8y, x2 + 4y2 = 1.

Note that ify = 0 thenx = 0, but this does not satisfy the constraint. Similarly ifx = 0 theny = 0. Thus neitherx nor y is zero (and thus
neither isλ).

If we take the ratio of the second equation over the first, we find

x

y
=

λ8y

λ2x
or

x

y
=

4y

x
.

Cross multiplying givesx2 = 4y2. Substituting this into the constraintx2 + 4y2 = 1 gives4y2 + 4y2 = 1, soy2 = 1/8 or y = ±1/2
√
2.

As x2 = 4y2, we see thatx = ±1/
√
2. We thus have four candidate points to check for maxima / minima: (x, y) = (±1/

√
2,±1/2

√
2). The

two points where the signs are equal evaluate underf to 1/4, while the two points where the signs are opposite evaluate underf to −1/4; thus the
maximum value is1/4.

17. HW #18: DUE FRIDAY, APRIL 13, 2018

17.1. Problems: HW #18: Due Friday, April 13, 2018.

Page 1056: #37a.:Use spherical coordinates to evaluate the integral

I =

∫ ∫ ∫

B

exp(−ρ3) dV

whereB is the solid ball of radiusa centered at the origin.

Page 1056: #37b.:Let a → ∞ in the result of part (a) to show that
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(−(x2 + y2 + z2)3/2) dx dy dz =

4

3
π.
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17.2. Solutions: HW #18: Due Friday, April 13, 2018.

Page 1056: #37a.:Use spherical coordinates to evaluate the integral

I =

∫ ∫ ∫

B

exp(−ρ3) dV

whereB is the solid ball of radiusa centered at the origin.
Solution: We first need to figure out our limits of integration. Recall that in spherical coordinates we have the radiusρ, which will range from 0 toa,
the angleθ in thexy-plane, which ranges between 0 and2π, and the azimuthal angleφ, will ranges from 0 toπ. Therefore our limits of integration
are

∫ ρ=a

ρ=0

∫ θ=2π

θ=0

∫ φ=π

φ=0

exp(−ρ3) dV.

The volume elementdV is given bydV = ρ2 sinφ dφ dθ dρ (as we have a rectangular box in spherical coordinates and the bounds of integration
are fixed and do not depend on each other, we may integrate in any order). Therefore our integral is given by

∫ ρ=a

ρ=0

∫ θ=2π

θ=0

∫ φ=π

φ=0

exp(−ρ3) ρ2 sinφ dφ dθ dρ.

The inside integrates to− exp(−ρ3)ρ2 cos φ. Taking the difference at the endpoints we get2 exp(−ρ3) ρ2, and thus

I = 2

∫ ρ=a

ρ=0

∫ θ=2π

θ=0

exp(−ρ3) ρ2dθ dρ.

Since the inside is constant as a function ofθ, integrating with respect toθ has the same effect as multiplying by2π, giving

I = 4π

∫ ρ=a

ρ=0

exp(−ρ3) ρ2dρ.

Notice that the integral ofexp(−ρ3) ρ2 with respect toρ is just− exp(−ρ3)/3, so our integral evaluates to

I =
−4π

3
exp(−ρ3)

∣

∣

∣

a

0
=

4π

3
(1− exp(−a3)).

Page 1056: #37b.:Let a → ∞ in the result of part (a) to show that
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(−(x2 + y2 + z2)3/2) dx dy dz =

4

3
π.

Solution: Notice that this is the integral ofexp(−ρ3) over all ofR3, which is exactly the integral we worked out in part (a) in thelimit asa → ∞.
As a → ∞, we see thatexp(−a3) → 0, so our integral does indeed approach4π/3.

18. HW #20: DUE MONDAY, APRIL 16, 2018

18.1. OPTIONAL Problems: HW #–: OPTIONAL: Monday, April 16, 2018.

THIS ASSIGNMENT IS ENTIRELY EXTRA CREDIT! IT INVOLVES YOU WATCHING THE VIDEO AND DOING THESE PROBLEMS.
IT IS OPTIONAL.

