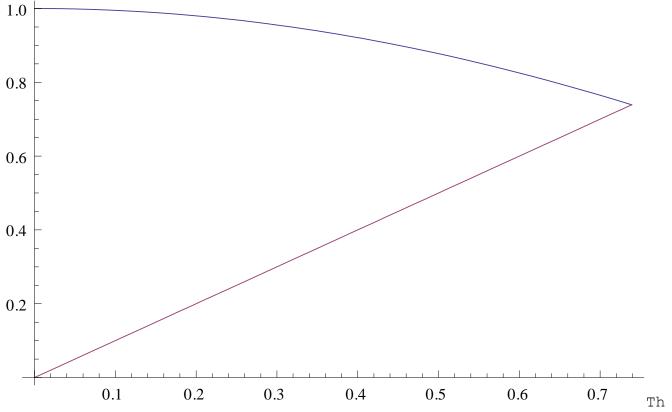


Problem #1

The blue curve is the function $y = x^2$, the purple is $y = x^3$.

Write down the double integral of a function f(x,y) over this region. Do this both ways:

- (1) First integrate with respect to y then with respect to x.
- (2) First integrate with respect to x then with respect to y.

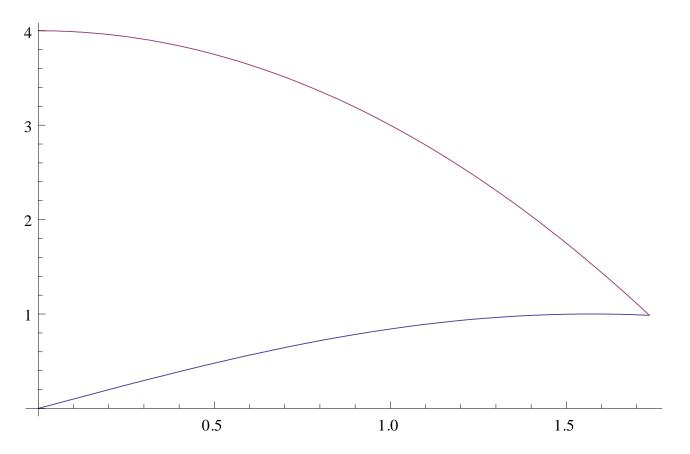


Problem #2

The blue function (top) is y = Cos(x). The purple function (bottom) is y = x. The two functions intersect at approximately x = 0.739. Call this point of intersection x_0 .

Write down the double integral of a function f(x, y) over this region. Do this both ways:

- (1) First integrate with respect to y then with respect to x.
- (2) First integrate with respect to x then with respect to y.



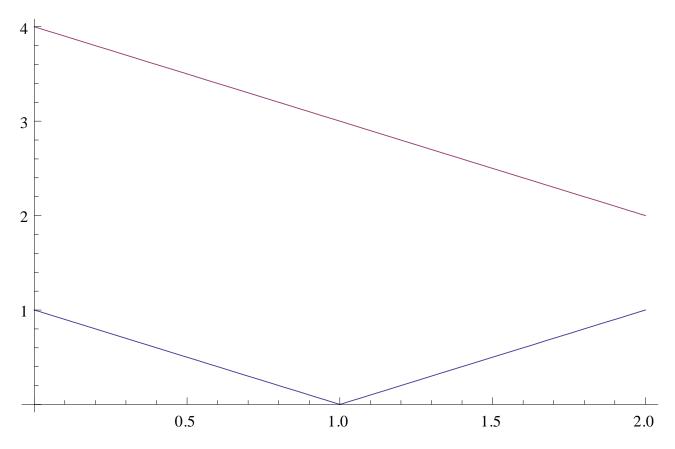
Problem #3

The blue function (bottom) is y = Sin(x). The purple function (top) is $y = 4 - x^2$. The two functions intersect at approximately x = 1.73598. Call this point of intersection x_0 .

Write down the double integral of a function f(x, y) over this region. Do this both ways:

(1) First integrate with respect to y then with respect to x.

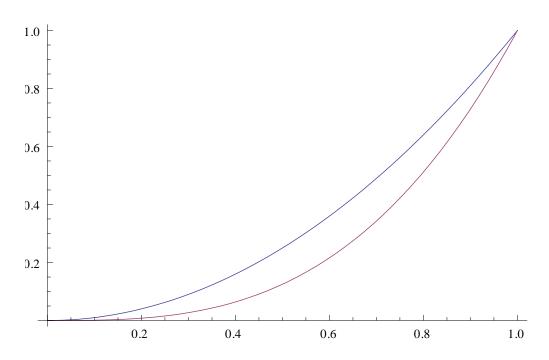
(2) First integrate with respect to x then with respect to y.



The top function (purple) is y = 4 - x. The bottom function (blue) is y = |1 - x|.

Is this region x-simple? Is it y-simple? Set up the integration if it is x-simple. Set up the integration if it is y-simple.

SOLUTIONS



Problem #1

The blue curve is the function $y = x^2$, the purple is $y = x^3$.

Write down the double integral of a function f(x, y) over this region. Do this both ways:

(1) First integrate with respect to y then with respect to x.

