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Each July, the eyes of baseball fans across the country turn to Major League Base-
ball’s All-Star Game, gathering the best and most popular players from baseball’s two
leagues to play against each other in a single game. In most sports, the All-Star Game
is an exhibition played purely for entertainment. Since 2003, the baseball All-Star
Game has actually ‘counted’, because the winning league gets home field advantage
in the World Series. Just one year before this rule went into effect, there was no win-
ner in the All-Star Game, as both teams ran out of pitchers in the 11th inning and the
game had to be stopped at that point. Under the new rules, the All-Star Game must be
played until there is a winner, no matter how long it takes, so the managers need to
consider the possibility of a long extra inning game. This should lead the managers to
ask themselves what the probability is that the game will last 12 innings. What about
20 innings? Longer?

In this paper, we address these questions and several other questions related to the
game of baseball. Our methods use a variation on the well-studied geometric distribu-
tion called the quasigeometric distribution. We begin by reviewing some of the litera-
ture on applications of mathematics to baseball. In the second section we will define
the quasigeometric distribution and examine several of its properties. The final two
sections examine the applications of this distribution to models of scoring patterns in
baseball games and, more specifically, the length of extra inning games.

1. Sabermetrics

While professional baseball has been played for more than a century, it has only been
in the last few decades that people have applied mathematical tools to analyze the
game. Bill James coined the term ‘Sabermetrics’ to describe the analysis of baseball
through objective evidence, and in particular the use of baseball statistics. The word
Sabermetrics comes from the acronym SABR, which stands for the Society for Amer-
ican Baseball Research [12].

Before SABR was ever organized, and before sabermetrics was a word, the influ-
ence of statistics over the strategy used by a manager in professional baseball was min-
imal. No manager would have ever thought of having charts on what each batter had
done against each pitcher in the league. Now things are different. Since the publication
of Michael Lewis’s book Moneyball in 2003 [10], even most casual baseball fans have
become familiar with Sabermetric statistics such as OPS (“on-base plus slugging”,
which many people feel is a better measure of offensive skill than the traditional statis-
tics such as batting average or RBIs) and Win Shares (a statistic developed by Bill
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James in [8] which attempts to measure the all-around contributions of any player),
and there has been a proliferation of books and websites for the more dedicated fans
to pursue these interests.

Sabermetrics has had a profound influence not just in the living room, but also in
the clubhouse as it has begun to affect the strategy of the game. In the last decade,
Sabermetrics devotees such as Billy Beane, Theo Epstein, Paul DePodesta, and Bill
James himself have all worked in the front offices of Major League baseball teams,
and these approaches are often given some of the credit for the Red Sox winning the
2004 World Series [6].

Sabermetricians attempt to use statistical analysis to answer all sorts of questions
about the game of baseball: whether teams should intentionally walk Barry Bonds,
whether Derek Jeter deserves his Gold Glove, which players are overpaid (or under-
paid), when closing pitchers should be brought into the game, and whether or not
batting order matters are just some of the questions that have had many words writ-
ten about them. For readers interested in these questions, websites such as Baseball
Prospectus [2] and journals such as By The Numbers [5] are a great place to start read-
ing. Alan Schwarz’s book The Numbers Game [13] provides an excellent historical
perspective, and Albert and Bennett’s book Curve Ball: Baseball, Statistics, and the
Role of Chance in the Game [1] is a good introduction to some of the mathematical
techniques involved.

One recurring theme in the sabermetric literature is the question of how likely cer-
tain records are to be broken and how unlikely these records were to begin with. For
example, now that Barry Bonds has set the career homerun record, many people are
curious whether we should expect to see any player pass Bonds in our lifetime. Sev-
eral recent articles ([3], [4]) in The Baseball Research Journal have asked the question
“How unlikely was Joe DiMaggio’s 56 game hitting streak?” and have come to differ-
ent answers depending on the methods they use to look at the question. This question
is of the same flavor as the question we address in Section Four, as we use the math-
ematical models developed to examine how likely a 20 inning game is to occur, and
how unlikely the longest recorded game of 45 innings really was.

2. Distributions

Geometric distributions. To begin, let us recall what we mean by a distribution in
the first place.