Page 1071: #2:Solve forx andy in terms ofu andv, and compute the Jacobian∂(x, y)/∂(u, v) with u = x− 2y, v = 3x+ y.

Page 1071: #3:Solve forx andy in terms ofu andv, and compute the Jacobian∂(x, y)/∂(u, v) with u = xy, v = y/x.
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18.2. Solutions: OPTIONAL Problems: HW #21: OPTIONAL: Monday, Ap ril 16, 2018.

Page 1071: #2:Solve forx andy in terms ofu andv, and compute the Jacobian∂(x, y)/∂(u, v) with

u = x− 2y v = 3x+ y.

Solution: We first notice thatu+ 2v = 7x, sox = x(u, v) = (u+ 2v)/7. Similarly,v − 3u = 7y, soy = y(u, v) = (v − 3u)/7. Therefore the
Jacobian∂(x, y)/∂(u, v) is given by

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

1/7 2/7
−3/7 1/7

∣

∣

∣

∣

=
1

7

Page 1071: #3:Solve forx andy in terms ofu andv, and computer the Jacobian∂(x, y)/∂(u, v) with

u = xy v = y/x.

Solution: Notice that multiplyingu andv together yieldsuv = y2, soy = y(u, v) = ±√
uv. Similarly, dividingu by v givesu/v = x2, so

x = x(u, v) = ±
√

u/v. Which of the solutions should we take? Notice that we needxy = u, so we must either take both positive solutions or
both negative solutions. Taking both positive solutions, we find that the Jacobian is given by

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
2
√

uv
−
√

u
2v

√
v√

v
2
√

u

√
u

2
√

v

∣

∣

∣

∣

∣

=
1

4v
+

1

4v
=

1

2v
.

The exact same calculation shows that the Jacobian is again1/(2v) when we take the negative solutions.

19. HW #22: DUE FRIDAY, APRIL 20, 2018

19.1. Problems: HW #22: Due Friday, April 20, 2018.

Problem 1:. Give an example of a sequence{an}∞n=1 that diverges.

Problem 2:. Give an example of a sequence of distinct termsan such that the sequence{an}∞n=1 converges.

Problem 3:. Give an example of a sequence of distinct termsan such that|an| < 2018 and the sequence{an}∞n=1 does not converge.

Problem 10-4 (Cain-Herod):Find the limit of the sequencean = 3/n2, or explain why it does not converge.

Problem 10-5 (Cain-Herod):Find the limit of the sequencean = 3n2+2n−7
n2 .



36 STEVEN J. MILLER

19.2. Solutions: HW #21: Due Friday, April 20, 2018.

Problem 1:. Give an example of a sequence{an}∞n=1 that diverges.
Solution: There are two ways for a sequence not to converge. It can either get too big (diverge to infinity), or it can bounce around forever and never
settle down. For instance, the sequence given byan = n for all n ∈ N will diverge to infinity, since given any real numberr ∈ R, an > r for all
n > r. A sequence that fails to converge because it bounces isan = (−1)n, or more interestinglyan = (−1)n + (−1)n/n.

Problem 2:. Give an example of a sequence of distinct termsan such that the sequence{an}∞n=1 converges.
Solution: For a sequence to converge to a limitL, it must eventually get and stay arbitrarily close toL. Consider the sequencean = 1/n. We claim
this converges to 0. To prove this, we need to show that given any ǫ > 0, we can find anN such that|an − 0| < ǫ for all n > N . Let N be any
integer exceeding2/ǫ. Then forn > N , an < ǫ/2, so|an − 0| < ǫ/2 < ǫ, soan does indeed converge to 0. Arguing more informally, we would
saylimn→∞ |an − 0| = limn→∞ 1/n, and this limit is zero, thus proving that 0 is indeed the limit of the sequence. For a more interesting example,
consider the sequencean = 3 + 1/n, which converges to 3.