Ans: $Int_{x = 0 \text{ to } 1}$ $Int_{y = x^3 \text{ to } x^2} f(x, y) dy dx.$

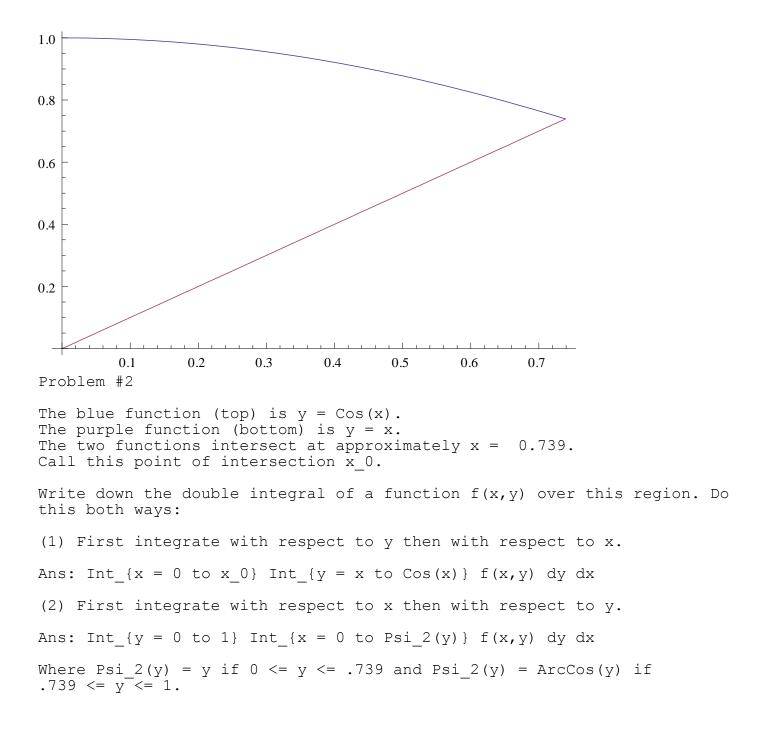
Here phi $1(x) = x^3$ (the bottom) and phi $2(x) = x^2$ (the top)

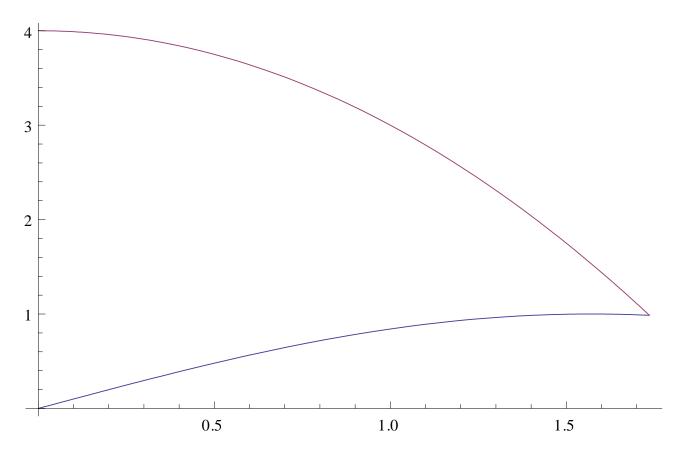
(2) First integrate with respect to x then with respect to y.

Ans: Int_{y = 0 to 1} Int_{ $x = y^{1/2}$ to $y^{1/3}$ f(x,y) dx dy

Here $psi_1(y) = x^{1/2}$ and $psi_2(y) = x^{1/3}$.

Note the blue curve is $y = x^2$, so if we are given a value of y the corresponding value of x is sqrt(x) or $x^{1/2}$.



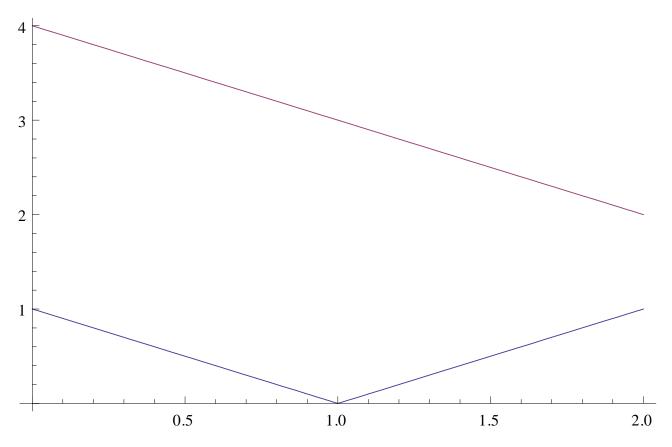


Problem #3

The blue function (bottom) is y = Sin(x). The purple function (top) is $y = 4 - x^2$. The two functions intersect at approximately x = 1.73598. Call this point of intersection x_0 .

Write down the double integral of a function f(x, y) over this region. Do this both ways:

(1) First integrate with respect to y then with respect to x. Ans: $Int_{x = 0 \text{ to } x_0$ $Int_{y = Sin(x) \text{ to } 4 - x^2$ f(x,y) dy dx(2) First integrate with respect to x then with respect to y. Ans: $Int_{y = 0 \text{ to } 4}$ $Int_{x = 0 \text{ to } Psi_2(y)$ f(x,y) dy dxWhere $Psi_2(y) = ArcSin(y)$ for $0 \le y \le Sin(1.73598)$ and $Psi_2(y) = Sqrt(4-y)$ if $Sin(1.73598) \le y \le 4$.



The top function (purple) is y = 4 - x. The bottom function (blue) is y = |1 - x|.

Is this region x-simple? Is it y-simple? Set up the integration if it is x-simple. Set up the integration if it is y-simple.

Ans: The region is both x-simple and y-simple. The y-simple is the easiest, and leads to

Int_{x = 0 to 2} Int_{y = |1-x| to 4 - x} f(x,y) dy dx.

For the x-simple, the bounds depend on what value y takes on. I will just do what happens for $0 \le y \le 1$. In this region, for a given y we have x ranges from 1-y to 1+y. To see this, if $0 \le x \le 1$ then |1-x| = 1-x, and hence if y = 1-x then x = 1-y. If instead $1 \le x \le 2$ then |1-x| = x-1, and now y = x-1 or x = 1+y.

Thus for $0 \le y \le 1$ we have $Psi_1(y) = 1-y$ and $Psi_2(y) = 1+y$.