DEFINITION 2.1. A probability distribution on the natural numbers is a function
f : N0 → [0, 1] (where N0 denotes the nonnegative integers) such that

∑∞
n=0 f (n) =

1. The mean (or expected value) of a discrete distribution f is given by μ = ∑
n f (n)

and the variance is given by σ 2 = ∑
(n − μ)2 f (n).

DEFINITION 2.2. A geometric distribution is a distribution such that for all n ≥ 1,
f (n) = f (0)�n for some fixed 0 < � < 1.

We note that geometric distributions are the discrete version of the exponential de-
cay functions which are found, for example, in half-life problems. In particular, if f is
a geometric distribution, then we see that

1 =
∞∑

n=0

f (n)
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=
∞∑

n=0

f (0)�n

= f (0)

∞∑
n=0

�n

= f (0)

1 − �
,

therefore f (0) = 1 − �. Thus, the entire distribution is determined by the value of �.
It is a straightforward computation to see that the mean of this distribution is �

1−�
and

the variance is �

(1−�)2 .

Quasigeometric distributions. In this paper, we wish to discuss a variation of ge-
ometric distributions which can reasonably be referred to as quasigeometric distribu-
tions, as they behave very similarly to geometric distributions. These distributions are
defined so that they are geometric other than at a starting point. In particular, we want
there to be a common ratio between f (n) and f (n + 1) for all n ≥ 1 but not (neces-
sarily) the same ratio between f (0) and f (1). To be explicit, we make the following
definition:

DEFINITION 2.3. A quasigeometric distribution is a distribution so that for all
n ≥ 2, f (n) = f (1)dn−1 for some 0 < d < 1. We call d the depreciation constant
associated to the distribution.

Just as geometric distributions are completely determined by the value of k, a quasi-
geometric distribution is entirely determined by the values of d and f (0) (which we
will often denote by a). In particular, a computation analogous to the one above shows
that for n ≥ 1, f (n) = (1 − a)(1 − d)dn−1. Given this, it is possible to compute the
mean and variance of the distribution as follows:

μ =
∞∑

n=0

n f (n)

=
∞∑

n=1

n(1 − a)(1 − d)dn−1

= (1 − a)(1 − d)

∞∑
n=1

ndn−1

= (1 − a)(1 − d)(1 − d)−2

= 1 − a

1 − d
, (1)

σ 2 =
∞∑

n=0

n2 f (n) − μ2

=
∞∑

n=1

n2(1 − a)(1 − d)dn−1 − μ2

= (1 − a)(1 − d)

∞∑
n=1

n2dn−1 − μ2
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= (1 − a)(1 + d)

(1 − d)2
− (1 − a)2

(1 − d)2

= (1 − a)(a + d)

(1 − d)2
. (2)

Conversely, we note that a quasigeometric distribution is uniquely determined given
μ and σ 2 (although not all pairs (μ, σ 2) determine a quasigeometric distribution). In
particular, if s > |m − m2| and we set

a = m + s − m2

m + s + m2
and d = m2 + s − m

m2 + s + m
,

then the quasigeometric distribution given by a and d will have mean m and variance s.
In statistics, this method of describing a distribution is called the method of moments.

3. Baseball scoring patterns

Runs scored per inning. It has been observed by several people (see [9], [15], [16])
that the number of runs scored per inning by a given baseball team fits a quasige-
ometric distribution (although they do not use this language). In TABLE 1, we have
provided a table of the probabilities that a given number of runs is scored in an inning
based on several different datasets and we see that the same general pattern persists.
Woolner’s data [16] separates teams by their strength, trying to see if teams that score
an average of 3.5 runs per game have different scoring patterns than those that score
5.5 runs per game. The data compiled by Jarvis [9] separates teams by league to see
how scoring patterns are affected by the different rules (designated hitter, etc.) as well
as the different cultures in the American League and the National League.

