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L-functions and Random Matrices

J. Brian Conrey

American Institute of Mathematics and Oklahoma State Univ ersity

1 The GUE Conjecture

1.1 In tro duction

In 1972H. L. Montgomery announceda remarkable connectionbetween
the distribution of the zerosof the Riemann zeta-function and the distri-
bution of eigenvaluesof large random Hermitian matrices. Since then a
number of startling developments have occurred making this connection
more profound. In particular, random matrix theory has beenfound to
be an extremely useful predictive tool in the theory of L-functions. In
this article we will try to explain theserecent developments and indicate
somedirections for future investigations.

1.2 The Riemann zeta-function

The Riemann zeta-function is de�ned by

� (s) =
1X

n =1

1
ns

(s = � + it; � > 1) : (1)

It can also be expressedas a product over primes, the Euler product,

� (s) =
Y

p

�
1 �

1
ps

� � 1

; (2)

for � > 1. In 1859Riemann proved that � (s) extends to a meromorphic
function on the whole plane with its only singularity being a simple
pole at s = 1 with residue 1. He further proved that it has a functional
equation relating the value of � (s) with the value of � (1 � s),

� (s) = � (s)� (1 � s) (3)

where � (1 � s) = � (s) � 1 = 2(2� ) � s � (s) cos(� s=2). He discovered that
the distribution of prime numbers is governed by the zerosof � . He was
led to conjecture that all of the complex zeros � = � + i of � have
� = 1=2. This assertionis the famous Riemann Hypothesis.

We know that 0 < � < 1 for any complex zero of � . Riemann esti-
mated the zero counting function

N (T) = # f � = � + i : 0 <  � Tg =
T
2�

log
T

2� e
+ O(log T) : (4)

Thus, at a height T the averagespacingbetweenzerosis asymptotic to
2� =logT. See[T] for additional background information about � (s).



1.3 Background

Montgomery [M1] wasstudying gapsbetweenzerosof the Riemann zeta-
function in an attempt to prove that the spacingsbetween consecutive
zeros can sometimes be less than 1/2 of the average spacing. Such a
conclusionwould have led to a good e�ectiv e lower bound for the class
number of an imaginary quadratic �eld. This estimate wasnot achieved,
but through the courseof his analysisMontgomery wasled to conjecture
that

lim
T !1

1
N (T)

X

0�  ; 0� T
2 � �
log T

�  �  0� 2 � �
log T

1 =
Z �

�

�
1 �

� sin � x
� x

� 2
�

dx (5)

where 0 < � < � are �xed.
When Montgomery told Freeman Dyson this formula, Dyson re-

spondedthat the integrand wasthe pair-correlation function for eigenval-
uesof large random Hermitian matrices, or more speci�cally the Gaus-
sian Unitary Ensemble, or GUE.

The GUE is the limit as N ! 1 of the probabilit y spaceconsisting
of N � N Hermitian matrices H with a probabilit y measureP(H )dH
that is invariant under conjugation by any unitary matrix U. HeredH =Q

j � k d<H j k
Q

j <k d=H j k . Mathematical physicists had studied various
ensembles sincethe 1950sin connection with work of Wigner in nuclear
physics.Mehta [Me] hasgiven a thorough treatment of the development
of the subject.

Montgomery went on to conjecture that the n-correlation function
for zerosof � is the sameas that for the GUE; this conjecture cameto
be known as Montgomery's GUE conjecture.

Odlyzko and Sch•onhagedeveloped an algorithm that allowed for the
simultaneous calculation of many values of � (1=2 + it ) for t near T in
average time T � . This algorithm allowed Odlyzko [O] to do extensive
computations of the zerosof � at a height near zero number 1020; his
computations of the pair correlation and nearest neighbor spacing for
the zerosof � were amazingly close to those for the GUE. His famous
pictures added much credibilit y to Montgomery's conjecture.

1.4 Further evidence for GUE

In 1996 Rudnick and Sarnak [RS] made some interesting progresson
the GUE conjecture. To explain their result, number the ordinates of
the zerosof � (s): 0 <  1 �  2 � : : :. Introduce a scaling ~ =  log 

2� so
that the ~ have asymptotic mean spacing 1. Then Sarnak and Rudnick
proved that

lim
T !1

1
T

X

 j 1
;::: ; j n � T

j m 6= j n

f (~ j 1 ; : : : ; ~ j n ) =
Z

Pn

WU;n (x)f (x) dx (6)



where WU;n (x) = WU;n (x1; : : : ; xn ) is the n-correlation function for
the GUE (see section 5.5) and where f is any function satisfying (1)
f (x + t(1; : : : ; 1)) = f (x) for t 2 R; (2) f is smooth and symmet-
ric in the variables and decays rapidly as x ! 1 in the hyperplane
Pn := f (x1; : : : ; xn ) :

P n
j =1 x j = 0g; (3) the Fourier transform f̂ (u) of

f is supported in
P n

j =1 juj j < 2. The condition (1) assuresthat f is a
function of the di�erences of the  j .

Thus, the GUE conjecture has beenproven for all correlation func-
tions, for a limited classof test functions

1.5 Other L-functions

The Riemann zeta-function is the protot ype for someextraordinary ob-
jects known as arithmetic L-functions. An arithmetic L-function (or L-
function for short) has many properties in common with the Riemann
� -function. It has a Diric hlet series

L(s) =
1X

n =1

an n� s ; (7)

it is meromorphic apart from a possiblepole at s = 1; it hasa functional
equation  (s)L(s) = �  (1 � s)L(1 � s); where � , the sign, satis�es j� j =
1. L(s) has an Euler product in which the p-th factor is the reciprocal of
a polynomial in p� s. Moreover, an arithmetic L-function is expected
to satisfy the Riemann Hypothesis, that all complex zeros have real
part 1/2. (Note that our L-functions are normalized so that the 1/2-line
is the line of symmetry for the functional equation. See[S] for precise
de�nitions.) An L-function is called primitiv e if it is not the product of
two L-functions. Primitiv e L-functions arise from a variety of contexts:
from Diric hlet characters, from Mellin transforms of certain cusp forms,
from Galois representations, from algebraic varieties, etc. However, it
is believed that each primitiv e arithmetic L-function is associated to a
cuspidal automorphic representation of GLm over a number �eld.

