Math 150: Multivariable Calculus: MWF 9-9:50am: Spring 2023: Williams College

 Professor Steven Miller (sjm1 AT williams.edu), Wachenheim 339My Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/

Course Homepage:
https://web.williams.edu/Mathematics/sjmiller/public html/150Sp23/

Slides:
https://web.williams.edu/Mathematics/sjmiller/public html/150Sp23/Math150Sp23LectureNotes.pdf

Other: Advice from Jeff Miller

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Who America is rooting for in the Super Bowl:

Sunrise \& Sunset Times on the East Coast

Plan for the day: Lecture 1: February 3, 2023:

- Discuss motivation of calculus
- Motivate integration: passing to the limit of a sum
- Dangers of extrapolating and what happens when you ass|u|me.

$$
\frac{16}{64}=\frac{1}{4} \quad \frac{19}{175}=\frac{1}{5} \quad 42=\frac{1}{28} \quad \frac{126}{24}=\frac{1}{4}
$$

- Review Calc I and II.

In this illustration, you can see three young planets tracing orbits around a star called HR 8799 that lies about 130 light-years from Earth. Image credit: Gemini Observatory Artwork by Lynette Cook
https://spaceplace.nasa.gov/other-solar-systems/en/

Newton’s Law of Gravity

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

$F=$ force
$G=$ gravitational constant
$m_{1}=$ mass of object 1
$m_{2}=$ mass of object 2
$\boldsymbol{r}=$ distance between centers of the masses

Symmetry Arguments: Without loss of generality....

https://www.juliabloggers.com/computationally-visualizing-crystals/
symmgravityapprox[range_, height_, printme_] := Module[\{\},

* we assume the object is "height" units above the center of a sphere of radius 1 *)

```
force = 0;
```

numpoints $=0$;
For $[\mathrm{x}=0, \mathrm{x} \leq$ range, $\mathrm{x}++$,
\{
If $[$ printme $=\mathbf{1}, \operatorname{If}[\operatorname{Mod}[x$, range /10] $=0$, Print["Have done ", x, " of ", range, "."]]];
For $[y=0, y \leq r a n g e, y++$,
For $[\mathbf{z}=-$ range, $\mathbf{z} \leq$ range, $\mathbf{z + +}$,
\{
(* only find contribution if point in sphere *)
$\mathbf{I f}\left[x^{\wedge} \mathbf{2}+y^{\wedge} \mathbf{2}+z^{\wedge} \mathbf{2} \leq\right.$ range $^{\wedge} \mathbf{2}$,
\{
distsquared $=(x / \text { range })^{\wedge} \mathbf{2}+(y / \text { range })^{\wedge} \mathbf{2}+(z / \text { range }- \text { height })^{\wedge} \mathbf{2} ;$
(* two vectors: (0,0, -height) and (x/range,y/range,z/range-height) *)
(* dot product is product of lengths times cos (angle) *)
(* we take the force and multiply by cos (angle) *)
contribution $=(z /$ range - height) $*(-h e i g h t) /(d i s t s q u a r e d ~ * ~ h e i g h t ~ * S q r t[d i s t s q u a r e d]) ; ~$
multiplier $=\left(\operatorname{Sign}[\mathrm{x}]^{\wedge} \mathbf{2}+1\right) *\left(\operatorname{Sign}[y]^{\wedge} 2+1\right)$;
force $=$ force + contribution *multiplier;
numpoints $=$ numpoints + multiplier;
\}]; (* end of if loop *)
\}]; (* end of z *)
]; (* end of y *)
\}]; (* end of x *)
If [printme $=\mathbf{1}$,
\{
Print["Discrete approx: ", 1.0 force / numpoints];

Print["Numpoints inside = ", numpoints];
Print["Predicted numpoints inside = ", 1.0 (4 Pi/3)/8)*(2range +1)^3];
\}];
Return [\{1.0 force / numpoints, $1.0 /$ height^^2 $\left.^{2}\right]$;
by 2 (if both are zero multiply by 1).

