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L-functions and Random Matrices

J. Brian Conrey

American Institute of Mathematics and Oklahoma State Univ ersity

1 The GUE Conjecture

1.1 Intro duction

In 1972H. L. Montgomery announceda remarkable connection between
the distribution of the zerosof the Riemann zeta-function and the distri-
bution of eigervalues of large random Hermitian matrices. Sincethen a
number of startling dewvelopmerts have occurred making this connection
more profound. In particular, random matrix theory has beenfound to
be an extremely useful predictive tool in the theory of L-functions. In
this article we will try to explain theserecert developmens and indicate
somedirections for future investigations.

1.2 The Riemann zeta-function

The Riemann zeta-function is de ned by

X g
(s) = 0 (s= +it; > 1): 1)
n=1

It can also be expressedas a product over primes, the Euler product,
Y 1 1
(s) = 1 o
P

; 2)

for > 1.In 1859Riemann provedthat (s) extendsto a meromorphic
function on the whole plane with its only singularity being a simple
pole at s = 1 with residue 1. He further proved that it has a functional
equation relating the value of (s) with the valueof (1 s),

(s)= (51 9 ®)

where (1 s)= (s) 1=22 ) S (s)cos(s=2). He discovered that
the distribution of prime numbersis governedby the zerosof . He was
led to conjecture that all of the complexzeros = + i of have
= 1=2. This assertionis the famous Riemann Hypothesis.
We know that 0 < < 1 for any complex zero of . Riemann esti-
mated the zero courting function

N(T)=#f = +i :0< ngzllogzLe+O(logT): (4)

Thus, at a height T the averagespacingbetween zerosis asymptotic to
2 =logT. See[E[] for additional background information about (s).



1.3 Background

Montgomery wasstudying gapsbetweenzerosof the Riemann zeta-
function in an attempt to prove that the spacingsbetween consecutive
zeros can sometimesbe lessthan 1/2 of the average spacing. Sucd a
conclusionwould have led to a good e ectiv e lower bound for the class
number of an imaginary quadratic eld. This estimate was not achieved,
but through the courseof his analysisMontgomery wasled to conjecture
that

z .
im X sin X 2
T N(T) . X

;0T

dx  (5)

2 _ 0o 2
log T log T
where0< < are xed.

When Montgomery told Freeman Dyson this formula, Dyson re-
spondedthat the integrand wasthe pair-correlation function for eigerval-
uesof large random Hermitian matrices, or more speci cally the Gaus-
sian Unitary Ensenble, or GUE.

The GUE is the limit asN ! 1 of the probability spaceconsisting
of N N Hermitian matrices H with a probability measureP (H)dH
@at is invariqﬁlt under conjugation by any unitary matrix U. HeredH =

k d<Hjk 4 d=Hj«. Mathematical physicists had studied various
ensenbles sincethe 1950sin connectionwith work of Wigner in nuclear
physics. Mehta [@] hasgiven a thorough treatment of the development
of the subject.

Montgomery wert on to conjecture that the n-correlation function
for zerosof is the sameasthat for the GUE; this conjecture cameto
be known as Montgomery's GUE conjecture.

Odlyzko and Scdenhagedeveloped an algorithm that allowed for the
simultaneous calculation of many valuesof (1=2+ it) for t near T in
averagetime T . This algorithm allowed Odlyzko [ to do extensiwe
computations of the zerosof at a height near zero number 10°°; his
computations of the pair correlation and nearest neighbor spacing for
the zerosof were amazingly closeto those for the GUE. His famous
pictures added much credibility to Montgomery's conjecture.

1.4 Further evidence for GUE

In 1996 Rudnick and Sarnak [@] made some interesting progresson
the GUE conjecture. To explain their result, number the ordinates of
the zerosof (s): 0< ; 2 .. Introduce a scaling ~ = "’29— SO
that the ~ have asymptotic mean spacing 1. Then Sarnak and Rudnick
proved that

lim = f(5.0009.) = Wun(X)f(x) dx  (6)
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ric in the variables apd decays rapidly asx ! 1 in the hyperplane
Pn = f(xq;:: :;xnlg : j”:l Xj = 0g; (3) the Fourier transform f’\(u) of
f is supported in j”:l jujj < 2. The condition (1) assuresthat f is a
function of the di erences of the ;.

Thus, the GUE conjecture has been proven for all correlation func-
tions, for a limited classof test functions

1.5 Other L-functions

The Riemann zeta-function is the prototype for someextraordinary ob-

jects known as arithmetic L-functions. An arithmetic L-function (or L-

function for short) has many properties in common with the Riemann
-function. It hasa Dirichlet series

s
L(s) = amn S; (7
n=1

it is meromorphic apart from a possiblepole at s = 1; it hasa functional
equation (s)L(s) = (1 3L 5); where , the sign, satisesj j=
1. L(s) hasan Euler product in which the p-th factor is the reciprocal of
a polynomial in p S. Moreover, an arithmetic L-function is expected
to satisfy the Riemann Hypothesis, that all complex zeros have real
part 1/2. (Note that our L-functions are normalized sothat the 1/2-line
is the line of symmetry for the functional equation. See[El for precise
de nitions.) An L-function is called primitiv eif it is not the product of
two L-functions. Primitiv e L-functions arise from a variety of contexts:
from Diric hlet characters, from Mellin transforms of certain cusp forms,
from Galois represemations, from algebraic varieties, etc. Howewer, it
is believed that ead primitiv e arithmetic L-function is assaiated to a
cuspidal automorphic represemation of GL, over a number eld.