Rudnick and Sarnak applied their methods to a fairly general L-
function. They proved the analogueof (6) for any cuspidal automorphic
L-function over Q, assumingthe Riemann Hypothesisfor the L-function,
and with obvious changesto reect the appropriate scaling of the zeros.
In particular, the answer did not depend in any way on the distribution
of the coe�cien ts of the particular L-function.

The GUE Conjecture is now seenas a universal law governing the
distribution of zero spacingsfor all arithmetic L-functions.

2 Families

The realization that the compact classicalgroups of matrices play a role
in the theory of L-functions arose through seminal work of Katz and
Sarnak [KS1], [KS2].



2.1 Function Field Analogues

Katz and Sarnak investigated the distribution of zerosof function �eld
zeta-functions.Considera curve f (x; y) = 0 wheref is a polynomial with
integer coe�cien ts. The zeta-function for f over a �nite �eld Fq can be
obtained in a simpleway from the generatingfunction of the numbersNn

of points on that curve in the �nite �eld extensionsFqn ; n = 1; 2; : : : : It
is known that this zeta-function is a rational function whosenumerator
is a polynomial with integer coe�cien ts, degree2g where g is the genus
of the curve, and that it satis�es the Riemann Hypothesisthat all zeros
have modulus 1=

p
q. One can order thesezeroson the circle jzj =

p
q in

terms of their anglesmeasuredfrom the positiveaxis. One then considers
statistics of the angles.

Katz and Sarnak proved that, after proper normalization, the n-
correlation function of theseangles,asg and q tend to in�nit y, is exactly
the n-correlation of GUE. They also proved that the nearest neighbor,
or consecutive spacing, statistic for theseanglesis the sameas that for
GUE.

The method of proof involved working with subgroupsof U(N ), the
group of N � N unitary matrices with the Haar measure(seesections
5.1 and 5.2). It had beenshown by Dyson that the n-correlation and the
spacingstatistics are the samefor GUE as for the appropriately scaled
limit as N ! 1 for U(N ) with Haar measure.(In the physics literature
the limit of U(N ) is called the Circular Unitary Ensemble or CUE; see
[Me].)

The function �eld zeta-functions that Katz and Sarnak were work-
ing with were characteristic polynomials of matrices from subgroupsof
U(N ). To deducetheir result they applied a theoremof Deligneabout the
equidistribution of function �eld zeta-functionsamongthe characteristic
polynomials of conjugacy classesin thesesubgroups.

2.2 In tro duction of Families

Katz and Sarnakinvestigatedthe robustnessof their theorem. They con-
jectured that the conclusion remains true under the weaker hypothesis
that q is held �xed and g ! 1 . On the other hand, they provided ex-
amplesof sequencesof curvesof increasinggenus for which the spacing
statistic is not the GUE consecutive spacingstatistic.

They also consideredspecial families such as (a) curves of the form
y2 = f (x) with all squarefree,monic f , and (b) quadratic twists of
curves of the form y2 = x(x � 1)(x � t); that is �y 2 = x(x � 1)(x � t)
where � is a squarefree,monic polynomial over Fq. When q and the
degreeof � ! 1 they discovered that the n-correlation and spacing
statistics again matched up with CUE. However, the reasonin each case
is di�eren t depending on the geometric monodromy group. In case(a)
they computed that the monodromy group was the symplectic group
and in case(b) the orthogonal group.



Wedenoteby USp(N ) (if N is even) the unitary symplectic matrices,
and by O(N ) the orthogonal matrices. Theseare subgroupsof U(N ) and
are equipped with their own Haar measure.

Katz and Sarnakproved that the n-correlation statistic and the spac-
ing statistic for the limits of U(N ), USp(N ), and O(N ) are all the same
as that for GUE.

By contrast, the Circular Orthogonal Ensemble (COE) and the Cir-
cular Symplectic Ensemble (CSE), which are well-known ensembles in
mathematical physics (see [Me]) have the same underlying symmetry
groups as O and Sp, but have a measuredi�eren t from the Haar mea-
sure.They have di�eren t n-correlation and spacingstatistics than those
of GUE and CUE.

From now on we will use the letters O, Sp, U when referring to a
statistic associated with the limits of O(N ), USp(N ), and U(N ). These
statistics are computed for N � N matrices of the appropriate subgroup
of U(N ) with their respective Haar measureand then N ! 1 with an
appropriate scaling limit in order to determine the statistics (see5.4,5.5,
and 5.6).

Sinceorthogonal and symplectic matrices have eigenvalueswhich oc-
cur in complex conjugate pairs, it is clear that the eigenvalue 1 plays a
special role for thesematrices, whereasit doesnot for unitary matrices.
Indeed, there are statistics which di�eren tiate O, Sp, and U. In partic-
ular, the eigenvalue nearest to 1 is such an example. It turns out that
this statistic is di�eren t for all three symmetry types.More generally the
j -th eigenvalue nearest to 1 is a statistic that is dependent on the group
(for a summary of the four statistics of interest to us, seesection 5.3).

Another statistic that is di�eren t for all three symmetry types is
\lev el-density". The n-level density function is obtained from summing
a test function at n-distinct eigenvalues.For comparisonpurposes,note
that the n-correlation function is obtained by summing a test function of
n-variables which is a function depending only on the di�erences of the
arguments at n distinct eigenvalues.Seesections5.5 and 5.6 for more on
thesestatistics.

Katz and Sarnak showed that for their special families of function
�eld zeta-functions thesenew statistics (j -th nearesteigenvalue to 1 and
n-level density) match with the appropriate statistics from Sp and O,
which they had computed.