Thus saves a factor of four if compute contribution of one of these and multiply by 4.

Note if x or y is zero would multiply by 2 (if both are zero multiply by 1).

Notice ranges:

x, y from 0 to range
 z from -range to range.

Reason is the force is down.

The following four points have the same contribution:

- (x, y, z)
- $(-x, y, z)$
- $(x,-y, z)$
- $(-x,-y, z)$

Print["Discrete approx: ", 1.0 force / numpoints];

Print["Numpoints inside $=$ ", numpoints];
Print ["Predicted numpoints inside = ", 1.0 ($4 \mathrm{Pi} / 3$) / 8) * (2range + 1) ^3];

Return [\{1.0 force / numpoints, $1.0 / h^{2}$ height $\left.\left.^{\wedge} 2\right\}\right]$;

Comparing the gravitational force on an object at height h above the north pole of a unit sphere two ways:
(1) all the mass is at the center,
(2) compute the force from points at $(x / N, y / N, z / N)$ for x, y and z integers.

The left is the plot of both, the right is the difference between the two.

Einstein Velocity Addition

The relative velocity of any two objects never exceeds the velocity of light. Applying the Lorentz transformation to the velocities, expressions are obtained for the relative velocities as seen by the different observers. They are called the Einstein velocity addition relationships.

$$
\begin{aligned}
& \text { A } \\
& \text { © } \\
& \text { "Rest" Observer } \\
& u=\frac{v+u^{\prime}}{1+\frac{v u^{\prime}}{c^{2}}} \\
& \text { Moving Observer } \\
& u^{\prime}=\text { velocity of projectile } \\
& \text { as seen by B } \\
& u=\text { velocity of projectile } \\
& \text { as seen by } A \\
& \text { Projectile fired by B } \\
& u^{\prime}=\frac{u-v}{1-\frac{u v}{c^{2}}}
\end{aligned}
$$

Plotting the difference between the Einstein correction and the classical prediction for adding two speeds.

We throw a projectile forward on a train (or rocket ship) traveling in the same direction at 10,000 mph .
The x-axis is the speed of the thrown object, the y-axis is the difference between the relativistic correction and the classical prediction. Note the order of the error for speeds up to $10,000 \mathrm{mph}$ is on the same order as our integration approximation!

Note the Apollo 11 's fastest speed was about 25,000 miles per hour! Lightspeed is about $6.7 \times 10^{8} \mathrm{mph}$.

$$
\begin{array}{r}
f(x)=\lim _{h \rightarrow 6} \frac{f(x+h)-f(x)}{h}=\frac{d f}{d x} \\
\begin{array}{l}
\text { aveave ate of } \\
\text { charse fom } \\
x \text { to } x+h \text { is } \\
\frac{f(x+h)-f(x)}{x+h}-x
\end{array}
\end{array}
$$

Math 150: Multivariable Calculus: Spring 2023: Lecture 02:

 Review of Calc I https://youtu.be/C73M7A-KN54Plan for the day.

- Discuss how information is presented (theme of the class!).
- Discuss how one does calculations (another theme of the term!).
- Review Calculus I and II (if time permits).

Images from the National World War II Museum - New Orleans:
https://www.nationalww2museum.org/

PIDIVIDUAL FLIGHT RECC

FLIGHT RECORD AND WATCH OF COLONEL PAUL W. TIBBETS, JR.

Vith Critsicptis mis thationeor
The atomic bombing of Hiroshima, the most destructive aircraft sortie ever flown, is entered simply as a B29 flight on August 6, 1945 in the flight record of Colonel Paul W. Tibbets, Jr. The watch worn by Tibbets while at the controls of the "Enola Gay" that day was later refitted with a custom band commemorating the historic event.

MILITARY STRENGTH

When World War II broke out in 1939, the United States was not a great military power. The number of US service personnel was just 335,000 , and the US Army was comparable in size to much smaller states like Bulgaria, Portugal, and Romania. Equipment was so scarce that only a tiny fraction of US troops had ever trained with modern weapons. By contrast, Germany had been rapidly rebuilding its military strength since 1933, and had more than three million men under arms. Japan, fighting an all-out war of conquest in China since 1937, had 850,000 men in the field. The world had become a dangerous place, and the US was dangerously unready.