Rudnick and Sarnak applied their methods to a fairly general L-
function. They proved the analogueof (6) for any cuspidal automorphic
L-function over Q, assumingthe Riemann Hypothesisfor the L-function,
and with obvious changesto re ect the appropriate scaling of the zeros.
In particular, the answer did not depend in any way on the distribution
of the coe cien ts of the particular L-function.

The GUE Conjecture is now seenas a universal law governing the
distribution of zero spacingsfor all arithmetic L-functions.

2 Families

The realization that the compact classicalgroups of matrices play a role
in the theory of L-functions arosethrough seminal work of Katz and

Sarnak [KS7], [KS7.



2.1 Function Field Analogues

Katz and Sarnak investigated the distribution of zerosof function eld

zeta-functions. Considera curvef (x; y) = Owheref is apolynomial with

integer coe cien ts. The zeta-function for f over a nite eld Fq canbe
obtained in a simpleway from the generatingfunction of the numbersN,

of points on that curve in the nite eld extensionsFg;n=1;2;:::: It

is known that this zeta-function is a rational function whosenumerator
is a polynomial with integer coe cien ts, degree2g where g is the gerus
of the curve, and that it satis es the Riemann Hypothesisthat all zeros
have modulus 1=" G. One can order these zeroson the circle jzj = " gin

terms of their anglesmeasuredfrom the positive axis. Onethen considers
statistics of the angles.

Katz and Sarnak proved that, after proper normalization, the n-
correlation function of theseangles,asg and qtend to in nit y, is exactly
the n-correlation of GUE. They also proved that the nearestneighbor,
or consecutive spacing, statistic for these anglesis the sameasthat for
GUE.

The method of proof involved working with subgroupsof U(N), the
group of N N unitary matrices with the Haar measure(see sections
5.1and 5.2). It had beenshowvn by Dyson that the n-correlation and the
spacing statistics are the samefor GUE as for the appropriately scaled
limt asN ! 1 for U(N) with Haar measure.(In the physicsliterature
the limit of U(N) is called the Circular Unitary Ensenble or CUE; see
[Md])

The function eld zeta-functions that Katz and Sarnak were work-
ing with were characteristic polynomials of matrices from subgroups of
U(N). Todeducetheir result they applied a theorem of Deligne about the
equidistribution of function eld zeta-functionsamongthe characteristic
polynomials of conjugacy classesin these subgroups.

2.2 Intro duction of Families

Katz and Sarnakinvestigatedthe robustnessof their theorem. They con-
jectured that the conclusionremainstrue under the weaker hypothesis
that qis held xed andg! 1 . On the other hand, they provided ex-
amples of sequence®f curvesof increasing gerus for which the spacing
statistic is not the GUE consecutive spacing statistic.

They also consideredspecial families sudh as (a) curves of the form
y? = f(x) with all squarefree,monic f, and (b) quadratic twists of
curvesof the form y? = x(x  1)(x t);thatis y 2= x(x 1)(x t)
where is a squarefree,monic polynomial over Fq. When g and the
degreeof ! 1 they discovered that the n-correlation and spacing
statistics again matched up with CUE. However, the reasonin ead case
is di erent depending on the geometric monodromy group. In case(a)
they computed that the monodromy group was the symplectic group
and in case(b) the orthogonal group.



Wedenoteby USp(N) (if N is even) the unitary symplectic matrices,
and by O(N) the orthogonal matrices. Theseare subgroupsof U(N) and
are equipped with their own Haar measure.

Katz and Sarnak provedthat the n-correlation statistic and the spac-
ing statistic for the limits of U(N), USp(N ), and O(N) are all the same
asthat for GUE.

By contrast, the Circular Orthogonal Ensenble (COE) and the Cir-
cular Symplectic Ensenble (CSE), which are well-known ensentles in
mathematical physics (see @]) have the same underlying symmetry
groups as O and Sp, but have a measuredi erent from the Haar mea-
sure. They have di erent n-correlation and spacingstatistics than those
of GUE and CUE.

From now on we will use the letters O, Sp, U when referring to a
statistic assaiated with the limits of O(N), USp(N ), and U(N). These
statistics are computed for N N matrices of the appropriate subgroup
of U(N) with their respective Haar measureand then N | 1 with an
appropriate scalinglimit in order to determine the statistics (see5.4,5.5,
and 5.6).

Sinceorthogonal and symplectic matrices have eigervalueswhich oc-
cur in complex conjugate pairs, it is clear that the eigervalue 1 plays a
special role for these matrices, whereasit doesnot for unitary matrices.
Indeed, there are statistics which di erentiate O, Sp, and U. In partic-
ular, the eigervalue nearestto 1 is sudh an example. It turns out that
this statistic is di erent for all three symmetry types.More generallythe
j -th eigervalue nearestto 1 is a statistic that is dependert on the group
(for a summary of the four statistics of interest to us, seesection 5.3).