In general,they found that if they could compute the geometricmon-
odromy group associated with a family of function �eld zeta-functions,
and if that monodromy group wasU, Sp or O, then all four of the statis-
tics we have been discussingfor the function �eld zeta-functions could
be proven to match with the appropriate statistic from U, Sp or O.

Thus, we say that the symmetry type for the family of curvesof the
form y2 = f (x) the symmetry type is Sp; and for the family of quadratic
twists of y2 = x(x � 1)(x � t) the symmetry type is O.

Katz and Sarnakalsohave examplesof families of function �eld zeta-
functions where the symmetry type is U.



2.3 L-F unctions Ov er Num ber Fields

Katz and Sarnak speculated that their results for function �eld zeta-
functions would have implications for L-functions over number �elds.
Two collections of L-functions which present themselvesas natural ana-
logues to the families above are (a0) the collection of all Diric hlet L-
functions L(s; � d) where� d(n) is a real primitiv eDiric hlet character with
conductor jdj (so that d runs through the set of fundamental discrimi-
nants of quadratic number �elds) and (b0) the collection of L-functions
associated with primitiv eHecke newformsof a �xed weight. The analogy
with the function �eld zeta-functions is as follows. The zeta-function for
a member of the Sp family (a) above is obtained by counting solutions
to the equation y2 = f (x) over a �nite �eld. Thesesolutions are counted
in a �eld with p elements by the sum

P p
a=1 � p(f (a)) where the real

Diric hlet character � p modulo p appears.This suggeststhat the family
(a0) could have a symmetry type Sp. Similarly , the zeta-function of a
member of the O family (b) above is the reciprocal of the p-th factor in
the Euler product for the L-function of the elliptic curve de�ned through
twists of the equation y2 = x(x � 1)(x � t), the Legendrefamily of elliptic
curves. These L-functions are known (by the solution of the Taniyama
- Shimura conjecture) to be associated to primitiv e Hecke newforms of
weight 2. Thus, the collection (b0) could well be a family with symmetry
type O.

The �rst evidencethat (a0) is a family with symmetry type Sp came
from Michael Rubinstein's thesis [R]. He computed the lowest lying zero
of L(s; � d) and the data matched well with the eigenvalue nearest 1
for symplectic matrices. He examined theoretically the n-level density
of zerosand showed (for test functions with restrictions on the support
of their Fourier transforms) that the n-level density functions for the
zerosof L(s; � d) are identical with the n-level density functions for Sp.
Precisely, we index the ordinates of the zerosof L(s; � d) as

0 �  (d)
1 �  (d)

2 � ::: (8)

and scaleusing

~ (d) =  (d) log  (d)

2�
: (9)

Let D � =
P

j dj� D 1. Then Rubinstein proved that

1
D �

X

j dj� D

X

 j 1
;:::  j n

j m 6= j n

f
�
~ (d)

j 1
; : : : ; ~ (d)

j n

�
!

Z

Rn

WSp;n (x)f (x) dx ; (10)

asD ! 1 whereWSp;n is asin section5.5, provided that f is a Schwarz
function such that the support of f̂ (u) is contained in

P n
j =1 juj j < 1.

WSp;n is called the n-level density function for the symplectic group.
Rubinstein also found evidence that another family has a symme-

try type O. To describe this family let � (z) =
P 1

n =1 � (n)e(nz) where



� is Ramanujan's tau-function. It is well-known that � is a primitiv e
Hecke newform of weight 12 and level 1. The family (c0) is obtained
from quadratic twists of the L-function associated with � namely

L(�; s; � d) =
1X

n =1

� (n)n� 11=2� d(n)
ns

: (11)

If d < 0 then this L-function automatically vanishesat s = 1=2 because
the associated functional equation occurs with � = � 1. Rubinstein com-
puted the lowest zero of L(�; s; � d) for d > 0 and the lowest zero above
the real axis for L(�; s; � d) with d < 0. At this point, we should men-
tion that an orthogonal matrix has determinant +1 or � 1. So there are
actually two symmetry typesO+ and O� (and the statistics of O are an
averageof the statistics of these). Katz and Sarnak had computed the
statistics (neighbor spacing, correlations, density, eigenvalue nearest 1)
for these two symmetry typesas well. Rubinstein found that the lowest
lying zero of L-functions in (c0) with d > 0 followed O+ while the lowest
lying zero above the real axis for L-functions with d < 0 followed O� .

Rubinstein considered more generally the twisting of an arbitrary
arithmetic L-function L(f ; s) associated with an automorphic form f on
GL m by quadratic characters � d. The results heredivide into three cases
which have to do with signsof the functional equations.If the L-function
L(f ; s; sym2) associated with the symmetric square of f is entire, the
functional equations for L(f ; s; � d) will always have � = +1 and the
averageover d is exactly asabove with the n-level density function being
WSp;n . In the casethat the symmetric squareL(f ; s; sym2) hasa pole (at
s = 1) then the sign of the functional equation for L(f ; s; � d) is +1 for
even characters � d and � 1 for odd characters � d. Rubinstein averages
over thesetwo casesseparatelyand discovers that the �rst caseyields an
n-level density function WO+ ;n and in the secondcasean n-level density
function WO � ;n (seesection 5.5). In each of these casesa restriction is
placed on the support of the Fourier transform of f .

2.4 The Diagonal Terms

Rubinstein's work gave impressive con�rmation of the theory, but the
severerestriction on the support of the Fourier transform is worth investi-
gating. In fact, this restriction occursright at the placewheresomething
interesting is happening with the Fourier transfom of the density func-
tion. Returning for a moment to the caseof the Riemann zeta-function,
we can illustrate this idea.