Problem 3:. Give an example of a sequence of distinct termsan such that|an| < 2018 and the sequence{an}∞n=1 does not converge.
Solution: Here we are looking for a bounded sequence that does not converge. Since the sequence cannot diverge to infinity, it must continually
bounce around. Consider the sequence

{an}∞n=1 =

{

1,
2

3
,
1

3
,
4

5
,
1

5
,
6

7
,
1

7
,
8

9
, · · · ,

}

where the odd terms are given bya2k+1 = 1/(2k + 1), and the even terms are given bya2k = 2k/(2k + 1). Notice that this sequence is bounded
since every term is less than or equal to 1, and cannot converge because the odd terms converge to 0 while the even terms converge to 1.
Problem 10-4 (Cain-Herod):Find the limit of the sequencean = 3/n2, or explain why it does not converge.
Solution: We can use the limit of a quotient is the quotient of the limit as the limit of the denominator is not zero and we do not have∞/∞. We see
that the numerator is always3 while the denominator increases and approaches infinity. Thus we know thatlimn→∞ 3/n2 = 0.

Problem 10-5 (Cain-Herod):Find the limit of the sequencean = 3n2+2n−7
n2

Solution: We cannot use the limit of a quotient is the quotient of the limits as we have∞/∞. One approach is to use L’Hopital’s rule and take
derivatives of the numerator and the denominator. We have

lim
n→∞

3n2 + 2n− 7

n2
= lim

n→∞

6n+ 2

2n
= lim

n→∞

6

2
= lim

n→∞
3 = 3.

Another approach is to pull out the highest power ofn in the numerator and denominator:

lim
n→∞

3n2 + 2n− 7

n2
= lim

n→∞

n2(3 + 2/n− 7/n2)

n2 · 1 = lim
n→∞

3 + 2/n− 7/n2

1
= lim

n→∞

(

3 +
2

n
− 7

n2

)

= 3.

The analysis is easier than some of the other problems as the denominator was justn to a power.

20. HW #22: DUE WEDNESDAY, MAY 2, 2018

20.1. Problems: HW #22: Due Wednesday, May 2, 2018.

Problem 10-8 (Cain-Herod):Find the limit of the series
∑∞

n=1
1
3n

.

Problem 10-10 (Cain-Herod):Find a value ofn that will insure that1 + 1/2 + 1/3 + · · ·+ 1/n > 106. Prove your value works.

Page 10-8 (Cain-Herod): Question 14:Determine if the series
∑∞

k=0
1

2ek+k
converges or diverges.

Page 10-8 (Cain-Herod): Question 15:Determine if the series
∑∞

k=0
1

2k+1
converges or diverges.

Additional question: Let f(x) = cos x, and compute the first eight derivatives off(x) atx = 0, and determine thenth derivative.
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20.2. Solutions: HW #22: Due Wednesday, May 2, 2018.

Problem 10-8 (Cain-Herod):Find the limit of the series
∑∞

n=1
1
3n

.
Solution: This is the same as finding the sum of the infinite geometric sequence1 + 1/3 + (1/3)2 + (1/3)3 + · · · and then subtracting off 1, as
we want to start the sum atn = 1 and notn = 0. We can use the formula that the sum of infinite geometric sequence with ratior starting atn = 0
is 1

1−r
, provided of course that|r| < 1. For usr = 1/3, and thus the sum, starting fromn = 0, is 1/(1 − 1

3
) = 1/(2/3) = 3/2; however, we

want the sum to start with then = 1 term and not then = 0 term, so we must subtract then = 0 term, which is 1. Thus the answer is3/2−1 = 1/2.

Problem 10-10:Find a value ofn that will insure that1 + 1/2 + 1/3 + · · ·+ 1/n > 106. Prove your value works.
Solution: By a result stated in class, we know that forN large

N
∑

n=1

1

N
≈ lnN.

