MATH 105: PRACTICE PROBLEMS FOR CHAPTER 11 AND CALCULUS REVIEW: SPRING 2011

INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU)

Question 1 : These problems deal with equations of lines.
(1) Find the equation of the line going through the points $(2,3)$ and $(4,9)$.
(2) Find the equation of the line going through the points $(2,3)$ and $(-1,2)$.
(3) Find the equation of the line going through the point $(2,3)$ with slope 3 .
(4) Find the equation of the line going through the points $(2,3,4)$ and $(4,9,16)$.
(5) Find the equation of the line going through the point $(2,3,4)$ in the direction $(2,6,12)$.
(6) Is the point $(4,19,26)$ on the line going through the point $(2,3,4)$ in the direction $(2,6,12)$?
(7) Consider the lines in part (1) and part (2). Find all points on both lines.

Question 2 : These equations deal with vectors. For all problems below, let $\vec{P}=(1,2,3)$, $\vec{Q}=(4,9,6), \vec{R}=(3,3,3), \vec{v}=(3,7,3)$ and $\vec{w}=(2,1,0)$.
(1) Find $\vec{P}+\vec{R}, 4 \vec{P}-3 \vec{Q}+2 \vec{R},(\vec{P}+2 \vec{Q}) \cdot \vec{R}$, and $(\vec{P} \times \vec{Q}) \times \vec{R}$.
(2) Find the plane containing \vec{P} with two directions \vec{v} and \vec{w}.
(3) Find the equation of the plane containing the vectors \vec{P}, \vec{Q} and \vec{R}.
(4) Find the equation of the plane containing the point \vec{P} whose normal is in the direction $(-3,6,-11)$.
(5) Find the equation of the plane containing \vec{Q} with two directions \vec{v} and \vec{w}.
(6) Find the area of the parallelogram, two of whose sides are \vec{v} and \vec{w}.
(7) Find the cosine of the angle between \vec{v} and \vec{w}.
(8) Find the length of \vec{v}, and find a vector of unit length in the same direction as \vec{v}.
(9) Find a vector perpendicular to both \vec{v} and \vec{w}.
(10) Find a vector perpendicular to \vec{v}.

Question 3 : State the following results.
(1) The Pythagorean Formula.
(2) The Law of Cosines.
(3) The formula for the cosine of the angle between two vectors \vec{P} and \vec{Q}.
(4) The formulas for the determinant of a 2×2 matrix A and a 3×3 matrix B, where

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad B=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

(5) Give a reason why we care about determinants.
(6) Give the formula for the cross product of two vectors; specifically, what is the cross product $\vec{v} \times \vec{w}$, where $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$. Give three properties of the cross product.
(7) Give the formula for the inner (or dot) product of two vectors; specifically, what is $\vec{v} \cdot \vec{w}$ where $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\vec{w}=\left(w_{1}, \ldots, w_{n}\right)$. Give three properties of the inner product.
(8) Explain what the phrase right hand screw rule means, and why it is useful.
(9) Prove the triple product formula; specifically, if $\vec{A}=\left(a_{1}, a_{2}, a_{3}\right), \vec{B}=\left(b_{1}, b_{2}, b_{3}\right)$ and $\vec{C}=\left(c_{1}, c_{2}, c_{3}\right)$ then

$$
(\vec{A} \times \vec{B}) \cdot \vec{C}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Question 4: (Calculus Review) Find the maximum and minimum values for $f(x)=$ $\frac{1}{3} x^{3}-9 x^{2}+80 x+1$ when $-20 \leq x \leq 40$. Use the first and second derivative tests to classify the local maximum and minimums, and sketch the curve.

Question 5: (Calculus Review) Consider all rectangles with perimeter 100. Find the rectangle with largest area.

Question 6 : State the fundamental theorem of calculus (FTC). (1) Use the FTC to calculate the area under the curve $f(x)=x^{2}+2 x+1$ from $x=1$ to $x=4 ;(2)$ use the FTC to calculate the area under the curve of $f(x)=\sin (x)$ from $x=0$ to $x=\pi / 2$. Note we may denote these areas by $\int_{1}^{4}\left(x^{2}+2 x+1\right) d x$ and $\int_{0}^{\pi / 2} \sin (x) d x$.

Question 7 : Find all the anti-derivatives of the following: (1) x^{4}; (2) $x^{4}+3 x^{5}$; (3) $(x+6)^{8}$; (4) $\left(x^{3}+4 x^{2}+1\right)^{7} \cdot\left(3 x^{2}+8 x\right)$; (5) $\sin (x)-\cos (x)+e^{x}$.

Question 8 : State L'Hopital's rule. Determine

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}, \quad \lim _{x \rightarrow 0} \frac{\sin (x) \cos (x)-x}{x^{2}}, \quad \lim _{x \rightarrow 2} \frac{x^{2}-4}{(x-2) \sin (x)} .
$$