Montgomery's original theorem involved

F (�; T) =
1

N (T)

X

0< ; 0� T

T i� (  �  0) w( �  0) : (12)

Herew is a weight function that concentrates at the origin. (Montgomery
usedw(u) = 4=(4 + u2).) Assuming the Riemann Hypothesishe showed



that
F (�; T) = T � 2� (1 + o(1)) + j� j + o(1) (13)

uniformly for � 1 + � < � < 1 � � for any � > 0.
By the de�nition of F ,

1
N (T)

X

0< ; 0� T

r ( �  0)w( �  0) =
Z 1

�1
r̂ (� )F (�; T) d� : (14)

Thus, Montgomery's theorem gives information about the averagebe-
havior of di�erences betweenthe zerosfor test functions r with the sup-
port of r̂ contained in (� 1; 1). Montgomery went on to conjecture (based
on considerationsof the behavior of prime pairs) that for j� j > 1 onehas
F (�; T) = 1 + o(1); this assertion implies (1). Thus, F is not di�eren-
tiable at � = 1. In the proof of Montgomery's theorem (via the explicit
formula and the mean value theorem (23) for Diric hlet polynomials) for
j� j < 1, the main term of F arises from the \diagonal" contributions
of the mean square of a Diric hlet polynomial (i.e. the terms m = n in
the integral

RT
0 am an (m=n) it dt). For � > 1, the o�-diagonal terms (i.e.

m 6= n) contribute to the main-term.
A similar situation arisesin the work of Rudnick and Sarnak and in

the work of Rubinstein. All of the proofsof thesetheoremsare valid only
in the range where the diagonal terms dominate.

2.5 Bey ond the Diagonal

Sofar we have seenthat the theory of families is con�rmed by numerical
data as well as theoretical data up to the diagonal. Bogolmony and
Keating gave a heuristic derivation of all of the GUE conjecture (i.e.
all the n-level correlations) basedon Hardy-Littlew ood type conjectures
for pairs of primes and pairs of almost primes; this work shows how the
o�-diagonal terms potentially contribute.

•Ozl•uk [Oz] proved an analoguefor all primitiv e Diric hlet characters
for the pair correlation theorem (12); he obtained a result for j� j < 2.
This was the �rst example of going beyond the diagonal. Seealso [OS]
and [IS2].

It is of great interest that Iwaniec, Luo, and Sarnak [ILS] have suc-
ceededin going beyond the diagonal in several exampleswhich represent
three of the symmetry types. They work with the 1-level density func-
tions assuming only that the Riemann Hypothesis holds for all of the
L-functions in question. The 1-level density functions may be obtained
from Wn by taking n = 1. They are

W (O)( x) = 1 +
1
2

� 0(x) ; (15)

W (O+ )(x) = 1 +
sin2� x

2� x
; (16)



W (O� )(x) = 1 �
sin2� x

2� x
+ � 0(x) ; (17)

W (Sp)(x) = 1 �
sin2� x

2� x
; (18)

W (U)( x) = 1: (19)

The families consideredby Iwaniec,Luo, and Sarnakare related to mod-
ular forms. Let H �

k (N ) denote the set of holomorphic newforms f of
weight k and level N . Let H +

k (N ) denote the weight k level N newforms
for which the associated L-function has a + in its functional equation,
and H �

k (N ) is the subset of f for which L(f ; s) has a � in its func-
tional equation. Let M � (K ; N ) be the union of the H � (k; N ) for k � K
and similarly de�ne M + and M � . They consider the low lying zerosof
L(f ; s) as f varies through one of the M -sets. The averagespacing for
all the zerosof all the L(f ; s) with f 2 H � (k; N ) up to a �xed height
t0 is asymptotic to 2� =log(k2N ). Let � be a test function which is even
and rapidly decaying. They proved that if the support of �̂ is contained
in (� 2; 2), then

1
jM � (K ; N )j

X

f 2 M � ( K;N )
 f

�
�

 f logk2N
2�

�
!

Z 1

�1
� (x)W (O)(x) dx : (20)

as K N ! 1 . Similar statements hold with M � replaced by M + and
M � and O replacedby O+ and O� .

It should be pointed out that the Fourier transforms of the density
functions W (O)( x), W (O+ )(x), and W (O� )(x) all agreein the diagonal
range; so it is only when one goesbeyond the diagonal that the distin-
guishing features of thesethree symmetry typesbecomesapparent.

Iwaniec, Luo, and Sarnak also consider the symmetric square L-
functions of the f 2 M � and verify that the above statements hold
with symmetry type Sp and the support of �̂ in (-3/2,3/2). Also, the
averagezero spacingis 2� =log(k2N 2) soN should be replacedby N 2 in
the argument of � in the left hand side of (20).

Thus, the theoretical and numerical evidencethat the zerosof families
of L-functions depend on the symmetry type of the family is pretty
convincing.

3 Momen ts

Sofar we have seenthat the eigenvaluesof matrices from unitary groups
are excellent models for zerosof families of L-functions. Now we want to
takethe matrix modelsa signi�can t step further and arguethat the char-
acteristic polynomials of thesematrices on averagereveal very important
features of the value distribution of the L-functions in the family.



3.1 Momen ts of the Riemann zeta-function

We �rst look at the situation of the Riemann zeta-function and its mo-
ments.

To give somebackground, we cite the theorem of Hardy and Little-
wood:

1
T

Z T

0
j� ( 1

2 + it )j2 dt � logT (21)

and the theorem of Ingham:

1
T

Z T

0
j� ( 1

2 + it )j4 dt �
1

2� 2
log4 T : (22)

The asymptotics of no other moments (apart from the trivial 0-th mo-
ment) are known. In general it has beenconjectured that

1
T

Z T

0
j� ( 1

2 + it )j2k dt � ck logk 2

T : (23)

The basic tools for investigating mean-values in t-aspect are the
mean value theorem for Diric hlet polynomials (due to Montgomery and
Vaughan):

Z T

0

�
�
�
�

X

n � N

an nit

�
�
�
�

2

dt =
X

n � N

(T + O(n)) jan j2 (24)

and somesort of formula expressingthe function in question in terms
of Diric hlet polynomials (such as an approximate functional equation)
such as

� (s)k =
X

n � � k

dk (n)
ns + � (s)k

X

n � � k

dk (n)
n1� s + E(s) ; (25)

where E(s) should be small on average,s = 1=2+ it , � =
p

t=(2� ), � (s)
is the factor from the functional equation (3), and where

� (s)k =
1X

n =1

dk (n)
ns

(� > 1) (26)

so that � (s)k is the generating function for dk (n). Note that the mean-
value theorem for Diric hlet polynomials detects only diagonal contribu-
tions.

