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Abstract

Below are detailed solutions to some problems similar to some assigned
homework problems.
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1 The Geometry of Euclidean Space
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2.1 The geometry of real-valued functions

2.2 Limits and continuity

2.3 Differentiation

2.4 Introduction to paths and curves

2.5 Properties of the derivative

2.6 Gradients and directional derivatives

The assignment is: Section 2.6: #2ab, #4a, #6a, #16 (the (in)famous Captain
Ralph problem), #18.

2



Question: #2c: Compute the directional derivative off(x, y) = ex cos(�y),

(x0, y0) = (0,−1) and−→v =
(

− 1√
5
, 2√

5

)

.

Solution: We have

(∇f)(x, y) =

(

∂f

∂x
,
∂f

∂y

)

= (ex cos(�y),−�ex sin(�y)) ,

and thus if we evaluate at(0,−1) we find

(∇f)(0,−1) = (−1, 0) .

The directional derivative in general is

(∇f)(x0, y0) ⋅ −→v ,

so for this problem the answer is

(−1, 0) ⋅
(

− 1√
5
,
2√
5

)

=
1√
5
.

Note that−→v is a unit length vector.

Question: #2d: Compute the directional derivative off(x, y) = xy2 + x3y,

(x0, y0) = (4,−2) and−→v =
(

1√
10
, 3√

10

)

.

Solution: We have

(∇f)(x, y) =
(

y2 + 3x2y, 2xy + x3
)

,

and thus if we evaluate at(4,−2) we find

(∇f)(4,−2) = (−92, 48) .

The directional derivative in general is

(∇f)(x0, y0) ⋅ −→v ,

so for this problem the answer is

(−92, 48) ⋅
(

1√
10
,

3√
10

)

=
52√
10
.
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Note that−→v is a unit length vector.

Question: #3a: ComputeDf for f(x, y) = (x2y, e−xy).
Solution: Note thatf : ℝ

2 → ℝ
2, and thusDf will be a 2 × 2 matrix.

Writing f(x, y) as(f1(x, y), f2(x, y)), we have the first row ofDf is ∇f1, while
the second row is∇f2. Explicitly,

(Df)(x, y) =

(

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)

=

(

2xy x2

−ye−xy −xe−xy

)

.

Question: #4c: Find the plane tangent toxyz = 1 at the point(1, 1, 1).
Solution: We use equation (1) on the bottom of page 167, which says that if

f(x, y, z) = k (for some constantk) then the tangent plane at(x0, y0, z0) is given
by

(∇f)(x0, y0, z0) ⋅ (x− x0, y − y0, z − z0) = 0.

For our problem,f(x, y, z) = xyz andk = 1. We have

(∇f)(x, y, z) = (yz, xz, xy),

which yields
(∇f)(1, 1, 1) = (1, 1, 1).

Thus the tangent plane is all(x, y, z) satisfying

(1, 1, 1) ⋅ (x− 1, y − 1, z − 1) = 0,

or equivalently it is
x+ y + z − 3 = 0.

Question: #6b: Compute the gradient off(x, y, z) = xy + yz + xz.
Solution: The gradient is defined as the vector of partial derivatives:

grad(f) = ∇f =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

.

A straightforward computation shows

∇f = (y + z, x+ z, x+ y).
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Question: #6c: Compute the gradient off(x, y, z) = 1/(x2 + y2 + z2).
Solution: By symmetry, it suffices to compute∂f

∂x
, as ∂f

∂y
and ∂f

∂z
are obtained

through analogous computations. To compute∂f
∂x

, we use the one-variable chain
(or power) rule:

∂

∂x
(x2 + y2 + z2)−1 = −(x2 + y2 + z2)−2 ∂

∂x

(

x2 + y2 + z2
)

= − 2x

(x2 + y2 + z2)2

= −2f(x, y, z)2 ⋅ x.

Collecting yields
∇f = −2f(x, y, z)(x, y, z).

Question: #8b: Compute the equation of the tangent planes for f(x, y, z) =
x3 − 2y3 + z3 = 0 at (1, 1, 1).

Solution: First, we note that the point(1, 1, 1) is on the surface. The tangent
plane is given by equation (1) on page 167. Explicitly, it is all (x, y, z) satisfying

(∇f)(1, 1, 1) ⋅ (x− 1, y − 1, z − 1).

As
∇f = (3x2,−6y2, 3z2),

we have
(∇f)(1, 1, 1) = (3,−6, 3),

which implies the tangent plane is

(3,−6, 3) ⋅ (x− 1, y − 1, z − 1) = 0,

or
3x− 6y + 3z = 0.

5



Question: #19: A functionf : ℝn → ℝ is said to beeven if f(−→x ) = f(−−→x ) for
all −→x . If f is differentiable and even, find(Df)(

−→
0 ).

Solution: Whenever we have to prove something in several variables, itis not
a bad idea to look at some examples from one-variable calculus to build up our
intuition. We first recall some even, differentiable functions: x2, x4, x2n, cosx.
All of these have first derivative equal to 0 at the origin, andthus it is natural to
guess that(Df)(

−→
0 ) =

−→
0 .

One way to prove this is by using the Chain Rule. Letg(−→x ) = −−→x (so
g : ℝn → ℝ

n). Then
A(x) = f(−→x ) = f(g(−→x )),

so
(DA)(−→x ) = (Df)(−→x ) = (Df)(g(−→x ))(Dg)(−→x ).

As g(−→x ) = −−→x , unwinding this we find

g(x1, . . . , xn) = (−x1, . . . ,−xn),

which implies
(Dg)(−→x ) = (∇g)(−→x ) = −I,

whereI is then × n identity matrix which is 1 along the main diagonal and 0
elsewhere. The reason this is the answer is thatg hasn inputsand n outputs.
Thus(Dg) is a matrix withn rows andn columns. The first row isDg1 or ∇g1,
whereg1(x1, . . . , xn) = −x1, while the last row isDgn or∇gn.

At the origin,g(
−→
0 ) =

−→
0 and(Dg)(

−→
0 ) = −I, and thus

(Df)(
−→
0 ) = (Df)(−−→

0 )(Dg)(
−→
0 )

becomes
(Df)(

−→
0 ) = (Df)(

−→
0 ) (−I) = −(Df)(

−→
0 ).

We thus have an equation of the form−→u = −−→u ; the only solution is−→u =
−→
0 , or

in other words since(Df)(
−→
0 ) equals its own negative, it must be the zero vector.

2.7 Review Exercises - Page 173

Question: #22: Find the direction in which the functionw(x, y) = x2 + xy
increases most rapidly at the point(−1, 1). What is the magnitude of∇w at this
point.
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Solution: We have∇w = (2x + y, x), so(∇w)(−1, 1) = (−1,−1). As the
directional derivative in the direction−→v at (−1, 1) is (∇w)(−1, 1) ⋅ −→v , which is
maximized when−→v = (∇w)(−1, 1) = (−1, 1).

Question: #24: Letz(x, y) = f(x− y)/y (wheref is differentiable andy ∕= 0),
show that the identityz + y ∂z

∂x
+ y ∂z

∂y
= 0.

Solution: We have

∂z

∂y
=

f ′(x− y)(−1) ⋅ y − f(x− y)

y2
,

∂z

∂x
=

f ′(x− y)

y
.

Thus

z + y
∂z

∂x
+ y

∂z

∂y
=

f(x− y)

y
+ f ′(x− y) +

−f ′(x− y)y − f(x− y)

y
= 0.