Another statistic that is dierent for all three symmetry types is
\lev el-density". The n-level density function is obtained from summing
a test function at n-distinct eigervalues.For comparison purposes,note
that the n-correlation function is obtained by summing a test function of
n-variables which is a function depending only on the di erences of the
argumerts at n distinct eigervalues.Seesections5.5and 5.6 for more on
these statistics.

Katz and Sarnak showved that for their special families of function
eld zeta-functionsthesenew statistics (j -th nearesteigervalueto 1 and
n-level density) match with the appropriate statistics from Sp and O,
which they had computed.

In general,they found that if they could compute the geometricmon-
odromy group assaiated with a family of function eld zeta-functions,
and if that monodromy group was U, Spor O, then all four of the statis-
tics we have been discussingfor the function eld zeta-functions could
be proven to match with the appropriate statistic from U, Sp or O.

Thus, we say that the symmetry type for the family of curvesof the
form y? = f (x) the symmetry typeis Sp; and for the family of quadratic
twists of y? = x(x  1)(x t) the symmetry typeis O.

Katz and Sarnak alsohave examplesof families of function eld zeta-
functions where the symmetry type is U.



2.3 L-Functions Over Num ber Fields

Katz and Sarnak speculated that their results for function eld zeta-
functions would have implications for L-functions over number elds.
Two collections of L-functions which presert themsehes as natural ana-
loguesto the families above are (a°% the collection of all Dirichlet L-
functionsL(s; 4) where 4(n) isareal primitiv eDiric hlet character with
conductor jdj (so that d runs through the set of fundamertal discrimi-
nants of quadratic number elds) and (b% the collection of L-functions
assaiated with primitiv e Hedke newformsof a xed weight. The analogy
with the function eld zeta-functionsis asfollows. The zeta-function for
a member of the Sp family (a) above is obtained by courting solutions
to the equationy? = f (x) overa nite eld. Thesesolutions are courted
in a eld with p elemens by the sum 2:1 p(f (a)) where the real
Dirichlet character , modulo p appears. This suggeststhat the family
(@% could have a symmetry type Sp. Similarly, the zeta-function of a
member of the O family (b) above is the reciprocal of the p-th factor in
the Euler product for the L-function of the elliptic curve de ned through
twists of the equationy? = x(x 1)(x t), the Legendrefamily of elliptic
curves. These L-functions are known (by the solution of the Taniyama
- Shimura conjecture) to be assaiated to primitiv e Hede newforms of
weight 2. Thus, the collection (b% could well be a family with symmetry
type O.

The rst evidencethat (a9 is a family with symmetry type Sp came
from Michael Rubinstein's thesis [E]. He computed the lowest lying zero
of L(s; 4) and the data matched well with the eigervalue nearest 1
for symplectic matrices. He examined theoretically the n-level density
of zerosand shawed (for test functions with restrictions on the support
of their Fourier transforms) that the n-level density functions for the
zerosof L(s; ¢) areidentical with the n-level density functions for Sp.
Precisely we index the ordinates of the zerosof L(s; 4) as

0 gd) ;d) ::: (8)
and scaleusing
L= @log @ 9
= O=—: ©)
P
LetD = 4 p 1. Then Rubinstein proved that
z
1 X X
D f ~j(f);:::;~j(f) ! Wspn (X)f (x) dx;  (10)
jdi D11 R?

asD! 1 whereWsp, is asin section5.5, provided thatFj is a Schwarz
function sud that the support of f’\(u) is cortained in j”:l jupj < 1.
Wsp:n is called the n-level density function for the symplectic group.
Rubinstein also found evidencethat anotherfamily has a symme-
try type O. To describe this family let (z) = Ll (ne(nz) where



is Ramanujan's tau-function. It is well-known that is a primitiv e
Hede newform of weight 12 and level 1. The family (c% is obtained
from quadratic twists of the L-function assaiated with  namely

X (mn %2 4(n) |
ns ’

L(; s a)= (11)

n=1

If d < 0then this L-function automatically vanishesat s = 1=2 because
the assaiated functional equation occurswith = 1. Rubinstein com-
puted the lowestzeroof L(; s; 4) for d> 0 and the lowest zero above
the real axis for L(; s; 4) with d < 0. At this point, we should men-
tion that an orthogonal matrix hasdeterminant +1 or 1. Sothere are
actually two symmetry typesO* and O (and the statistics of O are an
averageof the statistics of these). Katz and Sarnak had computed the
statistics (neighbor spacing, correlations, density, eigervalue nearest1)
for thesetwo symmetry typesas well. Rubinstein found that the lowest
lying zero of L-functions in (c% with d > 0 followed O* while the lowest
lying zero above the real axis for L-functions with d < O followed O .

Rubinstein considered more generally the twisting of an arbitrary
arithmetic L-function L(f;s) assaiated with an automorphic form f on
GLn by quadratic characters 4. The results heredivide into three cases
which haveto do with signsof the functional equations.If the L-function
L(f;s;sym?) assaiated with the symmetric square of f is ertire, the
functional equations for L(f;s; 4) will always have = +1 and the
averageover d is exactly asabove with the n-level density function being
Wsp:n . In the casethat the symmetric squareL (f ; s; sym?) hasa pole (at
s = 1) then the sign of the functional equation for L(f;s; 4) is +1 for
even characters 4 and 1 for odd characters 4. Rubinstein averages
over thesetwo casesseparatelyand discoversthat the rst caseyields an
n-level density function Wo+ ., and in the secondcasean n-level density
function Wy ., (seesection 5.5). In ead of these casesa restriction is
placed on the support of the Fourier transform of f .