Conrey and Ghosh[CG2] gave the moment conjecturea more precise
form, namely that there should be a factorization

ck =
gk ak

� (1 + k2)
(27)

where

ak =
Y

p

�
1 �

1
p

� k 2 1X

j =0

dk (pj )2

pj (28)



is an arithmetic factor and gk , a geometric factor, should be an integer.
Note that by the mean-value theorem for Diric hlet polynomials it is not
di�cult to show that

1
T

Z T

0

�
�
�
�

X

n � x

dk (n)
N 1=2+ it

�
�
�
�

2

dt �
ak (log x)k 2

� (1 + k2)
; (29)

provided that x = o(T). Thus, an interpretation of gk is

gk = lim
T !1

RT
0 j� k ( 1

2 + it )j2 dt
RT

0

�
�
�
P

n � T
dk (n )

n 1=2+ it

�
�
�
2

dt
(30)

assuming that the limit exists, so that gk represents the `number' of
Diric hlet polynomial approximations to � (s)k of length T required to
measurethe mean squareof � (s)k .

In this notation, the result of Hardy and Littlew ood is that g1 = 1
and Ingham's result is that g2 = 2.

Theseresults can be obtained essentially from the mean-value theo-
rem for Diric hlet polynomials. To go beyond the fourth moment requires
taking into account o�-diagonal contributions. Goldston and Gonek[GG]
describe a preciseway to transform information about coe�cien t corre-
lations

P
n � x a(n)a(n + r ) into a formula for the mean squareof a long

Diric hlet polynomial
P

n � x a(n)n� s wherex is bigger than the length of
integration.

Using Diric hlet polynomial techniquesConrey and Ghosh[CG1] con-
jectured that g3 = 42 and Conrey and Gonek [CGo] conjectured that
g4 = 24024.Meanwhile, Keating and Snaith [KeSn1] computed the mo-
ments of characteristic polynomials of matrices in U(N ) and found that
for any real x and any complex number s,

M U;N (s) =
Z

U (N )
j det(A � I exp(� ix )) j2s dA =

NY

j =1

� (j )� (j + 2s)
� (j + s)2 ;

(31)
wheredA denotesthe Haar measurefor the group U(N ) of N � N unitary
matrices. To do this calculation, they madeuseof Weyl's formula for the
Haar measure(seesection 5.3) and Selberg's integral (seesection 5.6).
They also showed that

lim
N !1

M N (s)
N s2 =

G(1 + s)2

G(1 + 2s)
; (32)

where G(s) is Barnes' double Gamma-function which satis�es G(1) = 1
and G(z + 1) = � (z)G(z). Note that for s = k an integer,

G(1 + k)2

G(1 + 2k)
=

k � 1Y

j =0

j !
(j + n)!

: (33)



For k = 1; 2; 3 the above is 1/1!,2/4!, 42/9! in agreement with the
theorems of Hardy and Littlew ood, and Ingham and the conjecture of
Conrey and Ghosh. Keating and Snaith argued that one should thus
model the moments of the zeta-function from 0 to T by moments of
characteristic polynomials of unitary matrices of size N � logT. (More
precisely, one should take N to be the integer nearest to log T

2� ). They
then conjectured that

gk = k2!
k � 1Y

j =0

j !
(j + k)!

(34)

for integer k. The initial public announcements of the conjectures of
Conrey and Gonek (that g4 = 24024)and of Keating and Snaith ( gk for
all real k � � 1=2) occurred at the Vienna conferenceon the Riemann
Hypothesis only moments after it was checked that the Keating and
Snaith conjecture doesindeed predict that g4 = 24024.

3.2 Momen ts of L-functions at 1/2

Subsequently , Conrey and Farmer [CF] analyzed known results for mo-
ments of L-functions at 1/2 and made a generalconjecture. (These mo-
ments had beenconsideredby a number of authors; seeespecially [GV].)
The conjecture has the shape

1
X �

X

f 2F
c( f ) � X

L(f ; 1=2)k �
gk ak

� (1 + q(k))
(log X )q(k ) (35)

for some ak , gk , and q(k) where F is a family of f parametrized by
the conductor c(f ), and X � =

P
c( f ) � X 1. The observations of Conrey

and Farmer were that gk and q(k) depend only on the symmetry type
of the family, and that ak depends on the family itself, but is explicitly
computable in any speci�c case.Thus, the conjecture is that q(k) = k2

for a unitary family, q(k) = k(k+ 1)=2 for a symplectic family, and q(k) =
k(k� 1)=2 for an orthogonal family. The valuesof gk wereleft unspeci�ed,
but werethen predicted asbeforefrom random matrix theory by Keating
and Snaith [KeSn2] and independently by Brezin and Hikami [BH] by
computing moments of characteristic polynomials of matrices from O(N )
and from USp(2N ). Each is a quotient of products of Gamma-functions.

Thus, for the family of Diric hlet L-functions L(s; � d) with a real
primitiv e Diric hlet character � d modulo d we have the following results
(D � =

P
j dj� D 1): Jutila [J] proved that

1
D �

X

j dj� D

L( 1
2 ; � d) � a1 log(D

1
2 ) (36)

and
1

D �

X

j dj� D

L 2( 1
2 ; � d) � 2

a2 log3(D
1
2 )

3!
: (37)



Soundararajan [So1] showed that

1
D �

X

j dj� D

L 3( 1
2 ; � d) � 16

a3 log6(D
1
2 )

6!
(38)

and conjectured that

1
D �

X

j dj� D

L 4( 1
2 ; � d) � 768

a4 log10(D
1
2 )

10!
: (39)

The generalconjecture coming from random matrix theory (seesec-
tion 5.7), which agreeswith the above, is:

1
D �

X

j dj� D

L k ( 1
2 ; � d) �

kY

` =1

`!
2`!

ak logk (k +1) =2(D) (40)

where

ak =
Y

p

�
1 � 1

p

� k ( k +1)
2

�
1 + 1

p

�

 �
1 � 1p

p

� � k
+

�
1 + 1p

p

� � k

2
+

1
p

!