In the arguments above, we frequently used the one-variablechain rule. For ex-
ample,

∂

∂y
f(x− y) =

∂

∂y
f(g(y)),

whereg(y) = x − y. We can now use the one-variable chain rule. Asx is fixed,
the answer is justf ′(g(y)) ⋅ g′(y), which isf ′(x− y) ⋅ (−1).

Question: #44: Verify the chain rule for the functionf(x, y) = x2/(2 + cos y)
and the pathc(t) = (x(t), y(t)) = (et, e−t).

Solution: SettingA(t) = f(c(t)), we have(DA)(t) = (Df)(c(t))c′(t). We
havec′(t) = (et,−e−t) (which should really be written as a column vector). For
Df , we have

Df =

(

∂f

∂x
,
∂f

∂y

)

=

(

2x

2 + cos y
,− x2 sin y

(2 + cos y)2

)

;

however, we want(Df)(c(t)), which is

(Df)(c(t)) =

(

2et

2 + cos e−t
,− e2t sin e−t

(2 + cos et)2

)

.

Taking the dot product, we obtain

(DA)(t) =
2et

2 + cos e−t
⋅ et + e2t sin e−t

(2 + cos et)2
⋅ e−t.
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We can also compute this derivative directly, as

A(t) = f(c(t)) =
e2t

(2 + cos e−t)
.

Taking the derivative yields

A′(t) =
2e2t(2 + cos e−t) + e2t sin e−t

(2 + cos e−t)2
,

which does agree with the Chain Rule.

3 Higher-order derivatives; maxima and minima

3.1 Iterated partial derivatives

Question: #3: Compute∂
2f

∂x2 ,
∂2f
∂x∂y

, ∂2f
∂y∂x

and ∂2f
∂y2

for f(x, y) = cos(xy2), and
verify the equality of the mixed derivatives.

Solution: We have

∂f

∂x
= −y2 sin(xy2)

∂2f

∂x2
= −y4 cos(xy2)

∂2f

∂y∂x
= −2y sin(xy2)− 2xy3 cos(xy2).

Similarly, we find

∂f

∂y
= −2xy sin(xy2)

∂2f

∂y2
= −2x sin(xy2)− 4x2y2 cos(xy2)

∂2f

∂x∂y
= −2y sin(xy2)− 2xy3 cos(xy2).

Note that we do have∂
2f

∂x∂y
= ∂2f

∂y∂x
.

8



Question: #8b: Find all the second partial derivatives ofz(x, y) = x2y2e2xy.
Solution: We have

∂z

∂x
= 2xy2e2xy + 2x2y3e2xy

∂2z

∂x2
= 2y2e2xy + 4xy3e2xy + 4xy3e2xy + 4x2y4e2xy

∂2z

∂y∂x
= 4xye2xy + 4x2y2e2xy + 6x2y2e2xy + 4x3y3e2xy

∂z

∂y
= 2x2ye2xy + 2x3y2e2xy

∂2z

∂y2
= 2x2e2xy + 4x3ye2xy + 4x3ye2xy + 4x4y2e2xy.

Question: Supplemental problem related to #11: Use the factthat the derivative
of a sum is the sum of the derivatives to prove that the derivative of a sum of
three terms is the sum of the three derivatives.

Solution: The idea to solve this problem is quite useful in mathematics(and
may be useful to attacking #11). We know that for any two functions f(x) and
g(x) that d

dx
(f(x) + g(x)) = df

dx
+ dg

dx
. We now use this result to show a similar

claim holds for the sum of three functions. We have

A(x) = f(x) + g(x) + ℎ(x)

dA

dx
=

d

dx
(f(x) + g(x) + ℎ(x))

=
d

dx
(B(x) + ℎ(x)) , B(x) = f(x) + g(x)

=
dB

dx
+
dℎ

dx

=

(

df

dx
+
dg

dx

)

+
dℎ

dx

=
df

dx
+
dg

dx
+
dℎ

dx
,

where we constantly used the fact that the derivative of a sumof two functions is
the sum of the two derivatives.
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Question: #11: Use Theorem 1 to show that iff(x, y, z) is of classC3 then
∂3f

∂x∂y∂z
= ∂3f

∂y∂z∂x
.

Hint: Slowly switch orders of differentiation. For example, we know ∂f
∂z

= ∂f
∂z

,

and so we may differentiate both sides with respect tox, obtaining ∂2f
∂x∂z

= ∂2f
∂x∂z

,

and then we may rewrite the right hand side as∂2f
∂z∂x

. We now differentiate both
sides with respect toy, and keep switching orders.

3.2 Taylor’s theorem

Question: #1: Find the second order Taylor series expansionfor f(x, y) =
(x+ y)2 about(x0, y0) = (0, 0).

Solution: We give two solutions. The first is the standard solution. We have

(∇f)(x, y) =

(

∂f

∂x
,
∂f

∂y

)

= (2(x+ y), 2(x+ y))

and

(Hf)(x, y) =

(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

=

(

2 2
2 2

)

.

Thus the second order expansion is

f(0, 0) + (∇f)(0, 0) ⋅ (x, y) + 1

2
(x, y)(Hf)(0, 0)

(

x
y

)

,

which is

0 +
1

2
(xy)

(

2 2
2 2

)(

x
y

)

=
1

2
(xy)

(

2x+ 2y
2x+ 2y

)

=
1

2
[x(2x+ 2y) + y(2x+ 2y)]

= x(x+ y) + y(x+ y) = (x+ y)2.

We now present another solution. The Taylor series expansion of g(u) = u2

is simply0 + 0u + u2, and thus takingx + y for u gives the second order Taylor
series is just(x+ y)2.

It isn’t surprising that this is the answer –f is a polynomial of degree 2, and
thus its second order Taylor series should equal itself!
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Question: #4: Find the second order Taylor series expansionfor f(x, y) =
e−(x2+y2) cos(xy) about(x0, y0) = (0, 0).

Solution: The long way to do this is to compute

(∇f)(x, y) =

(

∂f

∂x
,
∂f

∂y

)

and

(Hf)(x, y) =

(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

,

and then use our result that the second order expansion is

f(0, 0) + (∇f)(0, 0) ⋅ (x, y) + 1

2
(x, y)(Hf)(0, 0)

(

x
y

)

.

This is not pleasant; for instance,

∂f

∂x
= −2xe−(x2+y2) cos(xy)− ye−(x2+y2) sin(xy).

There is a faster way. Rolling up our sleeves and doing the work, we find

f(0, 0) = 1,

(∇f)(0, 0) = (0, 0)

and after even more work we find

(Hf)(0, 0) =

(

−2 0
0 −2

)

;

we can make our life a little easier by noting thatf is of classC2, and thus∂2f
∂x∂y

=
∂2f
∂y∂x

. Thus we have one fewer painful derivative to take.
By Taylor’s theorem, the second order approximation is just

f(0, 0) + (∇f)(0, 0) ⋅ (x, y) + 1

2
(x, y)(Hf)(0, 0)

(

x
y

)

.

Substituting gives

1 + (0, 0) ⋅ (x, y) + 1

2
(x, y)

(

−2 0
0 −2

)(

x
y

)

= 1 +
1

2
(x, y)

(

−2x
−2y

)

= 1− x2 − y2.
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We can determine the Taylor series very easily using our trick. We have

eu = 1 + u+
u2

2
+ ⋅ ⋅ ⋅ ,

so
e−(x2+y2) = 1− (x2 + y2) + ⋅ ⋅ ⋅ ;

we stopped at this term as this term is already of order 2 inx andy, and thus there
is no need to keep further terms (as we only want up to second order). Similarly
we find

cos(w) = 1− w2

2
+ ⋅ ⋅ ⋅ ,

so
cos(xy) = 1− ⋅ ⋅ ⋅ ;

here we only kept one term as the next term would bew2/2 = x2y2/2, which
is a fourth order (and not a second order) term. We thus find theTaylor series
expansion of order 2 at the origin is simply

1− (x2 + y2),

and this was obtained with significantly less work!
You of course need to know how to compute a Taylor series in general, but

this trick will work in most of the problems you need.