 แบทำ
 titweritheri

335,000 SERVICEMEMBERS

113"byblubutut! 114i) mimenii
性猃

3

3,180,000

SERVICEMEMBERS

 מй

 (\% (1) ~ит

Definition of the derivative: Standard, and what will generalize well....

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \text { let } x=a+h \\
& \frac{17 a}{a+a+h} \\
& \text { as } h \rightarrow 0, x \rightarrow a \text { and vice-ush } \\
& \text { Save as } \lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}=0 \\
& \text { Muttplyd by !, ot as } x \rightarrow \text { a but is never a! } \\
& \lim _{x \rightarrow a} \frac{f(x)-\text { tinged line approx }}{x-a} \text { goes to geo }
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =x^{1 / 2} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{1 / 2}-x^{1 / 2}}{h} \times \frac{(x+h)^{1 / 2}+x^{1 / 2}}{(x+h)^{1 / 2}+x^{1 / 2}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h\left((x+h)^{1 / 2}+x^{1 / 2}\right)}=\lim _{h \rightarrow 0} \frac{1}{(x+h)^{\frac{1}{2}}+x^{\frac{1}{2}}}=\frac{1}{2 x^{\frac{h}{2}}}=\frac{1}{2} x^{-\frac{1}{2}}
\end{aligned}
$$

$g(x)=f(x)^{q}$ if $f(x)=x^{p / q} \quad q$ pos $\left(\right.$ aten so $g(x)=x^{p}$ $g^{\prime}(x)=q f(x)^{q-1} f^{\prime}(x)$ so $f^{\prime}(x)=\frac{g^{\prime}(x)}{q f(x)^{q-1}}=\frac{p x^{p-1}}{q x^{p(q-1) / q}}$ now do alp, see set $f^{\prime}(x)=1 / \varepsilon \times x^{1 / 2-1}$

$$
g(x)=x^{\sqrt{2}}=e^{f(x)} \rightarrow \ln \left(x^{\sqrt{2}}\right)=\ln \left(e^{f(x)}\right)
$$

so $\sqrt{2} \ln x=f(x)$ so $g(x)=e^{\sqrt{2} \ln x}$
Russ $g^{\prime}(x)=e^{\sqrt{2} \ln x} \cdot \sqrt{2} \frac{1}{x}=\sqrt{2} x^{\sqrt{2}-1}$

$f(x)$	$f^{\prime}(x)$
x^{3}	$3 x^{2}$
$x^{3 / 2}$	$\frac{3}{2} x^{1 / 2}$
$x^{\sqrt{2}}$	$\sqrt{2} x^{\sqrt{2-1}}$
x^{r}	$r x^{n-1}$

$$
\begin{aligned}
& \frac{-x^{3}}{\frac{n u n}{h}}=\frac{3 x^{2} h+\left(\frac{-x^{3} h^{2} h^{2}}{h} h^{2} h h_{0} h\right)}{h}
\end{aligned}
$$

Meaning of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

If $f^{\prime}(x)>0$ The f is I to resh
 and d to left

If $f^{\prime}(x)<0$ Tresfist torast and n to left

$$
\begin{array}{ll}
f(x)=x^{3} & \text { if } f^{\prime}(x)=0 \text { sag } x \text { is acritisi point } \\
f^{\prime}(x)=3 x^{2} & \text { This } 15 \text { a CANDiDATE fora } \\
f^{\prime \prime}(x)=6 x & \text { local max } / \min
\end{array}
$$

A.2.1 Intermediate Value Theorem

Theorem A.2.1 (Intermediate Value Theorem (IVT)). Let f be a continuous function on $[a, b]$. For all C between $f(a)$ and $f(b)$ there exists $a c \in[a, b]$ such that $f(c)=C$. In other words, all intermediate values of a continuous function are obtained.