2.4 The Diagonal Terms

Rubinstein's work gave impressive con rmation of the theory, but the
sewererestriction onthe support of the Fourier transform is worth investi-
gating. In fact, this restriction occursright at the placewhere something
interesting is happening with the Fourier transfom of the density func-
tion. Returning for a momert to the caseof the Riemann zeta-function,
we canillustrate this idea.

Montgomery's original theorem involved

F(; T)= —r T C w9 (12)
o< ; 0T

Herew is a weight function that concerrates at the origin. (Montgomery
usedw(u) = 4=(4 + u?).) Assuming the Riemann Hypothesishe shaved



that
F(G;T)=T 2 (@+0(1)+] j+ o) (13)

uniformly for 1+ < <1 forany > 0.
By the de nition of F,

1 X Z1

N . Tr( ow( 9= ) fOIFCG T)d - (14)

Thus, Montgomery's theorem gives information about the averagebe-
havior of di erences betweenthe zerosfor test functions r with the sup-
port of P corntained in ( 1;1). Montgomery wert on to conjecture (based
on considerationsof the behavior of prime pairs) that forj j> 1 onehas
F(; T) = 1+ o(1); this assertionimplies (1). Thus, F is not di eren-
tiable at = 1. In the proof of Montgomery's theorem (via the explicit
formula and the mean value theorem (23) for Diric hlet polynomials) for
j j < 1, the main term of F arisesfrom the \diagonal" contributions
of the meanﬁquareof a Dirichlet polynomial (i.e. the terms m = n in

the integral OT aman(m=n)t dt). For > 1, the o -diagonal terms (i.e.
m 6 n) contribute to the main-term.

A similar situation arisesin the work of Rudnick and Sarnak and in
the work of Rubinstein. All of the proofs of thesetheoremsare valid only

in the range where the diagonal terms dominate.

2.5 Beyond the Diagonal

Sofar we have seenthat the theory of families is con rmed by numerical
data as well as theoretical data up to the diagonal. Bogolmony and
Keating gave a heuristic derivation of all of the GUE conjecture (i.e.
all the n-level correlations) basedon Hardy-Littlew ood type conjectures
for pairs of primes and pairs of almost primes; this work shaws how the
o -diagonal terms potentially cortribute.

Ozluk [@] proved an analoguefor all primitiv e Diric hlet characters
for the pair correlation theorem (12); he obtained a result for j j < 2.
This wasthe rst example of going beyond the diagonal. Seealso [@]
and [[S2].

It is of great interest that Iwaniec, Luo, and Sarnak have suc-
ceededn going beyond the diagonalin seweral exampleswhich represem
three of the symmetry types. They work with the 1-level density func-
tions assumingonly that the Riemann Hypothesis holds for all of the
L-functions in question. The 1-level density functions may be obtained
from W, by taking n = 1. They are

WO)(X) = 1+ 5 o(0); (1)

sin2 x

W(O")(x) =1+ X

(16)



sin2 x

WO =1 =2+ o(0); (17)
wepe =1 22X, (19
W (U)(x) = 1: (19)

The families consideredby Iwaniec, Luo, and Sarnak are related to mod-
ular forms. Let H,(N) denote the set of holomorphic newforms f of
weight k and level N. Let H, (N) denotethe weight k level N newforms
for which the assaiated L-function has a + in its functional equation,
and H, (N) is the subsetof f for which L(f;s) hasa in its func-
tional equation. Let M (K;N) bethe union ofthe H (k;N) for k K
and similarly dene M* and M . They considerthe low lying zerosof
L(f;s) asf variesthrough one of the M -sets. The averagespacing for
all the zerosof all the L(f;s) with f 2 H (k;N) up to a xed height
to is asymptotic to 2 =log(k®N). Let be a test function which is even
and rapidly decaying. They provedthat if the support of " is cortained
in ( 2;2), then

Z,

X
1 _togk*N (X)W (0)(x) dx: (20)
1
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f

asKN ! 1. Similar statemerts hold with M replacedby M* and
M and O replacedby O* and O .

It should be pointed out that the Fourier transforms of the density
functions W (0)(x), W (O™ )(x), and W (O )(x) all agreein the diagonal
range; soit is only when one goesbeyond the diagonal that the distin-
guishing features of thesethree symmetry typesbecomesapparert.

Iwaniec, Luo, and Sarnak also consider the symmetric square L-
functions of the f 2 M and verify that the above statemerts hold
with symmetry type Sp and the support of ™ in (-3/2,3/2). Also, the
averagezero spacingis 2 =log(k’N?) soN should be replacedby N2 in
the argumert of in the left hand side of (20).

Thus, the theoretical and numerical evidencethat the zerosof families
of L-functions depend on the symmetry type of the family is pretty
corvincing.

3 Momen ts

Sofar we have seenthat the eigervaluesof matrices from unitary groups
are excellent modelsfor zerosof families of L-functions. Now we want to
takethe matrix modelsa signi cant stepfurther and arguethat the char-
acteristic polynomials of thesematrices on averagereveal very important
features of the value distribution of the L-functions in the family.