So we must solvelnN = 106; the solution isN = exp(106), which is about9.8 · 10434294 .
It is possible to solve this without using the asymptotic relation for the sum. We showed in class that if we group the terms1/3 and1/4 we get

at least1/2, and if we group terms1/5, 1/6, 1/7, 1/8 we get at least1/2, and so on. If we go up to the termn = 22 we have at least 1/2 two times,
if we go up ton = 23 we have 1/2 at least 3 times, and in general if we go up tonk then we have 1/2 at leastk times. If we want to have the sum at
least106, we just need to takek = 2 · 106, which meansn = 22·10

6

= 410
6

, which is approximately3.0 · 10602059 . Note how much larger this is
than the answer we get from using the sum of the firstN terms is aboutlnN .
Page 10-8: Question 14:Determine if the series

∑∞
k=0

1
2ek+k

converges or diverges.

Solution: We will use the comparison test to determine if this series converges or diverges. The series
∑∞

k=0
1

2ek+k
is less than the series

∑∞
k=0

1
2ek

,

which is less than the convergent series
∑∞

k=0
1
ek

=
∑∞

k=0(1/e)
k. This last series is a geometric series with ratior = 1/e, as|r| < 1, the geometric

series converges. Thus, by the comparison test, the original sequence converges because| 1
2ek+k

| ≤ 1
e
.

Page 10-8: Question 15:Determine if the series
∑∞

k=0
1

2k+1
converges or diverges.

Solution: We will use the comparison test to determine if this series converges or diverges. We want to compare this to a multiple of the harmonic
series; we know the harmonic series diverges, and multiplying each term by a constant won’t change if it converges or diverges. We have4k ≥ 2k+1
for all k ≥ 1. This implies 1

2k+1
≥ 1

4k
= 1

4
1
k

. Thus our series is greater, term by term, than the harmonic series (multiplied by 1/4). As the harmonic
series diverges, so too does our series.

Another proof is to note that the sum over the odd indexed terms (which are just the odd terms) in the harmonic series is at least as large as the
sum over the even terms, and since the total sum diverges so too must the sum over just the odd indexed terms.

Page 10-8: Question 16:Determine if the series
∑∞

k=2
1

log k
converges or diverges.

Solution: We will use the comparison test to determine if this series converges or diverges. The growth of a log function is slower than a linear
function: log k ≤ k; taking the reciprocal reverses the relation, so1

log k
≥ 1

k
. Thus our series is greater, term by term, than the harmonic series. As

the harmonic series diverges, so too does our series.

Additional question: Let f(x) = cos x, and compute the first eight derivatives off(x) atx = 0, and determine thenth derivative.
Solution: We will begin by computing the first eight derivatives.

f ′(x) = − sin x

f ′′(x) = − cos x

f ′′′(x) = sin x

f (iv)(x) = cosx

f (v)(x) = − sin x

f (vi)(x) = − cos x

f (vii)(x) = sin x

f (viii)(x) = cosx.

Now compute the derivatives atf(0).

f ′(0) = − sin 0 = 0, f ′′(0) = − cos 0 = −1

f ′′′(0) = sin 0 = 0, f (iv)(0) = cos 0 = 1

f (v)(0) = − sin 0 = 0, f (vi)(0) = − cos 0 = −1

f (vii)(0) = sin 0 = 0, f (viii)(0) = cos 0 = 1.

We see the pattern: 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1 and so on. Specifically, the even derivatives vanish, and iff(x) = cos x thenf (4k+1)(0) = −1

while f (4k+3)(0) = 1.
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21. HW #23: DUE FRIDAY, MAY 4, 2018

21.1. Problems: HW #23: Due Friday, May 4, 2018.

Problem Cain-Herod 10-18: Is the series
∑n

k=0
10k

k!
convergent or divergent? Prove your answer.

Problem Cain-Herod 10-21: Is the following series convergent or divergent (and of course prove your answer)?
n
∑

k=1

3k

5k(k4 + k + 1)

Problem 3: Let an = 1
n lnn

(one divided byn times the natural log ofn). Prove that this series diverges.Hint: what is the derivative of the natural
log ofx? Useu-substitution.

Problem 4: Letan = 1
n ln2 n

(one divided by n times the square of the natural log ofn). Prove that this series converges.Hint: use the same method
as the previous problem.