Sketch of the proof. We proceed by Divide and Conquer. Without loss of generality, assume $f(a)<C<f(b)$. Let x_{1} be the midpoint of $[a, b]$. If $f\left(x_{1}\right)=C$ we are done. If $f\left(x_{1}\right)<C$, we look at the interval $\left[x_{1}, b\right]$. If $f\left(x_{1}\right)>C$ we look at the interval $\left[a, x_{1}\right]$.

In either case, we have a new interval, call it $\left[a_{1}, b_{1}\right]$, such that $f\left(a_{1}\right)<C<$ $f\left(b_{1}\right)$ and the interval has half the size of $[a, b]$. We continue in this manner, repeatedly taking the midpoint and looking at the appropriate half-interval.

If any of the midpoints satisfy $f\left(x_{n}\right)=C$, we are done. If no midpoint works, we divide infinitely often and obtain a sequence of points x_{n} in intervals $\left[a_{n}, b_{n}\right]$. This is where rigorous mathematical analysis is required (see \S A. 3 for a brief review, and [Rud] for complete details) to show x_{n} converges to an $x \in(a, b)$.

For each n we have $f\left(a_{n}\right)<C<f\left(b_{n}\right)$, and $\lim _{n \rightarrow \infty}\left|b_{n}-a_{n}\right|=0$. As f is continuous, this implies $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} f\left(b_{n}\right)=f(x)=C$.

Theorem A.2.2 (Mean Value Theorem (MVT)). Let $f(x)$ be differentiable on $[a, b]$. Then there exists $a c \in(a, b)$ such that

$$
\begin{equation*}
f(b)-f(a)=f^{\prime}(c) \cdot(b-a) \tag{A.14}
\end{equation*}
$$

We give an interpretation of the Mean Value Theorem. Let $f(x)$ represent the distance from the starting point at time x. The average speed from a to b is the distance traveled, $f(b)-f(a)$, divided by the elapsed time, $b-a$. As $f^{\prime}(x)$ represents the speed at time x, the Mean Value Theorem says that there is some intermediate time at which we are traveling at the average speed.

To prove the Mean Value Theorem, it suffices to consider the special case when $f(a)=f(b)=0$; this case is known as Rolle's Theorem:

Theorem A.2.3 (Rolle's Theorem). Let f be differentiable on $[a, b]$, and assume $f(a)=f(b)=0$. Then there exists $a c \in(a, b)$ such that $f^{\prime}(c)=0$.

Exercise A.2.4. Show the Mean Value Theorem follows from Rolle's Theorem. Hint: Consider

$$
\begin{equation*}
h(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)-f(a) \tag{A.15}
\end{equation*}
$$

Note $h(a)=f(a)-f(a)=0$ and $h(b)=f(b)-(f(b)-f(a))-f(a)=0$. The conditions of Rolle's Theorem are satisfied for $h(x)$, and

$$
\begin{equation*}
h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a} \tag{A.16}
\end{equation*}
$$

Proof of Rolle's Theorem. Without loss of generality, assume $f^{\prime}(a)$ and $f^{\prime}(b)$ are non-zero. If either were zero we would be done. Multiplying $f(x)$ by -1 if needed, we may assume $f^{\prime}(a)>0$. For convenience, we assume $f^{\prime}(x)$ is continuous. This assumption simplifies the proof, but is not necessary. In all applications in this book this assumption will be met.

Case 1: $f^{\prime}(b)<0$: As $f^{\prime}(a)>0$ and $f^{\prime}(b)<0$, the Intermediate Value Theorem applied to $f^{\prime}(x)$ asserts that all intermediate values are attained. As $f^{\prime}(b)<0<f^{\prime}(a)$, this implies the existence of a $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Case 2: $f^{\prime}(b)>0: f(a)=f(b)=0$, and the function f is increasing at a and b. If x is real close to a then $f(x)>0$ if $x>a$. This follows from the fact that

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{A.17}
\end{equation*}
$$

As $f^{\prime}(a)>0$, the limit is positive. As the denominator is positive for $x>a$, the numerator must be positive. Thus $f(x)$ must be greater than $f(a)$ for such x. Similarly $f^{\prime}(b)>0$ implies $f(x)<f(b)=0$ for x slightly less than b.

