
MATH 105: PRACTICE PROBLEMS FOR CHAPTER 13: SPRING 2011

INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU)

Question 1 : Define the following terms:

(1) What does it mean for a function f : ℝ2 → ℝ to be bounded?
(2) Define a simple region.

Solution: (1) A function f is bounded if there is some B such that for all points in the
domain, the absolute value of f at that point is at most B: ∣f(x, y)∣ ≤ B or −B ≤ f(x, y) ≤
B. (2) A region D ⊂ ℝ2 is x-simple if there are continuous  1 and  2 defined on [c, d] such
that

 1(y) ≤  2(y)

and

D = {(x, y) :  1(y) ≤ x ≤  2(y) and c ≤ y ≤ d};

similarly, D is y-simple if there are continuous functions �1(x) and �2(x) such that

�1(x) ≤ �2(x)

and

D = {(x, y) : �1(x) ≤ y ≤ �2(x) and a ≤ x ≤ b}.

If D is both x-simple and y-simple then we say D is simple.

Question 2 : Compute ∫ 4

x=1

∫ x2

y=
√
x

ydydx.

Interchange the order of integration. Write down what the new bounds of integration are,
and compute the new double integral.
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Figure 1. Plot of region given by 1 ≤ x ≤ 4 and
√
x ≤ y ≤ x2.

Solution: ∫ 4

x=1

∫ x2

y=
√
x

ydydx =

∫ 4

x=1

y2

2

∣∣∣∣∣
x2

√
x

dx

=

∫ 4

x=1

(
x4

2
− x

2

)
dx

=

∫ 4

x=1

x4

2
dx−

∫ 4

x=1

x

2
dx

=
x5

10

∣∣∣∣∣
4

1

− x2

4

∣∣∣∣∣
4

1

=

(
45

10
− 1

10

)
−
(

42

4
− 1

4

)
=

45

10
− 1

10
− 42

4
+

1

4

=
1971

20
.

For this problem, it is set up as a y-simple region. We have the lower boundary curve
�1(x) =

√
x and the upper bounding curve �2(x) = x2.

What if we try and do the problem the other way? It is an x-simple region – we need to
find the left most boundary  1(y) and the rightmost boundary  2(y). We display the plot in
Figure 1.

We see that  1(y) =
√
y for all y in our range. This arises from the relation y = x2; as we

want to solve for x in terms of y, this becomes x =
√
y. What of  2(y)? The functional form

changes depending on whether or not y ≤ 2. We have

 2(y) =

{
y2 if 1 ≤ y ≤ 2

4 if 2 ≤ y ≤ 16.
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To see this is the answer, note that for y ≤ 2 the right boundary curve is given by y =
√
x,

which when we solve for x in terms of y becomes x = y2. Once y ≥ 2 then the largest value
x takes on becomes 4.

This leads to∫ 16

y=1

∫  2(y)

x= 1(y)

ydxdy =

∫ 2

y=1

∫ y2

x=
√
y

ydxdy +

∫ 16

y=2

∫ 4

x=
√
y

ydxdy

=

∫ 2

y=1

y(y2 −√y)dy +

∫ 16

y=2

y(4−√y)dy

=
y4

4

∣∣∣∣∣
2

1

− y5/2

5/2

∣∣∣∣∣
2

1

+ 2y2

∣∣∣∣∣
16

2

− y5/2

5/2

∣∣∣∣∣
16

2

=
1971

20
.

Question 3 : Let f be a function of class C2. Must∫ ∞

x=0

∫ ∞

y=0

f(x, y)dydx =

∫ ∞

y=0

∫ ∞

x=0

f(x, y)dxdy,

or could there be a function f such that this fails?
Solution: There is an f such that these two examples are not equal. While we saw an
example in class and the additional comments, the important point to note is that we are not
satisfying all of the conditions of Fubini’s theorem, but rather only some of them. Specifically,
for Fubini’s theorem we need to be integrating over a bounded region (i.e., a region living
inside a ginat but finite rectangle).

Question 4 : Let D be the region in the plane where x, y ≥ 0 and 3x ≥ 2y ≥ x. Write
down (but do not evaluate) the integral for the function exy over this region.
Solution: If we were integrating over a finite region, say 1 ≤ x ≤ 2, the problem would be
a lot harder. We have a y-simple region. For a given value of x, y starts at x/2 (this is from
2y ≥ x) and increases to 3x/2 (this is from 3x = 2y). Thus the answer is∫ ∞

x=0

∫ 3x/2

y=x/2

exydydx.

Question 5 : Prove

2 ≤
∫ 1

x=0

∫ 2

y=0

ex+ydydx ≤ 2e3.

Solution: Let f(x, y) = ex+y. As x ≤ 1 and y ≤ 2, we are integrating over a rectangle The
smallest smallest value is when x = y = 0, namely 1; the largest is when x = 1 and y − 2, or
Professor e3. The claim now follows by taking the values of the upper and lower bounds and
multiplying by the area of the region.