3.3 Extrema of real-valued functions

Question: #4: Find the critical points off(x, y) = x2 + y2 + 3xy.
Solution: We must solve∇f =

−→
0 . We have

(∇f) =

(

∂f

∂x
,
∂f

∂y

)

= (2x+ 3y, 2y + 3x).

Thus an extremum occurs when

2x+ 3y = 0, 3x+ 2y = 0.

There are several ways to proceed. Note, however, that at this point it is no longer
a calculus problem, but rather an algebra one. A common approach is to solve
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for one variable in terms of the other (i.e., the substitution method). Another is to
multiply the equations by various constants and combine.

Let’s solve fory in terms ofx. We havey = −2x/3 from the first equation
andy = −3x/2 from the second. Thus the only solution isx = y = 0.

Another way of arranging the algebra is to findy = −2x/3 from the first equa-
tion, and then substitute this into the second, which becomes3x+2(−2x/3) = 0,
which clearly impliesx = 0.

Alternatively, note5x + 5y = 0 sox = −y and then−2y + 3y = 0 yields
y = 0.

Question: #6: Find the critical points off(x, y) = x2−3xy+5x−2y+6y2+8.
Solution: The critical points are where∇f =

−→
0 . For our function we have

(∇f)(x, y) =

(

∂f

∂x
,
∂f

∂y

)

= (2x− 3y + 5,−3x− 2 + 12y),

so in order for this to equal the zero vector we must have

2x− 3y + 5 = 0, and − 3x+ 12y − 2 = 0.

These are two equations in two unknowns. We have

2x− 3y = −5, −3x+ 12y = 2.

There are lots of ways to solve this. We could multiply the first equation by 4
and add it to the second. This will cancel all they terms, and leave us with
8x − 3x = −20 + 2, or 5x = −18 or x = −18/5. As y = 2x+5

3
, this implies

y = −11
15

.
Another way to solve this system of equations is to isolatey as a function ofx

using the first equation, and substitute this into the second. We find2x−3y = −5,
soy = 2x+5

3
. Substituting this into the second equation yields

−3x− 2 + 12
2x+ 5

3
= 0,

which implies
−3x− 2 + 8x+ 20 = 0,

or

x = −18

5
,

exactly as before.
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3.4 Constrained extrema and Lagrange multipliers

Question: #1: Find the extrema off(x, y, z) = x− y+ z subject tog(x, y, z) =
x2 + y2 + z2 = 2.

Solution: By the method of Lagrange multipliers, we need(∇f)(x, y, z) =
�(∇g)(x, y, z) for (x, y, z) to be an extremum. We have

∇f = (1,−1, 1)

and
∇g = (2x, 2y, 2z).

Thus we are searching for a� and a point(x, y, z) where

(1,−1, 1) = �(2x, 2y, 2z).

We find
2�x = 1, 2�y = −1, 2�z = 1.

As � ∕= 0 (if � = 0 then there is no way to have the two gradients equal), we have
x = z = −y. We still have another equation to use, namelyg(x, y, z) = 2. There
are several ways to proceed. We can solve and findx = z = 1/2�, y = −1/2�,
and thus

1

4�2
+

1

4�2
+

1

4�2
= 2,

which implies3/4�2 = 2 or �2 = 3/8, which yields� = ±
√

3/8. There are thus
two points wheref may have an extremum, namely

(1/2
√

3/8,−1/2
√

3/8, 1/2
√

3/8), (−1/2
√

3/8, 1/2
√

3/8,−1/2
√

3/8).

Evaluatingf at the first point gives1/2
√

3/8, while evaluatingf at the second
point gives−1/2

√

3/8.

Question: #4: Find the extrema off(x, y) = x subject tog(x, y) = x2+2y2 = 3.
Solution: We have∇f = (1, 0) and∇g = (2x, 4y). Thus at an extremum the

point (x, y) must satisfy, for some�, the equation

(1, 0) = �(2x, 4y).

This implies1 = 2�x and0 = 4�y. We must therefore havey = 0, but at this
point we cannot determinex and�, only their product (which is 1/2). All is not
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lost, however, as we knowx2 + 2y2 = 3. As y = 0, we then findx2 = 3 so
x = ±

√
3. We could now easily determine� (it is just±1/2

√
3); however, there

is no need to. The only reason we care about� is that it is supposed to help us in
finding wheref has an extremum. As we already know thex andy coordinates,
we have all the information we need. Thus the extrema occur atx = ±

√
3.

We could have predicted this answer in the beginning. We haveour function
depending only onx and constrained to lie on an ellipse. We thus naturally want
thex-extension as large as possible, which means takingy = 0 and being at the
extremes of the major-axis.

Question: Find the maximum value off(x, y, z) = xyz given thatg(x, y, z) =
x+ y + z = 3 andx, y, z ≥ 0.

Solution: We may interpret this problem as saying we have a bar three units in
length, and we can fold it twice at right angles to give a skeleton of part of a box;
how should we divide it so that the volume is maximized? Whileit seems clear
that the answer should bex = y = z = 1, we must prove this. The main constraint
is g(x, y, z) = 3; we need the other constraint so as to eliminate possible solutions
such as(−100)(−100)(203).

Using Lagrange multipliers, we want∇f = �∇g. As

∇f = (yz, xz, xy)

and
∇g = (1, 1, 1),

this means
(yz, xz, xy) = �(1, 1, 1).

If � = 0 then at least one ofx, y andz equals zero, and the volumexyz is zero;
thus this clearly cannot be the maximum. We may thus assume� ∕= 0. We have

yz = xz = xy = �,

and we may assume none ofx, y or z vanish. Asyz = xz, sincez ∕= 0 we have
y = x. Looking at the other equality yieldsy = z, and hencex = y = z. As
g(x, y, z) = x+ y + z = 3, since the three variables are equal we must have each
of them equal to 1.

More generally, if we haven non-negative numbers with a fixed sum, then
their product is maximized when they are all equal. The next,more advanced
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question we could ask is whatn maximizes the product for a given sum. This
question is related to what base we should use in building computers. Interest-
ingly, this implies that if we are primarily concerned with data storage, we should
work in base 3 and not base 2. The answer is related toe, and the fact that 3 is
closer toe than 2. This was an extra credit problem earlier in the semester; for a
non-multivariable calculus solution, see

http://www.williams.edu/go/math/sjmiller/public html/

105/extracredit/ExtraCredit SummandsN.pdf

Question: Maximize the functionf(x, y, z) = xy + yz + xz on the unit sphere
g(x, y, z) = x2 + y2 + z2 = 1. Note this is a hard problem, but looking through
the arguments below will give you a great grounding in how to handle the alge-
bra that can arise.

Solution: We need∇f = �∇g. Differentiating yields

∇f = (y + z, x+ z, x+ y) = �(2x, 2y, 2z) = �∇g.
We thus have four equations in four unknowns:

y + z = 2�x

x+ z = 2�y

x+ y = 2�z

x2 + y2 + z2 = 1.