Therefore the function $f(x)$ is positive for x slightly greater than a and negative for x slightly less than b. If the first derivative were always positive then $f(x)$ could never be negative as it starts at 0 at a. This can be seen by again using the limit definition of the first derivative to show that if $f^{\prime}(x)>0$ then the function is increasing near x. Thus the first derivative cannot always be positive. Either there must be some point $y \in(a, b)$ such that $f^{\prime}(y)=0$ (and we are then done) or $f^{\prime}(y)<0$. By the Intermediate Value Theorem, as 0 is between $f^{\prime}(a)$ (which is positive) and $f^{\prime}(y)$ (which is negative), there is some $c \in(a, y) \subset[a, b]$ such that $f^{\prime}(c)=0$.

Math 150: Multivariable Calculus: Spring 2023: Lecture 03: Review of Calc I and II: https://youtu.be/ICj4EdLh4Ak

Plan for the day.

- Review Calculus I and II.
- Start discussing Calculus III (if time permits).

Derivatives of Standard Functions

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \left(x^{n}\right)^{\prime}=n x^{n-1} \\
& \text { radians }\left\{\begin{array}{ll}
(\sin x)^{\prime} & =\cos x \\
(\cos x)^{\prime} & =-\sin x
\end{array} \quad\right. \text { (minus sig) } \\
& b^{x}=e^{x \log b}=e^{x \operatorname{lo}(b)} \\
& \left(e^{x}\right)^{\prime}=e^{x} \\
& \left(b^{x}\right)^{\prime}=\left(\log _{e} b\right) b^{x} \quad \log b=\ln (b) \\
& \left(\log _{e} x\right)^{\prime}=\frac{1}{x} \\
& \left(\log _{b} x\right)^{\prime}=\frac{1}{\log _{e} b} \frac{1}{x}
\end{aligned}
$$

Useful Rules

Sum Rule:
Constant Rule:
Product Rule:
Quotient Rule:
Chain Rule:

Multiple Rule:
Reciprocal Rule:

$$
\begin{array}{l|l}
h(x)=f(x)+g(x) & h^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x) \\
h(x)=a f(x) & h^{\prime}(x)=a f^{\prime}(x) \\
h(x)=f(x) g(x) & h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
h(x)=\frac{f(x)}{g(x)} & h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
h(x)=g(f(x)) & h^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x) \\
h(x)=(f(x))^{n} & h^{\prime}(x)=n(f(x))^{n-1} \cdot f^{\prime}(x) \\
h(x)=f(a x) & h^{\prime}(x)=a f^{\prime}(a x) \\
h(x)=f(x)^{-1} & h^{\prime}(x)=-f^{\prime}(x) f(x)^{-2}
\end{array}
$$

$$
=\frac{1}{f(x)}
$$

$$
\begin{aligned}
& A(x)=f(x) g(x) \quad A^{\prime}(x) \stackrel{?}{=} f, g, f^{\prime}, g^{\prime} \\
& \begin{array}{ll}
f(x)=x^{n} \\
f^{\prime}(x)=n x^{n-1}
\end{array} \gg \begin{array}{ll}
g(x)=x^{n} & A(x)=x^{n+n} \\
g^{\prime}(x)=n x^{n-1} & A^{\prime}(x)=(n+n) x^{n+m-1}
\end{array} \\
& \frac{g^{\prime}(x) g(x)+f(x) g^{\prime}(x)=A^{\prime}(x)}{f(x)=\sin x \quad g(x)=\cos x \quad A(x)=\sin x \cos x=\frac{1}{2} \sin (2 x)} \\
& f^{\prime}(x)=\cos x \quad g^{\prime}(x)=-\sin x \quad A^{\prime}(x)=\frac{1}{2} \cos (2 x) \cdot 2 \\
& f^{\prime}(x) g(x)+f(x) g^{\prime}(x)=\cos ^{2} x-\sin ^{2} x \\
& =\cos (2 x)
\end{aligned}
$$