: (41)

An example of an orthogonal family where several moments are
known arises from F q the set of primitiv e cusp forms of weight 2 and
level q (q prime). Then, from results of Duke [D], Duke, Friedlander,
and Iwaniec [DFI ], Iwaniecand Sarnak [IS1], and Kowalski, Michel, and
VanderKam [KMV1 ] and [KMV2 ], we have

1
jF qj

X

f 2F q

L(1=2; f ) � a1 (42)

1
jF qj

X

f 2F q

L 2(1=2; f ) � 2a2 logq
1
2 (43)

1
jF qj

X

f 2F q

L 3(1=2; f ) � 8a3
log3 q

1
2

3!
(44)

1
jF qj

X

f 2F q

L 4(1=2; f ) � 128a4
log6 q

1
2

6!
(45)

where a1 = � (2);

a2 = � (2)2
Y

p

�
1 + 1

p 2

�
(46)

a3 = � (2)3
Y

p

�
1 � 1

p

� �
1 + 1

p + 4
p 2 + 1

p 3 + 1
p 4

�
(47)

a4 = � (2)5
Y

p

�
1 � 1

p

� 3
�

1 + 3
p + 11

p 2 + 10
p 3 + 11

p 4 + 3
p 5 + 1

p 6

�
(48)



We have not found a simple expressionfor ak , though it can be deter-
mined explicitly for each k. As before, a generalconjecture is:

1
jF qj

X

f 2F q

L k (1=2; f ) � 2k � 1
k � 1Y

` =1

`!
2`!

ak logk (k � 1) =2 q: (49)

We believe that in formulas for moments of L-functions over a family
the power of the log of the conductor and the value of gk should only
depend on the symmetry type of the family and that the value of ak will
depend on the family but can always be determined explicitly .

4 Further directions

In this section we mention somequestionswhere further research is de-
sirable.

4.1 Full momen t conjecture

What are the lower order terms in the moment formulaefor j� (1=2+ it )j2k

and for L(1=2)k ? Theseare known in a few instances(see[In], [C] for the
secondand fourth moments of � (s)) but not in general.The di�cult y is
that random matrix theory doesnot \see" the contribution of the arith-
metic factor ak . Lower order terms will lik ely involvea mix of derivatives
of ak and secondaryterms from the moments of the characteristic poly-
nomials of matrices. In general, a better understanding of how � (s) is
modeled by a characteristic polynomial of a certain type of matrix is
needed;how do the primes come into play? Perhaps we should think of
� (1=2+ it ) asa partial Hadamard product over zerosmultiplied by a par-
tial Euler product. Perhaps these two parts behave independently , and
the Hadamard product part can be modeled by random matrix theory.

4.2 Distribution of Values

Keating and Snaith compute explicit formulas for the s-th moment of
the characteristic polynomials of matrices from O(N ), Sp(N ), and U(N ).
Consequently the value distributions for these characteristic polynomi-
als can be explicitly computed; they involve the Fourier transform of the
s-th moment. Preliminary investigationsindicate that there is a good �t
betweenthe random matrix formulae and numerical data. One particu-
larly interesting feature of this investigation involvesthe understanding
of zeros which occur exactly at 1/2. These seemto occur only for L-
functions in an orthogonal family. If the sign of the functional equation
is � 1, there is automatically a zero at 1/2. The interesting situation is
when the sign is + and there is still a zero; for exampleif E is an elliptic
curve de�ned over Q then examination of the distribution of values of
O+ suggestthat twists L(E ; s; � p) of the L-function by quadratic char-
acters seemto vanish for about X 3=4(log X ) � 5=8 valuesof jpj < X with
sign +1 in the functional equation.



4.3 Extreme Values

How large is the maximum value of j� (1=2 + it )j for T < t < 2T? It
is known that the Riemann Hypothesis implies that the maximum is at
most exp(clogT=loglogT) for some c > 0. It is also known that the
maximum gets as big as exp(c1(log T=loglogT)1=2) for a sequenceof
T ! 1 for somec1 > 0. It has beenconjectured that the smaller bound
(the onethat is known to occur) is closerto the truth. However, the new
conjecturesabout moments suggestthat it may be the larger.

This questionhasa number of equivalent and analogous(for L-values)
formulations. How big can S(T) := 1

� arg � (1=2 + iT ) be? Assuming the
Riemann Hypothesis, it is known that S(T) � logT=loglogT but that
in�nitely often it is bigger than c(log T=loglogT)1=2 for some c > 0
Which is closer to the truth? What is the maximum size of the class
number of an imaginary quadratic �eld (as a function of the discrimi-
nant) (see[Sh]for a discussionand numerical investigation.)?How big can
the least quadratic non-residueof a given prime p be (log p or (log p)2� � ?
See[M2] for a discussionof this question?What is the maximal order of
vanishing of an L-function at 1/2? In terms of the conductor N , can it
be as big as logN=log logN or is it at most the squareroot of that, or
something entirely di�eren t? All of these questionsare related, at least
by analogy, and they may all have similar answers. It would be interest-
ing and surprising if in each caseit is the larger bound which is closer
to the truth.