3.1 Momen ts of the Riemann zeta-function

We rst look at the situation of the Riemann zeta-function and its mo-
ments.
To give somebadground, we cite the theorem of Hardy and Little-

wood: L Z-

= j(G+it)j?dt logT (21)
T o
and the theorem of Ingham:
z
157 1, .
T . j 3+ it)j" dt ﬁlog T: (22)

The asymptotics of no other moments (apart from the trivial 0-th mo-
ment) are known. In generalit has beenconjectured that
Z+
1 Corn g 2k K2 T .
= j(4+it)j“f dt cclog® T: (23)
T o
The basic tools for investigating mean-\values in t-aspect are the
mean value theorem for Diric hlet polynomials (due to Montgomery and
Vaughan):
Z1 X 2 X
ann® dt= (T + O(n))janj? (24)
n N n N
and somesort of formula expressingthe function in question in terms

of Dirichlet polynomials (such as an approximate functional equation)
sud as

di () X de(n)
(5) = ot (9 TS+ EO) (25)
n k n k

where E(s) should be small on average,s = 1=2+it, = P t=(2 ), (s

is the factor from the functional equation (3), and where

di (n
(=" (s (26)
n=1

sothat (s)* is the generating function for di(n). Note that the mean-
value theorem for Diric hlet polynomials detects only diagonal cortribu-
tions.

Conrey and Ghosh[CGJ)] gave the momert conjecture a more precise
form, namely that there should be a factorization

Ok

1+ k?) 27)

Ck:

where ,
Y 1 R d(p)?

ax = 1
o P, P

(28)



is an arithmetic factor and gx, a geometric factor, should be an integer.
Note that by the mean-value theorem for Diric hlet polynomials it is not
dicult to show that

z
17T X ddm) * o ac(log) 29)
T o ] XNl:2+it 1+ k2’
provided that x = o(T). Thus, an interpretation of g is
Rr . .
g = lim g0 (DI (30)
k=11 R P d (n) 2 dt
0 n T pi=2+it

assuming that the limit exists, so that gx represems the “number' of
Dirichlet polynomial approximations to (s)* of length T required to
measurethe mean squareof (s)¥.

In this notation, the result of Hardy and Littlew ood is that g; = 1
and Ingham's result is that g, = 2.

Theseresults can be obtained essetially from the mean-value theo-
rem for Diric hlet polynomials. To go beyond the fourth momert requires
taking into accourt o -diagonal cortributions. Goldston and Gonek[Gg]
describg,a preciseway to transform information about coe cien t corre-

lations |, a(n)a(rb+ r) into a formula for the mean square of a long
Dirichlet polynomial |, , a(n)n ° wherex is bigger than the length of
integration.

Using Diric hlet polynomial techniques Conrey and Ghosh [ con-
jectured that g3 = 42 and Conrey and Gonek [CGd] conjectured that
04 = 24024.Mearnwhile, Keating and Snaith [KeSn1] computed the mo-
ments of characteristic polynomials of matricesin U(N) and found that
for any real x and any complex number s,

z N

Mun (S) = jdet(A 1 exp( ix))j° dA = ¥ ) (2,
U(N) i=1 (4+9

(31)

wheredA denotesthe Haar measurefor the group U(N) of N N unitary

matrices. To do this calculation, they made useof Weyl's formula for the

Haar measure(seesection 5.3) and Selberg's integral (seesection 5.6).

They also shaved that

o M(s) _ G+ 92
N NS® G+ 2)’

(32)

where G(s) is Barnes' double Gamma-function which satises G(1) = 1
and G(z+ 1)= (2)G(2). Note that for s = k an integer,

ca+k2 _M' i
G(1L+ 2k) o 0 F n) -

(33)



For k = 1;2;3 the above is 1/11,2/4!, 42/9! in agreemen with the
theorems of Hardy and Littlew ood, and Ingham and the conjecture of
Conrey and Ghosh. Keating and Snaith argued that one should thus
model the moments of the zeta-function from 0 to T by momerns of
characteristic polynomials of unitary matrices of sizeN  logT. (More
precisely one should take N to be the integer nearestto log zl). They
then conjectured that

R 1

2) J'

j + k)

O = K (34)

j=0 (
for integer k. The initial public announcemeis of the conjectures of
Conrey and Gonek (that g4 = 24024)and of Keating and Snaith ( gk for
all real k 1=2) occurred at the Vienna conferenceon the Riemann
Hypothesis only momerts after it was cheded that the Keating and
Snaith conjecture doesindeed predict that g4 = 24024.

3.2 Momen ts of L-functions at 1/2

Subsequetly, Conrey and Farmer [@] analyzed known results for mo-
ments of L-functions at 1/2 and made a generalconjecture. (These mo-
ments had beenconsideredby a number of authors; seeesgecially [@].)
The conjecture has the shape

1 X Ok &
— L(f;1=2 k .
x HEERE

c(f) x

(log X )4®) (35)

for some ax, gk, and q(k) Whega F is a family of f parametrized by
the conductor c(f), and X = 4, x 1. The obsenations of Conrey
and Farmer were that gx and q(k) depend only on the symmetry type
of the family, and that ax dependson the family itself, but is explicitly
computable in any specic case.Thus, the conjecture is that q(k) = k?
for a unitary family, g(k) = k(k+ 1)=2 for a symplectic family, and q(k) =
k(k 1)=2for an orthogonal family. The valuesof gy wereleft unspeci ed,
but werethen predicted asbeforefrom random matrix theory by Keating
and Snaith and independertly by Brezin and Hikami [BH] by
computing momerts of characteristic polynomials of matrices from O(N )
and from USp(2N ). Eadh is a quotient of products of Gamma-functions.