There are many ways to solve these equations. We describe a few. First, note
that if we take ratios of any two of the first three equations that the� disappears.
(Note � cannot equal 0. If it did, we would havex + z = 0 andx + y = 0.
This would forcey to equalz, which when substituted intoy + z = 0 would give
y = z = 0. We would then havex = 0, and hence the constraintg(x, y, z) = 1
could not be satisfied.) Dividing the first equation by the second givesy+z

x+z
= x

y
.

Cross multiplying givesy2 + yz = x2 + xz. Looking at the ratio of the second
and the third equations givesx+z

x+y
= y

z
, or z2 + xz = y2 + xy. We thus have

x2 + xz = y2 + yz, z2 + xz = y2 + xy.

Subtracting these two equations from each other gives

x2 − z2 = yz − xy,
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or
(x− z)(x+ z) = y(z − x).

There are thus two solutions: eitherx− z = 0 or y = −(x+ z). We leave the rest
of this approach to the reader.

Another way to attack this problem is to add the first three equations to each
other, which gives

(y + z) + (x+ z) + (x+ y) = 2�x+ 2�y + 2�z,

or equivalently
2(x+ y + z) = 2�(x+ y + z).

Thus eitherx+y+z = 0 or� = 1. If � = 1 then squaring the first three equations
gives

(y + z)2 + (x+ z)2 + (x+ y)2 = 4x2 + 4y2 + 4z2 = 4,

where the last follows from the fact thatx2 + y2 + z2 = 1. If we expand the
squares we find

y2 + 2yz + z2 + x2 + 2xz + z2 + x2 + 2xy + y2 = 4.

Note the left hand side has2(x2 + y2 + z2), which is 2. Thus we have

2 + 2yz + 2xz + 2xy = 4,

or
yz + xz + yz = 1.

Note, however, thatyz+ xz + yz is just our functionf(x, y, z)! We leave the rest
of the details of this problem to the reader.

4 Vector-valued functions

5 Double and Triple Integrals

5.1 Introduction

Question: #1b: Find
∫ �/2

0

∫ 1

0
(y cosx+ 2)dydx.

17



Solution: We first do they-integral, and then thex-integral. We have

∫ �/2

0

∫ 1

0

(y cosx+ 2)dydx =

∫ �/2

0

[
∫ 1

0

(y cosx+ 2)dy

]

dx

=

∫ �/2

0

⎡

⎣

y2

2

∣

∣

∣

∣

∣

1

0

cosx+ 2y

∣

∣

∣

∣

∣

1

0

⎤

⎦ dx

=

∫ �/2

0

(cosx

2
+ 2
)

dx

=

[

sin x

2
+ 2x

]

∣

∣

∣

∣

∣

�/2

0

=
1

2
+ �.

Question: #1d: Find
∫ 0

−1

∫ 2

1
(−x ln y)dydx.

Solution: Again, we do they-integral first, followed by thex-integral. We
need to find a function whose derivative isln y. It is natural (forgive the pun) to
try y ln y. Why is this a reasonable guess? When we take the derivative,we use
the product rule and the first piece is just1 ⋅ ln y. Thus this is close to what we
want, though not quite the correct answer. The problem is thefull derivative is

1 ⋅ ln y + y ⋅ 1
y

= ln y + 1;

again, this is almost correct, but we are off by 1. We may interpret this as saying
our guess is off by a function whose derivative is 1; one example of such a function
is y. If we subtract this from our original guess, we should end upwith the correct
anti-derivative. Specifically,

(y ln y − y)′ = 1 ⋅ ln y + y ⋅ 1
y

− 1 = ln y;

we have thus found the sought-after anti-derivative. This is the Method ofGuess
and Check, and it is a powerful way to find anti-derivatives.
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Armed with the anti-derivative forln y, we can solve the problem. We have

∫ 0

−1

∫ 2

1

(−x ln y)dydx =

∫ 0

−1

[
∫ 2

1

(−x ln y)dy
]

dx

= −
∫ 0

−1

x

[
∫ 2

1

ln ydy

]

dx

= −
∫ 0

−1

x [y ln y − y]

∣

∣

∣

∣

∣

2

1

dx

= −
∫ 0

−1

x [(2 ln 2− 2)− (1 ln 1− 1)] dx

= −
∫ 0

−1

x(2 ln 2− 1)dx

= −(2 ln 2− 1)

∫ 0

−1

xdx

= −(2 ln 2− 1)

⎡

⎣

x2

2

∣

∣

∣

∣

∣

0

−1

⎤

⎦

= −(2 ln 2− 1)

[

−1

2

]

=
2 ln 2− 1

2
.

5.2 The Double Integral over a Rectangle

Question: #1c: Evaluate
∫ ∫

R
(xy)2 cos(x3)dA, whereR = [0, 1]× [0, 1].

Solution: We need to choose whether or not we want to integrate first with
respect tox or with respect toy. For this problem, it does not matter as we can
write the integral asf(x)g(y) for some functionsf andg (heref(x) = x2 cos(x3)
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andg(y) = y2). Let’s do the integration with respect toy first. We have

∫ ∫

R

(xy)2 cos(x3)dA =

∫ 1

0

[
∫ 1

0

x2y2 cos(x3)dy

]

dx

=

∫ 1

0

cos(x3)x2
[
∫ 1

0

y2dy

]

dx

=

∫ 1

0

cos(x3)x2

⎡

⎣

y3

3

∣

∣

∣

∣

∣

1

0

⎤

⎦ dx

=

∫ 1

0

cos(x3)x2
1

3
dx

1

9

∫ 1

0

cos(x3)3x2dx;

where we multiplied by 1 in the form 3/3 to facilitate the application ofu-substitution
below (though of course this is not needed). Letu = x3. Thendu = 3x2dx, and
asx : 0 → 1 we haveu : 0 → 1. (Note it is very important that our function
u = x3 is monotonic or strictly increasing in this domain). Thus wehave

∫ ∫

R

(xy)2 cos(x3)dA =
1

9

∫ 1

0

cosudu

sin u

9

∣

∣

∣

∣

∣

1

0

=
sin 1

9
.

Question: Compute
∫ 1

0

∫ 1

0
y cos(xy)dA.

Solution: We have a choice as to whether or not we want to integrate with
respect tox first or with respect toy. Note the integrand isy cos(xy). If we
integrate with respect tox first, then everything will work out nicely throughu-
substitution; if we do they integral first we have to use the method ofGuess and
Check to figure out an anti-derivative (with respect toy) of y cos(xy). Thus let’s

20



integrate with respect tox first. We have

∫ 1

0

∫ 1

0

y cos(xy)dA =

∫ 1

0

[
∫ 1

0

y cos(xy)dx

]

dy

=

∫ 1

0

[
∫ 1

0

cos(xy)ydx

]

dy.

Let u = xy, sodu = ydx andx : 0 → 1 meansu : 0 → y. We find

∫ 1

0

∫ 1

0

y cos(xy)dA =

∫ 1

0

[
∫ y

0

cosudu

]

dy

=

∫ 1

0

[

sin u

∣

∣

∣

∣

∣

y

0

]

dy

=

∫ 1

0

sin y

= [− cos y]

∣

∣

∣

∣

∣

1

0

= (− cos 1)− (−1)

= 1− cos 1.