Problem 5: Give an example of a sequence or series that you have seen in another class, in something you’ve read, in something you’ve observed in
the world, ....
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21.2. Solutions: HW #23: Due Friday, May 4, 2018.

Problem 10-18: Is the series
(

∑n
k=0

10k

k!

)

convergent or divergent?

Solution: We use the ratio test:

ρ = lim
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

10k+1

(k + 1)!

∣

∣

∣

∣

∣

∣

∣

∣

k!

10k

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

10

k + 1

∣

∣

∣

∣

= 0 < 1,

so the series converges as the ratioρ is less than 1.

Problem 10-21: Is the following series convergent or divergent?
n
∑

k=1

3k

5k(k4 + k + 1)

Solution: We use the Comparison Test:
n
∑

k=1

(

3

5

)k
1

(k4 + k + 1)
<

n
∑

k=1

1

(k4 + k + 1)
<

n
∑

k=1

1

k4
,

which converges (it is ap-series withp = 4), and thus the original series also converges. Alternatively, we haveak ≤ (3/5)k, and we obtain
convergence by comparing with a geometric series with ratio3/5.

Problem 3: Let an = 1
(n lnn)

(one divided byn times the natural log ofn). Prove that this series diverges.Hint: what is the derivative of the
natural log ofx? Useu-substitution.

Solution: We use the integral test. We start the series withn = 2 asln 1 = 0 and we cannot divide by zero. Setf(x) = 1
x lnx

; notef(n) = an.
The convergence / divergence of the series is equivalent to the convergence or divergence of the integral

∫∞
2

1
x lnx

dx. Through substitution by parts,
we haveu = ln x, du = dx

x
, andx : 2 → ∞ becomesu : ln 2 → ∞. Then

∫ ∞

2

1

ln x

dx

x
=

∫ ∞

ln 2

1

u
du = [ln u]∞ln 2 .

As this clearly diverges, the original series diverges as well.

Problem 4: Let an = 1
(n ln2 n)

(one divided by n times the square of the natural log ofn). Prove that this series converges.Hint: use the same
method as the previous problem.

Solution: We integrate
∫∞
2

1
x ln2 x

dx, where we cannot haven = 1 (see previous problem). Throughu-substitution, we haveu = ln x, du = dx
x

,
andx : 2 → ∞ becomesu : ln 2 → ∞. Then

∫ ∞

2

1

ln2 x

dx

x
=

∫ ∞

ln 2

1

u2
du =

[

− 1

u

]∞

ln 2

=
1

ln 2
.

As this converges, the original series converges as well.

Problem 5: Give an example of a sequence or series that you have seen in another class, in something you’ve read, in something you’ve observed in
the world, ....

22. HW #24: DUE WEDNESDAY, MAY 9, 2018

22.1. Problems: HW #24: Wednesday, May 9, 2018.

Cain-Herod: Question 20:Does the series
∑∞

n=1
32k+1

10k
converge or diverge?

Additional Question 1: Compute the first five terms of the Taylor series expansion ofln(1 − x) (the natural logarithm of x) aboutx = 0, and
conjecture the answer for the full Taylor series.
Additional Question 2: Compute the first five terms of the Taylor series expansion ofln(1 + x) (the natural logarithm of x) aboutx = 0, and
conjecture the answer for the full Taylor series.
Additional Question 3: Give an example of a sequence or series you like.
Additional Question 4: Find the second order Taylor series expansion ofcos(xy) about(0, 0).
Additional Question 5: Find the second order Taylor Series expansion ofcos(

√
x+ y) about(0, 0).

Additional Question 6: Find the second order Taylor series expansion ofcos(x3y4) about(0, 0).
Problem Extra Credit 1:: Give a product of infinitely many distinct, positive terms such that the product converges to a numberc with 0 < c < ∞.
Problem Extra Credit 2:: Let {an}∞n=1 be a sequence of positive numbers such that

∑∞
n=1 1/an converges. LetBn = 1/n

∑n
k=1 ak. Prove that

∑∞
n=1 1/Bn converges.
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22.2. Solutions: HW #24: Due Wednesday, May 9, 2018.