TABLE 1: Probability of scoring a given number of runs in an inning

Dataset 0 runs 1 2 3 4 5

Woolner (all) 0.730 0.148 0.068 0.031 0.014 0.006
Woolner (3.5 RPG) 0.760 0.140 0.059 0.024 0.011 0.004
Woolner (5.5 RPG) 0.679 0.161 0.079 0.042 0.022 0.009

Jarvis (AL) 0.722 0.151 0.070 0.032 0.014 0.006
Jarvis (NL) 0.731 0.150 0.067 0.030 0.013 0.006
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Figure 1 Runs scored per inning
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One notes from FIGURE 1 that, after an initial dropoff, the probability of scoring a
given number of runs appears to fit a typical exponential curve. This is not a surprising
result to baseball fans, because it is what one would intuitiviely expect if the only way
that a runner reached base was by hitting a single: the first run would be more difficult
to score as it requires multiple hits, but the probability that each additional run will
score coincides with the probability that the batter gets a hit.

Over each of these different data sets, one can compute the mean and standard
deviation, and in turn compute the associated values of a and d that would define the
appropriate quasigeometric distribution from the equations at the end of Section 2.

TABLE 2: Computations of a and d for datasets

Dataset m s a d

Woolner (all) 0.484 0.999 0.727 0.436
Woolner (3.5 RPG) 0.408 0.896 0.772 0.444
Woolner (5.5 RPG) 0.627 1.173 0.642 0.429

Jarvis (AL) 0.503 1.024 0.715 0.435
Jarvis (NL) 0.478 0.986 0.730 0.434

We see from TABLE 2 that the value of the depreciation constant d does not change
very much, even when we look across leagues or across varying strengths of teams. In
fact, it does not change significantly even if we compare different eras. This observa-
tion will be the key assumption of our model. For the duration of this paper, we will
assume that scoring patterns in a given inning fit a quasigeometric distribution with a
value of d = 0.436 for the depreciation constant as suggested by the full database in
[16]. The value of a, on the other hand, does change significantly with the strength of
a team. One way of interpreting this result is that the difference between the quality of
teams is mainly in the probability that they score a single run in a given inning. Then,
after the first batter crosses the plate, all teams are more or less equally successful at
continuing the scoring drive.

The work of Smith, featured in [14], shows that an average major league team scores
0.487 runs per inning. TABLE 3 computes the probability that a team which scores at
this rate will score a given number of runs in an inning according to this quasigeometric
model, and compares this with the probability observed in Woolner’s dataset.

TABLE 3: Runs per inning: Quasigeometric Model vs.
Woolner’s Data

Number of Runs Predicted Prob. Observed Prob.

0 0.725 0.730
1 0.155 0.148
2 0.068 0.068
3 0.029 0.031
4 0.013 0.014
5 0.006 0.006

Runs scored per game. Of course, as any baseball fan who has watched his team
squander a lead can tell you, games are not won or lost by the number of runs scored
in a given inning but instead by the number of runs scored in the full nine (or more)
innings. So one would like a formula to determine the number of runs scored in a
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nine-inning game. In order to do so, we first make the assumption that all innings
are independent of one another. While this assumption is almost certain to be overly
strong—teams are likely to face similar pitchers, weather, and park effects in consec-
utive innings—it greatly simplifies the problem. Furthermore, we will see that it leads
to mathematical results that match with actual game data.

We denote the probability that a team scores n runs in nine innings as F(n), and
note that

F(n) =
∑

f (n1) f (n2) . . . f (n8) f (n9),

where the sum ranges over all 9-tuples of nonnegative integers (n1, . . . , n9) which
sum to n and f (n j ) is the probability that the team scores n j runs in inning j .

If a team scores n runs in a game, then we know that the team must score in between
one and min(n, 9) different innings. Breaking up by these cases, we can compute

F(n) =
min(n,9)∑

i=1

(
9
i

)
f (0)9−i (

∑
f (n1) . . . f (ni )),

where the interior sum is over all ordered i-tuples of positive integers summing to n.
If we now invoke our assumption that the probability of scoring a given number of
runs in an inning is quasigeometric (and independent of the inning), and therefore that
f (0) = a and f (ni ) = (1 − a)(1 − d)dni −1 for all ni ≥ 1, we can calculate that

F(n) =
min(n,9)∑

i=1

(
9
i

)(
n − 1
i − 1

)
a9−i dn−i (1 − a)i (1 − d)i .