5.3 The Double and Triple Integral Over More General Re-
gions

Question: #1a: Evaluate the iterated integral

∫ 1

0

∫ x2

0

dydx,

state whether or not the region isx-simple,y-simple or simple. Draw the region.
Solution: Solution:The region is drawn in Figure 1.
The region isy-simple, as for0 ≤ y ≤ 1 we have�1(y) ≤ x ≤ �2(y)

with �1(y) = 0 and�2(y) = x2. Similarly we see the region isx-simple. For
0 ≤ y ≤ 1 we have

√
y ≤ x ≤ 1; we take 1(y) =

√
y and 2(y) = 1. As the

region is bothx-simple andy-simple, it is simple.
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Figure 1: Region corresponding to0 ≤ x ≤ 1 and0 ≤ y ≤ x2.

We now evaluate the integral. We have

∫ 1

0

∫ x2

0

dydx =

∫ 1

0

[

∫ x2

0

1dy

]

dx

=

∫ 1

0

⎡

⎣y

∣

∣

∣

∣

∣

x2

0

⎤

⎦ dx

=

∫ 1

0

x2dx

=
x3

3

∣

∣

∣

∣

∣

1

0

.

Question: #1a: Evaluate the iterated integral

∫ 2

−3

∫ y2

0

(x2 + y)dxdy,

state whether or not the region isx-simple,y-simple or simple. Draw the region.
Solution: The region is drawn in Figure 2.
The region is clearlyx-simple, as for−3 ≤ y ≤ 2 we have 1(y) ≤ x ≤

 2(y), where 1(y) = 0 and 2(y) = y2 (and of course 1(y) ≤  2(y). The
region is noty-simple (and hence it is not simple). The reason it is noty-simple
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Figure 2: Region corresponding to−3 ≤ y ≤ 2 and0 ≤ x ≤ y2.

is that forx ∈ [0, 1] the values ofy vary discontinuously. For example, ifx = 2
then−3 ≤ y ≤ −

√
2 and

√
2 ≤ y ≤ 2.

We now evaluate the integral. We have
∫ 2

−3

∫ y2

0

(x2 + y)dxdy =

∫ 2

−3

[

∫ y2

0

(x2 + y)dx

]

dy

=

∫ 2

−3

⎡

⎣

x3

3

∣

∣

∣

∣

∣

y2

0

+ xy

∣

∣

∣

∣

∣

y2

0

⎤

⎦ dy

=

∫ 2

−3

(

y6

3
+ y3

)

dy

=
y7

21

∣

∣

∣

∣

∣

2

−3

+
y4

4

∣

∣

∣

∣

∣

2

−3

=
128

21
+

729

7
+ 4− 81

4

=
7895

84
.

5.4 Changing the order of integration

Question: #1a: Sketch the region and evaluate
∫ 1

0

∫ 1

x
xydydx both ways.
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Figure 3: Region corresponding tox ≤ y ≤ 1 and0 ≤ x ≤ 1.

Solution: See Figure 3 for a sketch of the region.
We have

∫ 1

0

∫ 1

x

xydydx =

∫ 1

0

x

[
∫ 1

x

ydy

]

dx

=

∫ 1

0

x

⎡

⎣

y2

2

∣

∣

∣

∣

∣

1

x

⎤

⎦ dx

=

∫ 1

0

x

[

1

2
− x2

2

]

dx

=

∫ 1

0

(

x

2
− x3

2

)

dx

=
x2

4

∣

∣

∣

∣

∣

1

0

− x4

8

∣

∣

∣

∣

∣

1

0

=
1

4
− 1

8
=

1

8
.

We now do the integration in the opposite order. We fixy now, andy varies
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from 0 to 1. It is nowx that varies, andx ranges from 0 toy. We thus find

∫ 1

0

∫ 1

x

xydydx =

∫ 1

0

∫ y

0

xydxdy

=

∫ 1

0

y

[
∫ y

0

xdx

]

dy

=

∫ 1

0

y

[

x2

2

∣

∣

∣

∣

∣

y

0

]

dy

=

∫ 1

0

y

(

y2

2

)

dy

=
y4

8

∣

∣

∣

∣

∣

1

0

=
1

8
.

Note that the two orders of integration lead to the same answer for this problem.

5.5 Mathematical Modeling: Baseball / Sabermetrics Lecture

The following are some problems related to the ones from the baseball lecture.
The slides are online at

http://www.williams.edu/go/math/sjmiller/public html

/105/talks/PythagWLTalk GeneralCalcVersion.pdf

Question: #1: Letf(x) = 6x(1 − x) for 0 ≤ x ≤ 1 and 0 otherwise, and
let g(y) = 12y2(1 − y) for 0 ≤ y ≤ 1 and zero otherwise. Provef and g
are probability distributions. LetX be a random variable whose probability
density of taking on the valuex is f(x), and letY be a random variable whose
probability density of taking on the valuey is g(y). Compute the probability that
X > Y (assuming, of course, thatX andY are independent).

Solution: To prove thatf andg are probability distributions, we must show
that each is non-negative and integrates to 1. Both are clearly non-negative; we
are left with showing each integrates to one. The fastest wayto do this is to note
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that it suffices to study the integral from 0 to 1 ofxk(1− x). We have

∫ 1

0

xk(1− x) =

∫ 1

0

[

xk − xk+1
]

dx

=
xk+1

k + 1

∣

∣

∣

∣

∣

1

0

− xk+2

k + 2

∣

∣

∣

∣

∣

1

0

=
1

k + 1
− 1

k + 2

=
1

(k + 1)(k + 2)
.

Thus

ℎ(x) =

{

(k + 1)(k + 2)xk(1− x) if 0 ≤ x ≤ 1

0 otherwise

is a probability distribution for any positive integerk. In particular, if we take
k = 1 we see that we should have6x(1 − x), while if k = 2 we should have
12x2(1 − x), which we do. This thus verifiesboth distributions are probability
distributions simultaneously.

We now compute the probability thatX > Y . We are integrating over the
triangle0 ≤ y ≤ x ≤ 1, and have

Prob(X ≥ Y ) =

∫ 1

x=0

∫ x

y=0

f(x)g(y)dydx

=

∫ 1

x=0

f(x)

[
∫ x

y=0

g(y)dy

]

dx

=

∫ 1

x=0

6x(1− x)

[
∫ x

y=0

12y2(1− y)dy

]

dx

=

∫ 1

x=0

6x(1− x)12

[
∫ x

y=0

(y2 − y3)dy

]

dx

=

∫ 1

x=0

72(x− x2)

[

y3

3

∣

∣

∣

∣

∣

x

0

− y4

4

∣

∣

∣

∣

∣

x

0

]

dx

=

∫ 1

x=0

72(x− x2)

[

x3

3
− x4

4

]

dx.
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The simplest way to evaluate this is to expand, and we find

Prob(X ≥ Y ) = 72

∫ 1

0

[

x6

4
− 7x5

12
+
x4

3

]

dx

=
x7

28

∣

∣

∣

∣

∣

1

0

− 7x6

72

∣

∣

∣

∣

∣

1

0

+
x5

15

∣

∣

∣

∣

∣

1

0

=
13

2520
.

6 Change of variable formula and applications of
integration

6.1

6.2 The Change of Variable Theorem

Question: #1: Consider the change of variablesu = 2x+ 3y andv = 4y. Show
that this map takes the unit square[0, 1]× [0, 1] (i.e., the set of points(x, y) with
0 ≤ x, y ≤ 1) to a parallelogram. Use the change of variables formula to find
the area of the parallelogram.