Cain-Herod: Question 20:Does the series
∑∞

n=1
32k+1

10k
converge or diverge?

Solution: We will use the ratio test. Take the limit of
ak+1

ak

(we don’t need absolute values as everything is positive).

lim
k→∞

ak+1

ak
=

32(k+1)+1

10k+1
· 10k

32k+1
=

32k+3

10 · 32k+1
=

32

10
=

9

10
< 1.

Since the limit is less than 1, this series converges by the ratio test. Alternatively, note this is the same as
∞
∑

n=1

32k+1

10k
= 3

∞
∑

n=1

32k

10k
= 3

∞
∑

n=1

9k

10k
= 3

∞
∑

n=1

(9/10)k;

as this is a geometric series with ratio less than 1, it converges.

Additional Question 1: Compute the first five terms of the Taylor series expansion ofln(1 − x) (the natural logarithm of x) aboutx = 0, and
conjecture the answer for the full Taylor series.
Solution: The Taylor series expansion formula is given asf(a) + f ′(a)

1!
(x− a) + f ′′(a)

2!
(x− a)2 + f ′′′(a)

3!
(x− a)3 + ... . We will begin by taking

the first four derivatives off(x) = ln(1− x).

f ′(x) =
−1

1− x
, f ′′(x) =

−1

(1− x)2
, f ′′′(x) =

−2

(1− x)3
, f ′′′′(x) =

−6

(1− x)4
.

Now by substitutinga = 0 into the derivatives, we can find the expansion of the first 5 terms in the Taylor series.

T5 = f(0) +
f ′(0)

1!
(x− 0) +

f ′′(0)

2!
(x− 0)2 +

f ′′′(0)

3!
(x− 0)3 +

f ′′′′(0)

4!
(x− 0)4

= ln(1) +
−1

1!
(x) +

−1

2!
(x2) +

−2

3!
(x3) +

−6

4!
(x4)

= 0− x− x2

2
− x3

3
− x4

4

Hence the expansion of the first five terms of the Taylor seriesof ln(1 − x) at x = 0 is 0 − x − x2

2
− x3

3
− x4

4
. It seems like the terms are all

negative and the coefficient ofxn is 1/n; this is correct and we have
∑∞

n=1
−xn

n
.

Additional Question 2: Compute the first five terms of the Taylor series expansion ofln(1 + x) (the natural logarithm of x) aboutx = 0, and
conjecture the answer for the full Taylor series.
Solution: The Taylor series expansion of thisln(x+ 1) is very similar to the previous question. The only change arethe signs of the derivatives of
ln(x+ 1). The four derivatives are listed below.

f ′(x) =
1

1 + x
, f ′′(x) =

−1

(1 + x)2
f ′′′(x) =

2

(1 + x)3
f ′′′′(x) =

−6

(1 + x)4
.

We can solve this by replacingx with −x in the previous problem, and are led to
∑∞

n=1
(−1)n+1xn

n
.

Additional Question 3: Give an example of a sequence or series you like.
Solution: So many to choose from. Here’s one: 1, 4, 6, 8, 9, 14, 27. Another is 03, 12, 15, 16, 18, 04, 07. For something a bit more mathematical,
1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0.

Question 4: Find the second order Taylor series expansion ofcos(xy) about(0, 0).
Solution: Using the trick we discussed in class, let’s setu = xy, and then expandcos(u) using the univariate Taylor series. We have

cos(u) = 1− u2

2!
+ · · ·

Substitutingu = xy we findcos(xy) ≈ 1− (xy)2/2! = 1−x2y2/2. However, this is actually a fourth order expansion becausethe degree ofx2y2

is 4. Therefore the second order Taylor series expansion ofcos(xy) is just1.

Question 5: Find the second order Taylor Series expansion ofcos(
√
x+ y) about(0, 0).