In this formula, i represents the number of innings in which the team scores, a
represents the probability that a team goes scoreless in a given inning, and d represents
the depreciation constant, which we are assuming is equal to 0.436 for all teams. One
way to view the

(n−1
i−1

)
term is that it counts the number of ways to divide n runs among

i innings. It will be more useful to us to translate this result in terms of the strength of
a given team. To do this, we note that Equation (1) showed that to model a team that
scores an average of m runs per inning we should choose a = 1 − m(1 − d). Doing
so, we compute:

F(n) =
min(n,9)∑

i=1

(
9
i

)(
n − 1
i − 1

)
mi (1 − (1 − d)m)9−i(1 − d)2i dn−i ,

where again d is the depreciation constant 0.436 and m represents the average number
of runs per inning that a team scores. TABLE 4 computes F(n) for a team that scores
the historical average of 0.487 runs per inning and compares these values with the
empirical distribution of runs per game scored by National League teams between
1969 and 2002.

One sees that this quasigeometric model appears to give a good approximation of
reality, and therefore we might want to see how this type of model can be used to
answer many different types of questions. In the following section, we will look at the
question of how often we should expect games to last 20 innings or more, but before
moving on to that, we think it would be interesting to note that one could use this
model to compute the odds that a team of a given strength would beat another team of
a given strength. In particular, we note that the 2003 Atlanta Braves scored an average
of 0.618 runs per inning, whereas the 2003 New York Mets scored an average of 0.443
runs per inning. While this is clearly a lopsided matchup, one of the beautiful things
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TABLE 4: Number of runs per game predicted by model vs.
actual game data

Number of Runs F(n) = Prob in game % of NL Games

0 0.055 0.062
1 0.107 0.108
2 0.138 0.139
3 0.145 0.148
4 0.135 0.134
5 0.114 0.113
6 0.091 0.088
7 0.068 0.068
8 0.046 0.049
9 0.034 0.033

10 0.023 0.023

about the game of baseball is that underdogs often win, and one wonders what the
probability of the Mets winning a given game against the Braves would have been.

One can use the quasigeometric model in order to approach this question. In par-
ticular, we can use the strengths of each team to calculate FB(n) (resp. FM(n)), the
probability that the Braves (resp. the Mets) will score n runs in nine innings. Given
these functions and the assumption that their scoring is independent of each other, we
can compute that there is roughly a 31% chance that the Mets will be ahead after nine
innings, a 60% chance that the Braves will win, and a 9% chance that the game will go
into extra innings. If one looks at what actually happened in the games played between
the two teams in 2003, we see that the Braves won 11 of the 19 (or 58%) of the games,
with none going into extra innings. These results correspond quite closely with the
predictions of our model, given the small sample size involved.

4. Extra inning games

One of the things about baseball that its fans love the most, and its detractors like
the least, is the fact that it is free of the artificial boundaries of time within which
the clock confines other sports. This freedom from time constraints helps to shape the
unique charm that is an evening at the ballpark, for fans never know when they may
be the first to be enchanted until past sunrise by the first-ever wild ten-hour 46-inning
slugfest.

This idea brings us back to the question posed in the introduction: what is the prob-
ability that a given baseball game lasts twenty innings or more? Alternatively, there
has only been one Major League Baseball game to last twenty-six innings in history,
and one could ask if the mathematical models predict more or fewer than have actually
occurred.

To answer these questions, one must first consider what the probability is that a
game goes into extra innings at all. In particular, this asks whether or not the two
teams have scored the same number of runs after nine innings of play. To compute
this, we make the assumption that the scoring of the two teams is independent of one
another, and thus that T , the probability that the game is tied after 9 innings, can be
computed as

T =
∞∑

i=0

FA(i)FB(i)
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where FA(i) and FB(i) are the probabilities that Team A and Team B score i runs in
nine innings, the formula for which was given above.

We note that the formula above tells us that if we assume both teams score the major
league average of 0.487 runs per inning, then T = 0.103, so that we would expect just
over 10% of games to go into extra innings. In reality, 9.22%—18,440 of the 199,906
major league games played between 1871 and 2005—have gone into extra innings.
The discrepancy between this number and what our model predicts likely arises from
two facts. First, our model assumes that the teams are scoring independently of one
another. In reality, this assumption is likely to be not quite true, as external factors
(humidity, altitude, pitching, etc.) may cause games to be either high or low scoring,
and there may be a psychological factor that promotes teams to score more if the other
team is a few runs ahead, or to stop trying once they are blowing out the other team.