Solution: The unit square is mapped to the parallelogram shown in Figure 4.
To see this, look and see where each vertex of the unit square is sent. We have
(0, 0) goes to(0, 0), we have(1, 0) goes to(2, 0), (0, 1) goes to(3, 4) and finally
(1, 1) goes to(5, 4). More generally, if we take a point of the form(x, 0) it is
mapped to the point(2x, 0), so we see the interval[0, 1] on thex-axis is mapped
to the interval[0, 2] in theu-axis. A similar analysis shows all the other lines of
the unit square are mapped to lines in theuv-plane. For example, consider the
line (x, 1) with 0 ≤ x ≤ 1. This is mapped to the line(2x+ 3, 4) in theuv-plane,
or equivalently the line from(3, 4) (corresponding tox = 0) to the point(5, 4)
(corresponding tox = 1).

We need the inverse transformationT−1, which gives us thex andy corre-
sponding to a choice ofu andv. We have to invert the relations

u = 2x+ 3y, v = 4y.

The second is the easiest; we clearly need to havey = v/4. Knowing this, we
then find

u = 2x+
3v

4
,
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Figure 4: Region the unit square is mapped to underT (x, y) = (2x+ 3y, 4y).

or

x =
u

2
− 3v

4
.

In other words, we have

T−1(u, v) = (x(u, v), y(u, v)) =

(

u

2
− 3v

4
,
v

4

)

.

We now find the determinant of the derivative. First we compute

(DT−1)(u, v) =

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

=

(

1
2

−3
4

0 1
4

)

.

The determinant is

det((DT−1)(u, v)) =
1

2
⋅ 1
4
+

3

4
⋅ 0 =

1

8
,

and thus the absolute value of the determinant is

∣

∣det((DT−1)(u, v))
∣

∣ =
1

8
,

which means

dxdy −→
∣

∣det((DT−1)(u, v))
∣

∣ dudv =
1

8
dudv.
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By the Change of Variables formula, ifS is the original unit square inxy-space
andP = T (S) is the parallelogram inuv-space, we have
∫ ∫

S

1dxdy =

∫ ∫

T (S)

1
∣

∣det((DT−1)(u, v))
∣

∣ dudv =

∫ ∫

T (S)

1 ⋅ 1
8
dudv.

As 1/8 is constant, we can pull it out of the integral and find
∫ ∫

S

1dxdy =
1

8

∫ ∫

T (S)

1dudv;

the left double integral is the area of the unit square, whilethe right double integral
is the area of our parallelogrma. We thus find

Area(S) =
1

8
Area(T (S)) =

1

8
Area(P ),

or equivalently that the area of the parallelogram is 8:

Area(P ) = 8Area(S) = 8 ⋅ 1 = 8.

We could consider more general maps from squares to parallelograms, but this
illustrates the principle and proves a nice, known result: the area of a parallelo-
gram is base times height. For our parallelogram, the has haslength 2 and the
height is 4, which do multiply to give an area of 8.

Notice that we are able to deduce the formula for the parallelogram’s area
by knowing the area of the squarebecause the absolute value of the determinant
of the derivative matrix is constant (i.e., independent ofu andv). This allows
us to pull out that common factor of 1/8 and leaves us with the integral of 1
over the parallelogram, which is thus its area. Whenever we have a change of
variables where the determinant is constant, these calculations can often allow
us to deduce the area of one region from knowing another. Thisis true in the
homework problem, where you are asked to find the area of an ellipse knowing
the area of another region. For that problem, consider the ellipse

(x

a

)2

+
(y

b

)2

≤ 1.

Consider the change of variablesu = x/a andv = y/b, so

T (x, y) = (u(x, y), v(x, y)) = (x/a, y/b)

29



or equivalently the inverse mapT−1 would be

T−1(u, v) = (x(u, v), y(u, v)) = (au, bv).

Note this maps the ellipse to the unit disk

u2 + v2 ≤ 1,

and we know the area of the unit disk is just�12 = �!

Question: #1: This is a slight modification of Problem #1 fromSection 6.2: Let
D be the unit diskx2 + y2 ≤ 1. Consider the integral

∫ ∫

D

cos(x2 + y2)dxdy.

Evaluate this using polar coordinates.
Solution: We havedxdy goes tordrd�, and the unit disk becomes0 ≤ r ≤ 1

and0 ≤ � ≤ 2�. We replacef(x, y) with f(r cos �, r sin �), and thus find
∫ ∫

D

cos(x2 + y2)dxdy =

∫ 2�

�=0

∫ 1

r=0

cos(r2 cos2 � + r2 sin2 �)rdrd�

=

∫ 2�

�=0

∫ 1

r=0

cos(r2)rdrd�

=

∫ 2�

�=0

1

2

[
∫ 1

r=0

cos(r2)2rdr

]

d�

=

∫ 2�

�=0

1

2

⎡

⎣sin(r2)

∣

∣

∣

∣

∣

1

0

⎤

⎦ d�

=

∫ 2�

�=0

sin 1

2
d�

=
sin 1

2
⋅ 2� = � sin 1.

Question: #13: This is a problem similar to Problem #13 from Section 6.2.
Consider the cylinderC given byx2 + y2 ≤ 9 and−1 ≤ z ≤ 2. Evaluate

∫ ∫ ∫

C

f(x, y, z)dxdydz
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where
f(x, y, z) = z

√

x2 + y2.

Solution: If we wanted to write down the integral explicitly in Cartesian coor-
dinates, we would have

∫ 2

z=−1

∫ 3

y=−3

∫

√
9−y2

x=−
√

9−y2
z
√

x2 + y2dxdydz.

To see this, note that on the boundaryx2 + y2 = 9, so if we have chosen a value
of y thenx ranges from−

√

9− y2 to
√

9− y2; these are not integrals we desire
to evaluate! For cylindrical coordinates, we have

dxdydz −→ rdrd�dz,

and
x = r cos �, y = r sin �, z = z.

Our functionf(x, y, z) becomesf(r cos �, r sin �, z), or in our case

z
√

x2 + y2 −→ z
√

r2 cos2 � + r2 sin2 � = zr.

The bounds of integration arez ranges from−1 to 2,� ranges from 0 to2�, andr
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ranges from 0 to 3. We thus have
∫ ∫ ∫

C

f(x, y, z)dxdydz =

∫ 2

z=−1

∫ 2�

�=0

∫ 3

r=0

f(r cos �, r sin �, z)rdrd�dz

=

∫ 2

z=−1

∫ 2�

�=0

∫ 3

r=0

z
√

r2 cos2 � + r2 sin2 �rdrd�dz

=

∫ 2

z=−1

∫ 2�

�=0

∫ 3

r=0

zr ⋅ rdrd�dz

=

∫ 2

z=−1

z

∫ 2�

�=0

[
∫ 3

r=0

r2dr

]

d�dz

=

∫ 2

z=−1

z

∫ 2�

�=0

⎡

⎣

r3

3

∣

∣

∣

∣

∣

3

0

⎤

⎦ d�dz

=

∫ 2

z=−1

z

∫ 2�

�=0

27

3
d�dz

= 9

∫ 2

z=−1

z

[
∫ 2�

�=0

d�

]

dz

= 9

∫ 2

z=−1

z2�dz

= 18�

∫ 2

z=−1

zdz

= 18�
z2

2

∣

∣

∣

∣

∣

2

−1

= 18�

[

4

2
− 1

2

]

= 18� ⋅ 3
2

= 27�.

Question: #21: This is a problem similar to Problem #21 from Section 6.2.
Consider the unit sphereS given byx2 + y2 + z2 ≤ 1. Evaluate

∫ ∫ ∫

S

f(x, y, z)dxdydz
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for

f(x, y, z) =
1

(x2 + y2 + z2)
.

