Math 150: Multivariable Calculus First Lecture (2/1/13)

Steven J Miller
Williams College

```
Steven.J.Miller@williams.edu
```

http://www.williams.edu/Mathematics/sjmiller/public_html/150)

Bronfman Science Center Williams College, February 7, 2014

Introduction and Objectives

Introduction

- Building block course.
- Study how things change / modeling.
- Learn material and techniques.
- General math skills:
\diamond Good notation.
\diamond Asking right questions (see motivation clip).
\diamond Common techniques.
\diamond Brute force vs. elegance.
\diamond Building intuition / special cases.

Extra Credit Problem (due 2/12/14)

Assume team A wins p percent of their games, and team B wins q percent of their games. Which formula do you think does a good job of predicting the probability that team A beats team B ? Why?

$$
\begin{array}{cl}
\frac{p+p q}{p+q+2 p q}, & \frac{p+p q}{p+q-2 p q} \\
\frac{p-p q}{p+q+2 p q}, & \frac{p-p q}{p+q-2 p q}
\end{array}
$$

Types of problems

- Physics: Forces, Newton's laws, partial differential eqs,
- Economics: Optimization,
- Finance: Monte-Carlo techniques (dartboard),
- Geometry / Probability: Areas / volumes,
- Approximation Theory: Everything!
\diamond Discovery of Neptune.
\diamond Library trip.

Course Mechanics

- Pace: faster than 140, learn by doing / daily HW.
- Food / Cell phones: Food okay, hearing cell-phones isn't.
- Preparation: Read material before class: 5\% of grade.
- Supplemental lectures: 12 weeks vs 15 weeks.
- Office hours:
\diamond Strongly urge to visit.
\diamond Strongly urge to go to TAs.

Review Sessions / Office Hours

TAs: Sun, Tues, Thurs: Hours and room TBD.
Math/Science Resource Center: Sunday - Thurs: 8pm-midnight.
Me: Bronfman 202:
http://www.williams.edu/Mathematics/sjmiller/public_html/schedule.htm
SABR / advanced lunches: Time TBD.
Review Dinner: Tuesdays, 5:30ish to 7ish, Dennett Private Dining Room (Mission).

Figure: The fourth and fifth TAs.

Grading

(Controlling your education)

Grading (Controlling your Education)

HW 15\%, Midterms 40\% (best 2 of 3 or best 1 of 2), Final 40\%. Preparing for class: 5\%.

Scribe option: Replaces 5\%.
Quiz option: Replace 5\%.
Project option: Replace 5\%.
Can do two for 10%, three for 15 .

First Homework

First Homework Assignment

Due Monday, Feb 10: Read: Section 11.1, 11.2. Use that time to read the material and make sure your Calc I/II is fresh. Feel free to check out the review videos.

HW problems: (1) What is wrong with the following argument (from Mathematical Fallacies, Flaws, and Flimflam - by Edward Barbeau): There is no point on the parabola $16 y=x^{2}$ closest to $(0,5)$. This is because the distance-squared from $(0,5)$ to a point (x, y) on the parabola is $x^{2}+(y-5)^{2}$. As $16 y=x^{2}$ the distance-squared is $f(y)=16 y+(y-5)^{2}$. As $d f / d y=2 y+6$, there is only one critical point, at $y=-3$; however, there is no x such that $(x,-3)$ is on the parabola. Thus there is no shortest distance! (2) Compute the derivative of $\cos \left(\sin \left(3 x^{2}+2 x \ln x\right)\right)$. Note that if you can do this derivative correctly, your knowledge of derivatives should be fine for the course. (3) Let $f(x)=x^{2}+8 x+16$ and $g(x)=x^{2}+2 x-8$. Compute the limits as x goes to 0,3 and ∞ of $f(x)+g(x), f(x) g(x)$ and $f(x) / g(x)$.

Extra Credit (due 2/12/14): Assume team A wins p percent of their games, and team B wins q percent of their games. Which formula do you think does a good job of predicting the probability that team A beats team B ? Why? (a) $(p+p q) /(p+q+2 p q)$, (b) $(p+p q) /(p+q-2 p q)$, (c) $(p-p q) /(p+q+2 p q)$, or (d) $(p-p q) /(p+q-2 p q)$.