The other factor that we can think of is trickier to get a handle on. The above calcu-
lation assumes that both teams are average, but in most games one team will be better
than the other. For an extreme example, we look at the AL East in 2003, where the
Detroit Tigers scored an average of 0.405 runs per inning and the Boston Red Sox
scored an average of 0.659 runs per inning. This is the largest discrepancy between
two teams in the same league in over 25 years. In this case, the formula predicts that
only 8.4% of games will go into extra innings. While this specific example is an ex-
treme, it suggests that when two teams have differing abilities to score runs, we should
expect fewer extra inning games even if the overall average number of runs scored is
held constant. This expectation is confirmed by the data in TABLE 5, where the rows
and columns represent the strengths of the two teams playing, and T is the probability
that they will be tied after nine innings, according to our model.

Given that a large number of games are played between teams with widely differing
abilities to score runs, this would suggest that our model will predict a larger number
of extra inning games than actually occur.

After the ninth inning, the game will conclude at the end of the first inning after
which the score is not tied. Therefore, if we let k be the probability that the two teams
score the same number of runs in a given inning, then the probability that a game is still
tied after n innings is T kn−9 and for n > 9 the probability that it ends after n innings
is T kn−10(1 − k).

We note that we are making several assumptions here. First, we are assuming that
there is no effective difference between the tenth inning and any later inning as far
as offensive production is concerned. We also assume that, at least as far as extra
innings go, if k is the probability that the two teams score the same number of runs in
a given inning then the probability that they score the same number of runs in each of

TABLE 5: Probability of a tie game between two teams of
various strengths

0.405 0.437 0.487 0.537 0.617 0.659

0.405 0.1148 0.1119 0.1065 0.1006 0.0903 0.0848

0.437 0.1119 0.1097 0.1056 0.1007 0.0918 0.0869

0.487 0.1065 0.1056 0.1033 0.1000 0.0932 0.0892

0.537 0.1006 0.1007 0.1000 0.0982 0.0936 0.0905

0.617 0.0903 0.0918 0.0932 0.0936 0.0921 0.0904

0.659 0.0848 0.0869 0.0892 0.0905 0.0904 0.0896
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n consecutive innings is kn . We note that our intuition suggests that due to different
strategies in the late parts of the game, as well as fatigue amongst the players, that
the scoring distribution might be different as a game progresses, but the data seems to
suggest that this difference is negligible. For details, see [14].

In order to proceed, it will now suffice to figure out what value k should have. Our
first attempt to do so was to use an empirical number coming from the data itself, as
detailed in [11]. In this paper, we will use the quasigeometric model of scoring which
we have developed in order to construct a theoretical value of k. In particular, if we let
a = f A(0) and b = fB(0) be the respective probabilities of each team going scoreless
in an inning, we can compute:

k =
∞∑

i=0

f A(i) fB(i)

= ab +
∞∑

i=1

fA(i) fB(i)

= ab +
∞∑

i=1

(1 − a)(1 − dA)di−1
A (1 − b)(1 − dB)di−1

B

= ab + (1 − a)(1 − b)(1 − dA)(1 − dB)

dAdB(1 − dAdB)
.

If we continue with our assumption that dA = dB = 0.436, and we let m A (resp.
m B) be the average number of runs per inning scored by team A (resp. team B), then
this simplifies to give us

k = 1 − 0.564m A − 0.564m B + 0.4423m Am B .

We are now ready to see the fruits of our labor. Let us first look at the case where
both of our teams score the major league average number of runs, which means m A =
m B = 0.487. Then it follows that T = 0.103 and that k = 0.55588. In particular, the
probability of a game lasting n innings is (0.103)(0.4442)(0.5558)n−10 for all n ≥ 10.
The chart below calculates this probability for games of varying lengths. We have also
included the actual number of major league ballgames from 1871 through 2005 that
have lasted that long, as well as the number of games that our model predicts.