Thus, for the family of Dirichlet L-functions L(s; 4) with a real
primitivPe Dirichlet character 4 modulo d we have the following results

(D = 4 p 1) Jdutila [[] proved that
1 X .
5 L(3; o) ailog(D?) (36)
jdj D
and X N
1 azlog’(D 2
L I = CL g (37)

jdj D



Soundarargan [Soj| showed that

1 X aslog®(D %
il LS(%; a) 16%!() (38)
idi D
and conjectured that
1 X a4log'’(D %)
— L4(L; 768——= 2~ 7 39
5 o o (39)

The general conjecture coming from random matrix theory (seesec-
tion 5.7), which agreeswith the above, is:

X ¥

1 ! -
5 LG o sadeg (D) (40)
jdj D =1 S
where

I

K (k +1) K K !

Y 1 172 1 oL + 14+ 5L 1
a = L S B (41)

5 p

p

An example of an orthogonal family where seweral momerts are
known arisesfrom F the set of primitiv e cusp forms of weight 2 and
level g (g prime). Then, from results of Duke [, Duke, Friedlander,
and lwaniec [@m_llwaniecand Sarnak [IS1], and Kowalski, Michel, and

[KMV1

VanderKam 1 and [KMV2]], we have
1 X
IFal ¢ o a
1 X, L
— L4(1=2;f) 2azlogq? (43)
JFal foF
q
X 3 1
L7 2=ty gag PO (44)
iFql 3!
f2F 4
X 6 L
i L4(1=2;f) 128&4|0g & (45)
iFql 6!
f2F 4
wherea; = (2); v
2= (22 1+ (46)
P
3Y
az= (2 1 2 1+i+ 5+ 1+ 4 47)

Y
a= (2)° 1 1+%+,%+,%+;—i+p%+p% (48)



We have not found a simple expressionfor ax, though it can be deter-
mined explicitly for ead k. As before, a generalconjecture is:
1 R1o~

X
— Lk@a=2;f) 2«1 > logkk D=2q: (49)
Fal o, =1 T

We believe that in formulas for momerts of L-functions over a family
the power of the log of the conductor and the value of g« should only
depend on the symmetry type of the family and that the value of ax will
depend on the family but can always be determined explicitly .

4  Further directions

In this section we mertion somequestionswhere further researt is de-
sirable.

4.1  Full moment conjecture

What arethe lower order terms in the momert formulaeforj (1=2+it)j2
and for L (1=2)? Theseare known in afewinstances(see[E[], [Q] for the
secondand fourth momerts of (s)) but not in general. The dicult y is
that random matrix theory doesnot \see" the cortribution of the arith-
metic factor ax. Lower order terms will likely involvea mix of derivatives
of ax and secondaryterms from the momernts of the characteristic poly-
nomials of matrices. In general, a better understanding of how (s) is
modeled by a characteristic polynomial of a certain type of matrix is
needed;how do the primes comeinto play? Perhapswe should think of
(1=2+it) asapartial Hadamard product over zerosmultiplied by a par-
tial Euler product. Perhapsthesetwo parts behave independerly, and
the Hadamard product part can be modeled by random matrix theory.

4.2 Distribution  of Values

Keating and Snaith compute explicit formulas for the s-th momen of
the characteristic polynomials of matricesfrom O(N ), Sp(N ), and U(N).
Consequetly the value distributions for these characteristic polynomi-
als can be explicitly computed; they involve the Fourier transform of the
s-th moment. Preliminary investigationsindicate that there is a good t
betweenthe random matrix formulae and numerical data. One particu-
larly interesting feature of this investigation involvesthe understanding
of zeros which occur exactly at 1/2. These seemto occur only for L-
functions in an orthogonal family. If the sign of the functional equation
is 1, there is automatically a zeroat 1/2. The interesting situation is
whenthe signis + and there is still a zero; for exampleif E is an elliptic
curve de ned over Q then examination of the distribution of values of
O" suggestthat twists L(E;s; p) of the L-function by quadratic char-
acters seemto vanish for about X 3*4(log X) 58 valuesof jpj < X with
sign +1 in the functional equation.



4.3 Extreme Values

How large is the maximum value of j (1=2+ it)j for T < t < 2T? It
is known that the Riemann Hypothesisimplies that the maximum is at
most exp(clog T=loglogT) for somec > 0. It is also known that the
maximum gets as big as exp(ci(log T=loglogT)'=?) for a sequenceof
T! 1 for somec; > 0. It hasbeenconjecturedthat the smaller bound
(the onethat is known to occur) is closerto the truth. Howewer, the new
conjecturesabout momerts suggestthat it may be the larger.