Proof of Predect Rek: $A(x)=f(x) g(x)$

$$
\begin{aligned}
& A^{\prime}(x)= \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x)(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
&=\left.\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} g(x+h)+f(x) \frac{g(x+h)-g(x)]}{h}\right] \\
&= \lim _{f^{\prime} \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x) g(x)+f(\underbrace{\lim _{h \rightarrow 0} g(x+h)}+\underbrace{\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}}_{\lim _{h \rightarrow 0} f(x)} \underbrace{g^{\prime}(x)}
\end{aligned}
$$

Linit Caveats

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2}-x\right)=\infty \text { us } \lim _{x \rightarrow \infty} x^{2}-\lim _{x \rightarrow \infty} x=\infty \\
& \lim _{x \rightarrow \infty}\left(x^{2}-x^{2}\right)=0 \\
& \lim _{x \rightarrow 0} \frac{x}{x^{3}}=\infty \\
& x \rightarrow 0 \lim _{x \rightarrow 0} x^{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\left(\left(3 x^{2}+\sqrt{\cos x+4 x^{3}}\right)^{\prime} * x^{3}\right)^{2} \\
& f(x)=A(x)^{2} \\
& f^{\prime}(x)=2 A(x) A^{\prime}(x) \\
& \text { Know } A(x)=\left(3 x^{2}+\sqrt{\cos x+4 x^{3}}\right)^{\prime \prime} * x^{3} \\
& =B(x) C(x) \text { and } A^{\prime}(x)=B^{\prime}(x)\left((x)+B(x) C^{\prime}(x)\right. \\
& B(x)=\sim \quad C(x)=x^{3} \\
& B^{\prime}(x)= \\
& C Y x=3 x^{2}
\end{aligned}
$$

$O F \longleftrightarrow$ Chain Rue TO \leftrightarrow Purree

$$
\begin{aligned}
& \int(f(x) g(x))^{\prime} d x=f(x) g(x) \\
& =\int\left[f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right] d x \\
& \text { So } \int f\left(x \left\lvert\, g^{\prime}(x) d x=\frac{\int(f(x) g(x))^{\prime} d x}{f(x) g(x)}-\int f^{\prime}(x) g(x) d x\right.\right. \\
& d v=g^{\prime}(x) d x \quad \frac{d u}{d x}=g^{\prime}(x) \\
& v=g(x) \\
& \left.u=f(x) \quad d u=f^{\prime}(x) \quad d u=f^{\prime}(x) \quad \frac{d x}{d x}\right) \\
& \int u d v=u v-\int v d u
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{\pi / 2} x \cos x d x \\
u=x \\
d u=d x
\end{gathered}
$$

$$
d v=\cos x d x
$$

$$
v=\sin x
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} x \cos x d x=\left.x \sin x\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} \sin x d x \\
& =\left[\frac{\pi}{2}-0\right]+\left.\cos x\right|_{0} ^{\pi / 2} \\
& =\frac{\pi}{2}-1 \\
& \text { Reasonoble? } \\
& 0 \leq x \cos x \leq \frac{\pi}{2}
\end{aligned}
$$

Mex value of $x \cos x$ for $0 \leqslant x \leq \pi / 2$
$x=0$ set $0 \quad x=\pi / 2$ get 0
Critical point: $(x \cos x)^{\prime}=0$
so $1 \cdot \cos x+x(-\sin x)=0$
$\cos x=x \sin x$
$1=x \tan (x)$
x_{c} sultanates $1=x \tan (x)$
max value 's $X_{c} \cos X_{c}$