Comparing the model to the past . . . and to the future. So how “rare” are ex-
tremely long marathon baseball games? The second author has built a database, dis-
cussed in detail in [11], of baseball games lasting 20 innings or more. Among these
are included the Brooklyn at Boston 26-inning major league record game in 1920, the
Rochester at Pawtucket 33-inning minor league game in 1981, and the longest known
ballgame: a 45-inning amateur game in Mito, Japan in 1983. Our theoretical model
predicts the 26-inning major league record game is not as rare as empirical data would
indicate, but the 33-inning minor league record game and 45-inning amateur record
game are significantly more rare than empirical data would indicate.

In the previous section we saw that there is approximately a 0.00029 probability
that any given game lasts 20 or more innings. Assuming that the probability of any
two games lasting this long is independent of one another we can compute that the
probability that out of any collection of x games at least one of them lasts 20 or more
innings is 1 − (1 − 0.00029)x . There are 2340 major league games played each year
and therefore we should expect a 50% chance to experience a major league game of
20 or more innings in any given season. Similarly, our model predicts that there will



136 MATHEMATICS MAGAZINE

TABLE 6: Number of games of a given length predicted vs.
actual number

# Innings Prob in given game Actual MLB Expected MLB

≤ 9 0.8973 181,466 179,349.6
10 0.04574 8106 9142.3
11 0.02542 4561 5080.9
12 0.01413 2549 2824.3
13 0.007857 1413 1570.4
14 0.004367 831 872.8
15 0.002427 426 485.1
16 0.001349 259 269.6
17 0.0007502 140 149.9
18 0.0004170 69 83.3
19 0.0002318 40 45.9
20 0.0001288 20 25.1
21 7.163E-05 10 13.9
22 3.982E-05 8 7.8
23 2.213E-05 2 4.3
24 1.230E-05 3 2.4
25 6.839E-06 2 1.3
26 3.802E-06 1 0.74
27 2.113E-06 0 0.41
28 1.174E-06 0 0.23
29 6.530E-07 0 0.13
30 3.630E-07 0 0.071

Total 1.0 199,906 199,906

be 0.939 major league games that would have lasted 27 or more innings by now. In
fact, we have not yet had such a game in 135 years of major league play. These results
indicate that the 26-inning game in Boston is not an outlier from what one would
expect from our model.

If we assume that the scoring patterns in minor league games are similar to those
in major league games (an assumption for which there is some evidence), and in par-
ticular that scoring is quasigeometric with the same values of a and d, then we should
expect 6.68 minor league games to have gone 27 or more innings. In fact, we have had
6 such games. If we look further we see that the model predicts that we will have had
only 0.087 minor league games which lasted 33 innings. In fact, we have had one such
game.

Furthermore, there is a 99.3% chance we will have a minor league marathon of 20
or more innings in any given season, a 0.13% chance we will have a minor league
game of 34 or more innings in any given season, a 1.32% chance of seeing a minor
league game of 34 innings or more in any given decade, and a 9.4% chance of seeing
a minor league game of 34 innings or more in a lifetime of 75 years.

Our model allows us to estimate the probability of games lasting a certain number of
innings or longer. This is an alternative method, and perhaps a more easily understood
way to express how unlikely are marathons of a certain length. We will now use this
approach to compare relative probabilities of breaking the current records for major
league and minor league games.

Assuming that major league baseball continues to have 30 teams play a 162-game
season, there is a 50% chance we will see a major league game go 27 innings or more
in the next 60 years. There is a 95% chance we will see a major league game go 27
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innings or more in the next 260 seasons. So the 85-year old 26-inning major league
record, while rare, is not so rare that we should assume it will stand for another ninety
seasons.

As far as minor league games go, if we assume that there continue to be 13,714
minor league games played per year, then there is a 50% chance we will see a minor
league game go 34 innings or longer in the next 565 years. There is a 95% chance we
will see a minor league game go 34 innings or more in the next 2,445 years. So the
24-year old 33-inning minor league record may be very rare, and although it could be
broken at any time, we should not expect to see it broken anytime soon.

It is interesting to note that, despite several assumptions that seem like they are not
entirely accurate, this model does a good job of predicting the number of marathon
games. This gives us hope that the quasigeometric model of baseball scoring can be
used to answer a variety of questions about the game of baseball, and that it will be a
useful tool in the growing research in Sabermetrics.
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