This questionhasa humber of equivalent and analogous(for L-values)
formulations. How big can S(T) := Yarg (1=2+ iT) be? Assuming the
Riemann Hypothesis, it is known that S(T) logT=loglogT but that
in nitely often it is bigger than c(log T=loglogT)'=? for somec > 0
Which is closerto the truth? What is the maximum size of the class
number of an imaginary quadratic eld (as a function of the discrimi-
nant) (see[@]for adiscussionand numerical investigation.)? How big can
the least quadratic non-residueof a given prime p be (logp or (logp)? ?
See[@] for a discussionof this question?What is the maximal order of
vanishing of an L-function at 1/2? In terms of the conductor N, can it
be as big aslogN=IloglogN or is it at most the squareroot of that, or
something ertirely di erent? All of these questionsare related, at least
by analogy, and they may all have similar answers. It would be interest-
ing and surprising if in ead caseit is the larger bound which is closer
to the truth.

4.4 Zeros of 9s)

Can oneuserandom matrix theory to predict the horizontal distribution

of the real parts of the zerosof ©? It is known that the Riemann Hy-
pothesisis equivalert to the assertionthat ead non-real zeroof s) has
real part greaterthan or equalto 1/2. Moreover, if suc a zero hasreal
part 1/2, then it is alsoa zeroof (s) (and soa multiple zeroof (S)).

Theseassertionsare the point of departure for Levinson'swork on zeros
of the Riemann zeta-function on the critical line. It would be interesting
to know the horizontal distribution of these zeros;in particular what
proportion of them with ordinates betweenT and 2T are within a=logT

of the 1/2-line?

In a similar vein, the Riemann -function is real on the 1/2-line and
has all of its zerosthere (assumingthe Riemann Hypothesis). It i%an
entire function of order 1; becauseof its functional equation, (1=2+i z)
is an ertire function of order 1/2. It followsthat the Riemann Hypothesis
implies that all zerosof (s) are on the 1/2-line. Assuming this to be
true, one can ask about the vertical distribution of zerosof 9s), and
more generally of (M)(s). It seemsthat the zerosof higher derivatives
will becomemore and more regularly spaced;can thesedistributions be
expressedn a simple way using random matrix theory?



45 Long Molliers, Local Integrals, and GUE

David Farmer [EI] [E] hasmadetwo very interesting conjectureshaving
to dowith (s). The rst isa conjectureabout the meansquareof (1=2+
it) times an arbitrarily long molli er. A molli er is aDiric hlet polynomial
with coe cien ts equalto the Mobius -function times a smooth function.
The length of the molli er is the length of the Diric hlet polynomial. He
has also conjectured that

147 (s+w @ s+v) . ,, (U av b

T o (s+a) (1 s+b wrvarpt T E0)

where a; b;u; v are complex numbers with positive real part, and s =

1=2+ it. Thesetwo conjecturesare essetially equivalent and imply cer-
tain parts of the GUE conjecture. It would be interesting to generalize
theseand relate them to the full GUE conjecture.

5 App endices

5.1 The Classical Groups

{ The unitary group U(N) is the group of N N matrices U with
ertries in C for which UU = | where U denotesthe conjugate
transposeof U, i.e. if U = (u;; ), then U = (Tj).

{ The orthogonal group O(N) is the subgroup of U(N) consisting
of matrices with real ertries.

{ The special orthogonal group SO(N). This is the subgroup of
O(N) consisting of matrices with determinant 1. SO(2N) leads to
the symmetry type we have called O* and SO(2N +1) leadsto the
symmetry type we call O .

{ The symplectic group USp(2N) is the subgroup of U(2N) of ma-
trices U for which UZU! = Z where U! denotesthe transposeof U
and

0 In

Z= .0

(51)

5.2 The Weyl Integration Form ula

The N N unitary matrices can be parametrized by their N eigerval-
ueson the unit circle. Any con guration of N points on the unit circle
correspnds to a conjugacy classof U(N). If f(A) = f( 1;::: ) isa
symmetric function of N variables, then Weyl's formula [@ﬂ gives
z z
1 Y ; i2 -
F(A)dA = o7 fC) je(j) e(Wi“dai:dn
U(N) ©oosN 1 j<k N
(52)



where dA is the Haar measure. Similarly, on Sp(2N) and SO(2N) we
have respectively

oNZY W W
dA = NT (cos | cos ¢)? siP | dj; (53)
<k j=1 j=1
o(N 1)?Y A
dA = N (cos ;| cos «)? dj: (54)
i<j j=1

5.3 Four Statistics

where t; tp < i < ty sud that for eat set the average spacing
tj+1 t; is asymptotically 1. We write tin in place of t; if we needto
indicate that t; 2 Ty .

{ The n-level density of T is W(x) = W(X3;:::X,) meansthat
z

X
lim f(ti,;iit,) = fOOW(x) dx : (55)
NI s i N Rn
Y ijsiLJ

for a Schwarz-classf . The sum is over n-tuples with distinct ertries.
{ Thej-th lowest zero density is ;(x) meansthat for a test func-
tion f b
1 X !
lim — f(tin ) = f(x) j(x) dx: (56)
N1 N 0N ’ 0

{ The consecutiv e spacing density is (x) meansthat for a test
function f (x) we have

X Z,

lim 1 f(tisa t)= f(x) (x) dx: (57)
N1 N 0
i N 1
{ The n-correlation density is V(x1;:::;X,) meansthat for test
functions f that are symmetric in all of the variables, depend only
on the dierences of the variables (i.e. f(xy + u;:::;Xy + U) =
f(x1;:::5xn) for ajp u), and are rapidly decaing on the hyperplane
Pn i f(Xe;::Xn Xj = 0g, we have,asN ! 1,
1 X z
N fty;:::ty)! FOOV(X) dxg::: dxy 1 (58)
ty tn2Ty Pn
ij6ig

asN ! 1 . The spacingand n-correlation densities are universal, i.e.
the samefor ead of O, Sp, and U, whereasthe n-level and j -th lowest
zero densitiesdepend on the symmetry type.