4.4 Zeros of � 0(s)

Can oneuserandom matrix theory to predict the horizontal distribution
of the real parts of the zerosof � 0? It is known that the Riemann Hy-
pothesisis equivalent to the assertionthat each non-real zeroof � 0(s) has
real part greater than or equal to 1/2. Moreover, if such a zero has real
part 1/2, then it is also a zero of � (s) (and so a multiple zero of � (s)).
Theseassertionsare the point of departure for Levinson's work on zeros
of the Riemann zeta-function on the critical line. It would be interesting
to know the horizontal distribution of these zeros; in particular what
proportion of them with ordinates betweenT and 2T are within a=logT
of the 1/2-line?

In a similar vein, the Riemann � -function is real on the 1/2-line and
has all of its zeros there (assuming the Riemann Hypothesis). It is an
entire function of order 1; becauseof its functional equation, � (1=2+ i

p
z)

is an entire function of order 1/2. It followsthat the Riemann Hypothesis
implies that all zerosof � 0(s) are on the 1/2-line. Assuming this to be
true, one can ask about the vertical distribution of zerosof � 0(s), and
more generally of � (m ) (s). It seemsthat the zerosof higher derivatives
will becomemore and more regularly spaced;can thesedistributions be
expressedin a simple way using random matrix theory?



4.5 Long Molli�ers, Lo cal In tegrals, and GUE

David Farmer [F1], [F2] hasmadetwo very interesting conjectureshaving
to do with � (s). The �rst is a conjectureabout the meansquareof � (1=2+
it ) times an arbitrarily long molli�er. A molli�er is a Diric hlet polynomial
with coe�cien ts equalto the M•obius � -function times a smooth function.
The length of the molli�er is the length of the Diric hlet polynomial. He
has also conjectured that

1
T

Z T

0

� (s + u)� (1 � s + v)
� (s + a)� (1 � s + b)

dt � 1+
(u � a)(v � b)
(u + v)(a + b)

(1 � T � (u+ v) ): (50)

where a; b;u; v are complex numbers with positive real part, and s =
1=2+ it . Thesetwo conjecturesare essentially equivalent and imply cer-
tain parts of the GUE conjecture. It would be interesting to generalize
theseand relate them to the full GUE conjecture.

5 App endices

5.1 The Classical Groups

{ The unitary group U(N ) is the group of N � N matrices U with
entries in C for which UU � = I where U � denotes the conjugate
transposeof U, i.e. if U = (ui;j ), then U � = (uj;i ).

{ The orthogonal group O(N ) is the subgroup of U(N ) consisting
of matrices with real entries.

{ The special orthogonal group SO(N ). This is the subgroup of
O(N ) consisting of matrices with determinant 1. SO(2N ) leads to
the symmetry type we have called O+ and SO(2N +1) leads to the
symmetry type we call O� .

{ The symplectic group USp(2N ) is the subgroup of U(2N ) of ma-
trices U for which UZU t = Z where U t denotesthe transposeof U
and

Z =
�

0 I N

� I N 0

�
(51)

5.2 The W eyl In tegration Form ula

The N � N unitary matrices can be parametrized by their N eigenval-
ueson the unit circle. Any con�guration of N points on the unit circle
corresponds to a conjugacy class of U(N ). If f (A) = f (� 1 ; : : : � N ) is a
symmetric function of N variables, then Weyl's formula [W] gives

Z

U (N )
f (A)dA =

1
N !

Z

[0;1]N
f (� )

Y

1� j <k � N

je(� j ) � e(� k )j2 d� 1 : : : d� N

(52)



where dA is the Haar measure.Similarly , on Sp(2N ) and SO(2N ) we
have respectively

dA =
2N 2

N !

Y

j <k

(cos� � j � cos� � k )2
NY

j =1

sin2 � � j

NY

j =1

d� j ; (53)

dA =
2(N � 1) 2

N !

Y

i<j

(cos� � j � cos� � k )2
NY

j =1

d� j : (54)

5.3 Four Statistics

Supposewehavea sequenceT of N -tuples of numbersTN = f t1; t2; : : : ; tN g
where t1 � t2 < : : : < tN such that for each set the averagespacing
t j +1 � t j is asymptotically 1. We write t i;N in place of t i if we need to
indicate that t i 2 TN .

{ The n-lev el densit y of T is W (x) = W (x1; : : : xn ) meansthat

lim
N !1

X

( i 1 ;::: i n ) ;i j � N

i j 6= i k

f (t i 1 ; : : : t i n ) =
Z

Rn

f (x)W (x) dx : (55)

for a Schwarz-classf . The sum is over n-tuples with distinct entries.
{ The j -th lowest zero densit y is � j (x) meansthat for a test func-

tion f

lim
N !1

1
N

X

n � N

f (t j;n ) =
Z 1

0
f (x)� j (x) dx : (56)

{ The consecutiv e spacing densit y is � (x) means that for a test
function f (x) we have

lim
N !1

1
N

X

i � N � 1

f (t i +1 � t i ) =
Z 1

0
f (x)� (x) dx : (57)

{ The n-correlation densit y is V(x1; : : : ; xn ) means that for test
functions f that are symmetric in all of the variables, depend only
on the di�erences of the variables (i.e. f (x1 + u; : : : ; xn + u) =
f (x1; : : : ; xn ) for all u), and are rapidly decaying on the hyperplane
Pn : f (x1; : : : ; xn :

P
x i = 0g, we have, as N ! 1 ,

1
N

X

t 1 ;::: t n 2 T N
i j 6= i k

f (t1 ; : : : tn ) !
Z

Pn

f (x)V (x) dx1 : : : dxn � 1 (58)

as N ! 1 . The spacing and n-correlation densities are universal, i.e.
the samefor each of O, Sp, and U, whereasthe n-level and j -th lowest
zero densitiesdepend on the symmetry type.



5.4 Gaudin's Lemma

Associated to each N � N unitary matrix A are its N eigenvaluese(� j )
where 0 � � 1 � : : : � � N � 1. We integrate a function F (A) over U(N )
by parametrizing the group by the � i and usingWeyl's formula to convert
the integral into an N -fold integral over the � i .