If we were to write the integral out explicitly in Cartesian coordinates, we would
find it equals

∫ 1

z=−1

∫

√
1−z2

y=−
√
1−z2

∫

√
1−y2−z2

x=−
√

1−y2−z2
f(x, y, z)dxdydz,

and these bounds of integration should look horrible! We nowconvert to spherical
coordinates. We have

x = � sin� cos �, y = � sin� sin �, z = � cos�,

with
0 ≤ � ≤ 1, 0 ≤ � ≤ 2�, 0 ≤ � ≤ �.

Our functionf(x, y, z) becomes

f(� sin� cos �, � sin � sin �, � cos�) =
1

�2

after some simple algebra. Finally,

dxdydz −→ �2 sin�d�d�d�.

Note: other textbooks change the role of � and �, especially physics books. We
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thus have
∫ ∫ ∫

S

f(x, y, z)dxdydz

=

∫ �

�=0

∫ 2�

�=0

∫ 1

�=0

f(� sin� cos �, � sin� sin �, � cos�)�2 sin�d�d�d�

=

∫ �

�=0

∫ 2�

�=0

∫ 1

�=0

1

�2
�2 sin �d�d�d�

=

∫ �

�=0

∫ 2�

�=0

∫ 1

�=0

sin �d�d�d�

=

∫ �

�=0

∫ 2�

�=0

sin�

[
∫ 1

�=0

d�

]

d�d�

=

∫ �

�=0

sin�

[
∫ 2�

�=0

d�

]

d�

= 2�

∫ �

�=0

sin�d�

= 2�

[

− cos�

∣

∣

∣

∣

∣

�

0

]

= 2� [(− cos�)− (− cos 0)]

= 2� (1 + 1)

= 4�.

7 Sequences and Series

7.1 Page 10.3

Question: #2: Give an example of a sequence that does not havea limit.
Solution: Let an = (−1)n. Clearly this sequence does not have a limit, as

half the time the sequence is 1 and half the time the sequence is -1. For another
example, consideran = n!, which clearly grows without bound.
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Question: #4: Compute the limit of the sequencean = 3/n2 or explain why it
does not converge.

Solution: Note limn→∞ 3 = 3 andlimn→∞ n2 = ∞. Technically we cannot
use the limit of a quotient is the quotient of the limit as the denominator tends to
infinity and thus doesn’t converge; however, as the numerator is bounded (it is in
fact always 3) and the denominator becomes arbitrarily large, we can see that the
sequence does converge to 0. For example, ifn ≥ 55 then3/n2 ≤ 1/1000, if
n ≥ 174 then3/n2 ≤ 1/10000, and ifn ≥ 548 then3/n2 ≤ 1/100000.

Question: Similar Problem to #5: Find the limit ofan = n3+2n2−n−2
3n3+n−11

, or prove it
does not exist.

Solution: There are several ways to do this. We cannot use the limit of a
quotient is the quotient of the limits, as both the numeratorand denominator tend
to infinity asn → ∞. One approach is to pull out the largest power ofn in the
numerator and denominator:

an =
n3 + 2n2 − n− 2

3n3 + n− 11
=

n3
(

1 + 2
n
− 1

n2 − 2
n3

)

n3
(

3 + 1
n2 − 11

n3

) =
1 + 2

n
− 1

n2 − 2
n3

3 + 1
n2 − 11

n3

.

After pulling out then3, we see the numerator tends to 1 asn → ∞ and the
denominator tends to 3 asn → ∞. We can now use the limit of a quotient is the
quotient of the limit, and find

lim
n→∞

an = lim
n→∞

1 + 2
n
− 1

n2 − 2
n3

3 + 1
n2 − 11

n3

=
limn→∞

(

1 + 2
n
− 1

n2 − 2
n3

)

limn→∞

(

3 + 1
n2 − 11

n3

) =
1

3
.

Alternatively, we can use L’Hopital’s rule to evaluate the limit; we keep taking
derivatives until we no longer have infinity over infinity:

lim
n→∞

n3 + 2n2 − n− 2

3n3 + n− 11
= lim

n→∞

3n2 + 4n− 1

9n2 + 1

= lim
n→∞

6n + 4

18n

= lim
n→∞

6

18
=

1

3
.

Question: Similar Problem to #7: Find the limit ofan = 4n2−11n+1
5n6+12

, or prove the
limit does not exist.
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Solution: The limit is zero. One way to see this is to pull out the highestpower
of n from the numerator and the denominator; it isn2 for the numerator andn6

for the denominator. We have

an =
4n2 − 11n+ 1

5n6 + 12
=

n2
(

4− 11
n
+ 1

n2

)

n6
(

5
+

12
n6

) =
4− 11

n
+ 1

n2

n4
(

5
+

12
n6

) .

Note the numerator tends to 4 asn→ ∞ while the denominator tends to infinity;
thus the ratio tends to 0.

Alternatively, we could use L’Hopital’s rule, taking derivatives until we no
longer have infinity over infinity:

lim
n→∞

4n2 − 11n+ 1

5n6 + 12
= lim

n→∞

8n− 11

30n5

= lim
n→∞

8

150n4
= 0.

7.2 Page 10.6

Question: Similar Problem to #8: Find the limit of the series
∑∞

n=0
2n

3n
or prove

it does not exist.
Solution: Note that this sum is the same as

∞
∑

n=0

(

2

3

)n

;

this is the same as a geometric series with ratior = 2/3, which is less than 1 in
absolute value. We know the geometric series

∑∞
n=0 r

n converges if∣r∣ < 1; thus
this series converges.

Question: #10: Findn such that1 + 1
2
+ 1

3
+ ⋅ ⋅ ⋅+ 1

n
> 106.

Solution: Thenth harmonic number,Hn, is defined by

Hn = 1 +
1

2
+

1

3
+ ⋅ ⋅ ⋅+ 1

n
.

We haveH100 ≈ 5.2, H1000 ≈ 7.5, H1010 ≈ 23.6, H10100 ≈ 230.8, H101000 ≈
2303.2, and so on. Note how slowly this grows! In fact,Hn ≈ lnn for n large.
The sought after value ofn is about10434295, which is quite large!
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There are ways to findn that will work without knowingHn ≈ lnn. One way
is to note that1/3+1/4 ≥ 1/2, 1/5+1/6+1/7+1/8 ≥ 1/2, 1/9+ ⋅ ⋅ ⋅+1/16 ≥
1/2 and so on. Thus we can keep getting at least 1/2....

7.3 Page 10.7

Question: Similar Problem to #13: Find allp such that the sequencean = 1
n lnp n

converges.
Solution: For any fixedp, oncen is large the sequence is strictly decreasing

and we can use the integral test. Thus the series converges ordiverges depending
on whether or not

∫ ∞

x=big

1

x lnp x
dx

converges or diverges; we write ‘big’ to indicate that the lower bound does not
really matter – what matters is the behavior at infinity. We integrate by parts. Let
u = lnx sodu = dx/x, and thus our integral becomes

∫ ∞

u=ln(big)

u−pdu.

The integral ofu−p is u1−p

p
if p ∕= 1 andln u if p = 1. Thus the integral converges

if p > 1 and divergesp ≤ 1.

7.4 Page 10.8

Question: Similar Problem to #14: Determine if the series
∑∞

n=1
1

2n+
√
n

con-
verges or diverges.

Solution: We use the comparison test. Note that while
∑∞

n=1
1√
n

diverges,
∑∞

n=1
1
2n

converges. As2n +
√
n ≥ 2n, we have

0 ≤ 1

2n +
√
n

≤ 1

2n
.