5.4 Gaudin's Lemma

Asscciated to ead1 N N unitary matrix A areits N eigervaluese( j)
where0 ; ::: n 1. Weintegrate a function F (A) over U(N)
by parametrizing the group by the ; and using Weyl's formula to corvert
the integral into an N -fold integral over the ;.

Often onewants to integrate with respect to Haar measureover U(N)
a function F(A) = f{A) = 1;::; n) Of N variablesthat is \lifted "
from a function f of n variables:

betweenl1 and N . Gaudin's lemma givesa simpli cation of this compu-
tation from an N -fold integral to an n-fold integral. The Haar measure
(seesection5.2) at the matrix A can be expressedas
(I S 5
dA = 37 je(j) e(w)j"daiidn: (60)
"1 j<k N

The product here is the square of the absolute value of the N N
Vandermondedeterminant with j; k ertry e( ) *=e(( 1) «).ltis

alsothe N N determinant of the matrix with j; k entry Jn ( k)
where 1
sin N
()= em)=e(N 1) =2 (61)
m=0
Thus,
VA VA 1 !
f{A)dA = R N)m det In(; «) dj:(62)
U(N) [0; 1" NN j=1

Then, Gaudin's lemma assertsthe equality
z z 1 ¥y
f{A)dA = f(a;:0; n)—'detJN(,— k) dj: (63)
U(N) [0;1]" ninon j=1
This principle works for all of the subgroupsof U(N) under consid-
eration here as well. (See[KS] section 5.1 for a general statemert and

proof of this important lemma.) We illustrate by computing the n-level
density function for U(N ). Note that

sin

. 1
aim- SINCN) = e( =2) (64)
from which it follows easily that

1
Jim - detdn (k) = detKo( 11 n) (65)



whereK is de ned in section5.5.

Now let f(x) = f(x1;:::;Xn) be a test function. To compute the
n-level density (compare with section5.4) we needto evaluate
. Z X N N Y . -2
lim funnt) de(y) e()ifd i dy (66)
N1 U(N) (ig:5in) j<k
ij6ig

By Gaudin's lemma and after using the new expressionfor the Haar
measureand changing variables ; ! x;=N, the above is equal to

|' 1 Z f ..... 1 d Y] d
N NP [O;N I SESEEEE n)mnngN(j k). i (6D
; j=1
Z
= f(xl;:::;xn)rgerEKo(xl;:::;xn) dx (68)
Rn
sothat Wy.n (X1;:::;Xn) = dety n Ko(X1;:::;Xn)

{ Then{lev el densit y isW (Xy;:::;Xn) = det, , K (X1;:::;X,) where
K (X1;:::;Xp) isthe n n matrix with entries
sin (Xi  Xj) sin (Xi + Xj)
K o= + 69
( (Xlr ,Xn))|,] (Xi Xj) (Xi + XJ) ( )
where = 0forU; = 1for Sp; = 1for O*. Also,

X
Wo n(x)= det(K 10))+  (xm) det (KDY (x) (70
! n n m=1 n 1n 1
where is the Dirac -function and the superscript m denotesthat

the m-th row and m-th column have beendeleted from K 1(x).
{ The lowest zero density is 1(x) where

d ¥
0= S @ ) U )
j=0
d ¥
1(x) = ax 1 z+(2x) Sp; (72)
j=0
d ¥
W= =@ 40 O 73
j=0

where 1 o(X) 1(x) ::: are the eigervalues of

Z b .
=2 sin (t u)

T T@dus ofo (74)



{ The consecutiv e spacing density is

\4
(0= @ O (75)

i=0

{ The n{correlation density, V(X1;:::;Xn) = Wy (X1;::7; Xn),

5.6 The Selberg Integral

There are many versionsof Selberg's integral see[Mé]; oneis as follows.
If< >0,< >0< > min(};=5; =), then

Z, Z, Y _ " Y 1 1
R IXi o Xj] 1 X)) “@Q+x) “dx; (76)
1 114 N j=1

e pence ot @r i) (+i) (i)
=2 (n 1)+ n( 1) (1+ ) ( — (n+j 1)) (77)

j=0

5.7 Momen ts of Characteristic P olynomials

Z
Mun (S) = jdet(A 1 exp( ix))j> dA (78)
U(N)
V) G2
B EE o
jm U
Z
Msp;an (S) = jdet(A 1)j° dA (80)
Sp(2N)
_ o2Ns (1+N+j) (I=22+s+j+5s),
CE T @ arsenep o @Y
Z
Mo:2n (S) = jdet(A 1)j° dA (82)
O(2N)
P (S I VLY TP
S0 L () rirN D)
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