Often onewants to integrate with respect to Haar measureover U(N )
a function F (A) = ~f (A) = ~f (� 1; : : : ; � N ) of N variables that is \lifted "
from a function f of n variables:

~f (� 1; : : : ; � N ) =
X

( i 1 ;::: ;i n )
i j 6= i k

f (� i 1 ; : : : ; � i n ) (59)

wherethe sum is over all possiblen-tuples (i 1; : : : ; in ) of distinct integers
between1 and N . Gaudin's lemma givesa simpli�cation of this compu-
tation from an N -fold integral to an n-fold integral. The Haar measure
(seesection 5.2) at the matrix A can be expressedas

dA =
1

N !

Y

1� j <k � N

je(� j ) � e(� k )j2 d� 1 : : : d� N : (60)

The product here is the square of the absolute value of the N � N
Vandermondedeterminant with j; k entry e(� k ) j � 1 = e((j � 1)� k ) . It is
also the N � N determinant of the matrix with j; k entry JN (� j � � k )
where

JN (� ) =
N � 1X

m =0

e(m� ) = e((N � 1)� =2)
sin � N �
sin � �

: (61)

Thus,

Z

U (N )

~f (A)dA =
Z

[0;1]N

~f (� 1; : : : ; � N )
1

N !
det

N � N
JN (� j � � k )

NY

j =1

d� j : (62)

Then, Gaudin's lemma assertsthe equality

Z

U (N )

~f (A)dA =
Z

[0;1]n
f (� 1 ; : : : ; � n )

1
n!

det
n � n

JN (� j � � k )
nY

j =1

d� j : (63)

This principle works for all of the subgroupsof U(N ) under consid-
eration here as well. (See [KS] section 5.1 for a general statement and
proof of this important lemma.) We illustrate by computing the n-level
density function for U(N ). Note that

lim
N !1

1
N

JN (� =N ) = e(� =2)
sin � �

� �
(64)

from which it follows easily that

lim
N !1

1
N n

det
n � n

JN (� j � � k ) = det
n � n

K 0(� 1; : : : ; � n ) (65)



where K � is de�ned in section 5.5.
Now let f (x) = f (x1; : : : ; xn ) be a test function. To compute the

n-level density (compare with section 5.4) we needto evaluate

lim
N !1

Z

U (N )

X

( i 1 ;::: ;i n )
i j 6= i k

f (�̂ i 1 ; : : : ; �̂ i n )
Y

j <k

je(� j ) � e(� j )j2 d� 1 : : : d� N (66)

By Gaudin's lemma and after using the new expression for the Haar
measureand changing variables � j ! x j =N , the above is equal to

lim
N !1

1
N n

Z

[0;N ]n
f (� 1 ; : : : ; � n )

1
n!

det
n � n

JN (� j � � k )
nY

j =1

d� j (67)

=
Z

Rn

f (x1; : : : ; xn ) det
n � n

K 0(x1; : : : ; xn ) dx (68)

so that WU;n (x1; : : : ; xn ) = detn � n K 0(x1; : : : ; xn ).

5.5 Form ulas for the Densit y Functions

{ The n{lev el densit y is W (x1; : : : ; xn ) = detn � n K � (x1; : : : ; xn ) where
K � (x1; : : : ; xn ) is the n � n matrix with entries

(K � (x1; : : : ; xn )) i;j =
sin � (x i � x j )

� (x i � x j )
+ �

sin � (x i + x j )
� (x i + x j )

(69)

where � = 0 for U; � = � 1 for Sp; � = 1 for O+ . Also,

WO � ;n (x) = det
n � n

(K � 1(x)) +
nX

m =1

� (xm ) det
n � 1� n � 1

(K (m )
� 1 (x)) (70)

where � is the Dirac � -function and the superscript m denotesthat
the m-th row and m-th column have beendeleted from K � 1(x).

{ The lowest zero densit y is � 1(x) where

� 1(x) = �
d

dx

1Y

j =0

(1 � � j (x)) U ; (71)

� 1(x) = �
d

dx

1Y

j =0

(1 � � 2j +1 (2x)) Sp; (72)

� 1(x) = �
d

dx

1Y

j =0

(1 � � 2j (2x)) O ; (73)

where 1 � � 0(x) � � 1(x) : : : are the eigenvaluesof

Z x= 2

� x= 2

sin � (t � u)
� (t � u)

f (u) du = � (x)f (t) (74)



{ The consecutiv e spacing densit y is

� (x) =
1Y

j =0

(1 � � j (x)) : (75)

{ The n{correlation densit y, V (x1; : : : ; xn ) = WU;n (x1; : : : ; xn ),

5.6 The Selb erg In tegral

There are many versionsof Selberg's integral see[Me]; one is as follows.
If < � > 0; < � > 0; <  > � min( 1

n ; < �
n � 1 ; < �

n � 1 ), then

Z 1

� 1
: : :

Z 1

� 1

Y

1� i<j � N

jx i � x j j2
nY

j =1

(1 � x j )� � 1(1 + x j )� � 1dx j (76)

= 2 n (n � 1)+ n ( � + � � 1)
n � 1Y

j =0

� (1 +  + j  )� (� + j  )� (� + j  )
� (1 +  )� (� + � +  (n + j � 1))

:(77)

5.7 Momen ts of Characteristic Polynomials

M U;N (s) =
Z

U (N )
j det(A � I exp(� ix )) j2s dA (78)

=
NY

j =1

� (j )� (j + 2s)
� (j + s)2

; (79)

M Sp;2N (s) =
Z

Sp(2 N )
j det(A � I )js dA (80)

= 22N s
NY

j =1

� (1 + N + j )� (1=2 + s + j + s)
� (1=2 + j )� (1 + s + N + j )

; (81)

M O;2N (s) =
Z

O(2 N )
j det(A � I )js dA (82)

= 2N s
NY

j =1

� (N + j � 1)� (s + j � 1=2)
� (j � 1=2)� (s + j + N � 1)

: (83)
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