Thus the series converges by the comparison test.
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Question: Similar Problem to #15: Determine if the series
∑∞

n=1

√
n

5n
converges

or diverges.
Solution: We have

√
n ≤ 2n. Thus

√
n

5n
≤ 2n

5n
=

(

2

5

)n

.

Our series is thus bounded term by term by the geometric series with ratio2/5,
and thus converges by the comparison.

Question: Similar Problem to #16: Determine if the series
∑∞

n=1
2n⋅n!√
n+11

con-
verges or diverges.

Solution: This series diverges. Note the numerator is growing much faster
than the denominator. The easiest way to see this is that the denominator is at
mostn for largen, andn!/n = (n−1)!. In other words, the terms in the sequence
tend to infinity, and thus the sum cannot converge.

7.5 Page 10.10

Question: #20: Determine if
∑n

k=0
32k+1

10k
converges or diverges.

Solution: We can re-write the terms in a more illuminating manner. We have

n
∑

k=0

32k+1

10k
= 3

n
∑

k=0

32k

10k

= 3

n
∑

k=0

9k

10k

= 3

n
∑

k=0

(

9

10

)k

.

Note the above sum is just three times the geometric series with ratio 3, and thus
converges.
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Instead of using the comparison test we can also use the RatioTest. We look
atak+1/ak, which for us is

ak+1

ak
=

32k+3/10k+1

32k+1/10k
=

9

10
.

Thus the limit ofak+1/ak is 9/10 < 1, and the series therefore converges by the
Ratio Test.

Question: #22: Determine if
∑n

k=0
3k(k4+k+1)

5k
converges or diverges.

Solution: If we didn’t have the factork4 + k + 1, it would be straightfor-
ward, as the series would just be the geometric series with ratio 3/5. As k4 grows
polynomially but3k and5k grow exponentially, we expect the series to still con-
verge. Thus we look for an upper bound for the numerator such that, even when
multiplied by3k, it grows slower than the denominator by a significant margin.

For example, let’s try and show the numerator is bounded byC ⋅ 4k for some
constantC. We want to show fork large that

3k(k4 + k + 1) ≤ C ⋅ 4k,
or

k4 + k + 1 ≤ C ⋅ (4/3)k.
We havek4 + k + 1 ≤ 3k4, and thus if we takeC = 3 we need only show, for
k large, thatk4 ≤ (4/3)k. While this is not true for smallk, it is true for largek
and thus the series is bounded by the geometric series with ratio 4/5, and hence
converges.

We now provide an alternative proof using the ratio test. We look atak+1/ak,
which for us is

ak+1

ak
=

(3/5)k+1((k + 1)4 + k + 2)

(3/5)k(k4 + k + 1)
=

3

5
⋅ (k + 1)4 + k + 2

k4 + k + 1
.

If we take the limit ask → ∞, we see that the limit is3/5. As this is less than 1,
by the Ratio Test the series converges.

8 From path integrals to Stokes’ Theorem

The final homework assignment of the semester is:Section 4.2: #1 (see formula
at the bottom of the page for help). Section 4.4: #1, #14. Section 7.1: #3b. Section
7.2: #1c. Section 8.1: #3a. The problems below are similarly chosen problems.
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Question: Section 4.2: #2: Find the arc length of the curvec(t) = (1, 3t2, t3)
for 0 ≤ t ≤ 1.

Solution: The answer is
∫ 1

0

∣∣c′(t)∣∣ dt,

where
c′(t) = (0, 6t, 3t2)

so
∣∣c′(t)∣∣ =

√
36t2 + 9t4 = 3t

√
4 + t2;

this will lead to a straightforward integral because of the factor oft outside the
square-root. We have

∫ 1

0

∣∣c′(t)∣∣ dt =

∫ 1

0

3t
√
4 + t2dt

=
3

2

∫ 1

0

(4 + t2)1/22tdt

= (4 + t2)3/2

∣

∣

∣

∣

∣

1

0

= 53/2 − 43/2.

Question: Section 4.4: #2: Find the divergence and the curl of V (x, y, z) =
(yz, xz, xy) = (V1(x, y, z), V2(x, y, z), V3(x, y, z)).

Solution: The divergence is

div(V ) = ∇ ⋅ V =
∂V1
∂x

+
∂V2
∂y

+
∂V3
∂z

= 0;

the fact that the divergence is zero has physical interpretations. For the curl, we
have

curl(V ) = ∇× V =

∣

∣

∣

∣

∣

∣

−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

V1 V2 V2

∣

∣

∣

∣

∣

∣

.

Expanding gives
(

∂V3
∂y

− ∂V2
∂z

,
∂V1
∂z

− ∂V3
∂x

,
∂V2
∂x

− ∂V1
∂y

)

= (0, 0, 0) ;
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thus this vector field has both zero curl and zero divergence!

Question: Section 7.1: #3a: Find the path integral
∫

c
f(x, y, z)dswheref(x, y, z) =

exp(
√
z) and c(t) = (1, 2, t2) for 0 ≤ t ≤ 1.

Solution: The path integral is
∫ 1

0

f(c(t))∣∣c′(t)∣∣ dt.

We have
c′(t) = (0, 0, 2t), ∣∣c′(t)∣∣ = 2∣t∣

(which is2t ast ≥ 0). Further,

f(c(t)) = f(1, 2, t2) = exp(
√
t2) = exp(t).

Thus the path integral is
∫ 1

0

f(c(t))∣∣c′(t)∣∣ dt =

∫ 1

0

exp(t)2tdt.

The integral (or anti-derivative) ofexp(t)t is justexp(t)(t− 1), and thus we have

∫ 1

0

f(c(t))∣∣c′(t)∣∣ dt = 2 exp(t)(t− 1)

∣

∣

∣

∣

∣

1

0

= 2.

Question: Section 7.2: #1b: LetF (x, y, z) = (x, y, z). Evaluate the integral of
F along the pathc(t) = (sin t, 0, cos t) for 0 ≤ t ≤ 2�.

Solution: We have
c′(t) = (cos t, 0,− sin t)

,
F (c(t)) = F (sin t, 0, cos t) = (sin t, 0, cos t).

Thus the line integral is
∫ 2�

0

F (c(t)) ⋅ c′(t)dt =

∫ 1

0

(sin t, 0, cos t)(cos t, 0,− sin t)dt

=

∫ 2�

0

0dt = 0.
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Question: Section 8.1: #3b: Verify Green’s theorem for the disk with center
(0, 0) and radiusR and the functionsP (x, y) = x+ y,Q(x, y) = y.

Solution: We have

∂Q

∂x
− ∂P

∂y
= 0− 1 = −1;

thus
∫ ∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy =

∫ ∫

D

−1dxdy = −Area(D);

of course, the area of the disk is�R2 so this double integral is−�R2.
For the other part of Green’s theorem, we note the boundary curve is

c(t) = (R cos t, R sin t), 0 ≤ t ≤ 2�

(remember we must travel so that the regionD is on our left). Thus

c′(t) = (−R sin t, R cos t).

Further,

−→
F (c(t)) =

−→
F (R cos t, R sin t) = (R cos t +R sin t, R sin t),

and hence
∫

c

−→
F ⋅ d−→s =

∫ 2�

0

−→
F (c(t)) ⋅ c′(t)dt

=

∫ 2�

0

(R cos t +R sin t, R sin t) ⋅ (−R sin t, R cos t)dt

=

∫ 2�

0

−R2 sin2 tdt.

We evaluated the sine-integral many ways, and found it equals�; one could also
use trig identities and findsin2 t = 1−cos(2t)

2
. Thus the integral equals� times

−R2, which does match.
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