Solution: We again use the trick of lettingu =
√
x+ y and expandingcos(u) ≈ 1− u2/2! + u4/4!− u6/6! + · · · . Substitutingu =

√
x+ y we

find

cos(
√
x+ y) ≈ 1− (

√
x+ y)2

2
+

(
√
x+ y)4

24
− (

√
x+ y)6

720
= 1− x+ y

2
+

x2 + 2xy + y2

24
+

x3 + 3x2y + 3xy2 + y3

720
+ · · · .

Keeping just the second order terms yields

1− x

2
− y

2
+

x2

24
+

xy

12
+

y2

24
.

Note that we got a little bit lucky here. Since cosine is an even function its Taylor series consist of only even exponents.Because of this we were
able to cancel out the presence of the square root and get a legitimate Taylor series. Had we tried to do this withsin(

√
x+ y) we would have been
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out of luck, since the first term would have been
√
x+ y.

Question 6: Find the second order Taylor series expansion ofcos(x3y4) about(0, 0).
Solution: As before, setu = x3y4. Then we havecos(u) = 1 − u2/2 + · · · = 1 − x6y8/2 + · · · . After the constant term 1, the next term has
degree 14. Thus, as we saw with the first problem, the second order Taylor series expansion ofcos(x3y4) about(0, 0) is just 1. While this may
seem like a poor approximation, notice that when the absolute ofx andy are both less than 1,x3y4 is very small, so we are evaluatingcos(x) near
x = 0, which of course is 1.

Problem Extra Credit 1:: Give a product of infinitely many distinct, positive terms such that the product converges to a numberc with 0 < c < ∞.
Solution: When doing problems with infinite products, it is sometimes easier to pick the number you want to converge to, and then create an
appropriate sequence that will converge to that number. Suppose we wantedc = 1. What is a nice function that converges to1? One that comes to
mind is(n + 1)/n. Can we create a sequence{an}∞n=1 such that the product of the firstk terms is(k + 1)/k? If that were to happen, we would
need

k + 1

k
ak+1 =

k + 2

k + 1
,

giving ak+1 = k(k+2)/(k+1)2. Let’s make sure this sequence works. Takean = (n−1)(n+1)/n2 . First notice thata1 = 0, which is a problem
because that would make our product zero. So let’s just seta1 = 2 (because we wanta1 = (1 + 1)/1 = 2), and takean = (n+ 1)(n− 1)/n2 for
n ≥ 2. We prove by induction that

m
∏

n=1

an =
m+ 1

m
,

and taking the limit asm → ∞ gives us that the product converges to 1. Notice that the above equation holds for the base casem = 2, since
2 · 1 · 3/22 = 3/2 = (2 + 1)/2. Assuming that it holds for somek ≥ 2, we show that it holds fork + 1. We have

k+1
∏

n=1

an = ak+1

k
∏

n=1

an =
k(k + 2)

(k + 1)2
k + 1

k
=

k + 2

k + 1
,

which is what we wanted to show. Therefore the product converges to 1.THIS IS A TELESCOPING PRODUCT!

Problem Extra Credit 2:: Let {an}∞n=1 be a sequence of positive numbers such that
∑∞

n=1 1/an converges. LetBn = 1/n
∑n

k=1 ak. Prove that
∑∞

n=1 1/Bn converges.
Solution: It is sufficient to consider increasing sequences, since if thean’s are not increasing, rearranging them into increasing order will makeBn

smaller, meaning1/Bn is larger. Therefore if the sum of1/Bn converges for all increasing sequences{an}, then it will for all sequences. Suppose
that{an} is an increasing sequence. We have

1

n

(

an/2 + · · ·+ an

)

≤ Bn ≤ 1

n
(a1 + · · ·+ an)

1

n

n

2
an/2 ≤ Bn ≤ 1

n
nan,

implying 1
2
nn/2 ≤ Bn ≤ an. In particular,1/Bn ≤ 2/an/2, and hence by the comparison test

∑∞
n=1 1/Bn is finite. This is a very hard application

of the comparison test!
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