U-selatitution

$$
A(x)=f(g(x)) \quad A^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

so $\int f^{\prime}(g(x)) g^{\prime}(x) d x=f(g(x))$

$$
\begin{aligned}
E x^{\prime} & =\frac{1}{2} \int e^{x^{2}} d x \\
& =\frac{1}{2} \int e^{x^{2}} \cdot 2 x d x \\
& =\frac{1}{2} e^{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=x^{2} \\
& g^{\prime}(x)=2 x \quad g^{\prime}(x) d x=2 x d x \\
& f(x)=e^{x} \quad f^{\prime}(x)=e^{x} \\
& f(g(x))=e^{x^{2}} \quad f^{\prime}(g(x))=e^{x^{2}}
\end{aligned}
$$

$$
\begin{array}{cl}
\int_{0}^{20} x e^{x^{2}} d x & u-\text { substititon: } u=g(x) \\
u=x^{2} & d u=2 x d x \text { so } x d x=\frac{1}{2} d u \\
x: 0 \rightarrow 20 & u: 0 \rightarrow 400 \\
=\frac{1}{2} \int_{u=0}^{400} e^{u} d u=\left.\frac{1}{2} e^{u}\right|_{0} ^{400}=\frac{1}{2} e^{400}-\frac{1}{2} e^{0}
\end{array}
$$

Math 150: Multivariable Calculus: Spring 2023: Lecture 04: Introduction to Sequences and Series: https://youtu.be/-FGp2M9tMO4

Plan for the day.

- Understanding finite and infinite sums.
- Conjecturing limiting values.
- Famous sequences.

Fun Sequences

$$
\begin{aligned}
& 1=\quad \\
& 1+3=4 \\
& 1+3+5=9 \\
& 1+3+5+7=/ 6 \\
& 1+3+5+7+9=25 \\
& 1+3+5+7+9+11=36
\end{aligned}
$$

$$
1,4,9,16,25,36, \ldots
$$

Conji Sun of hist in adds

Do you notice a pattern? Can you make a conjecture?

Fun Sequences II

$$
\begin{aligned}
& 1=\quad 1 \\
& 1+2=\quad \\
& 1+2+3=6 \\
& 1+2+3+4=10 \\
& 1+2+3+4+5=15 \\
& 1+2+3+4+5+6=21
\end{aligned}
$$

$$
n(n+1) / 2
$$

Do you notice a pattern? Can you make a conjecture?

Our goal is to explore tilings.
What is a tiling?
We have a collection of objects and we want to place them down to cover a space.

For example, imagine you want to cover the floor and the floor is a giant square, say 10 feet by 10 feet. What would be a good shape to use to cover it? We want the shape to be smaller that the floor, and we want all the pieces to fit

Our goal is to explore tilings. What is a tiling?

We have a collection of objects and we want to place them down to cover a space.

For example, imagine you want to cover the floor and the floor is a giant square, say 10 feet by 10 feet. What would be a good shape to use to cover it? We want the shape to be smaller that the floor,

Our goal is to explore tilings. What is a tiling?

We have a collection of objects and we want to place them down to cover a space.

For example, imagine you want to cover the floor and the floor is a giant square, say 10 feet by 10 feet. What would be a good shape to use to cover it? We want the shape to be smaller that the floor, and we want all the pieces to fit

We just continue adding the smaller squares.

Building on our success, as a fun problem see if you can tile larger and larger regions, with no gaps, with the following shapes.

Hexagon

Building on our success, as a fun problem see if you can tile larger and larger regions, with no gaps, with the following shapes.

Note each shape above has all sides of the same length. We saw we can do it with the square. What about the triangle? What about the pentagon?

The I LOVE RECTANGLES Game

If we have an unlimited supply of 1 foot by 1 foot squares, we can cover larger and larger rectangles.

Let's make it more interesting. Imagine now we have EXACTLY ONE of each size square. We have one 1 by 1 rectangle, one 2 by 2 rectangle, one 3 by 3 rectangle, one 4 by 4 rectangle, and so on.

The I LOVE RECTANGLES Game

Let's make it more interesting. Imagine now we have EXACTLY ONE of each size square. We have one 1 by 1 rectangle, one 2 by 2 rectangle, one 3 by 3 rectangle, one 4 by 4 rectangle, and so on.

Here's the rule: we put these squares down ONE AT A TIME, and at EVERY MOMENT IN TIME our shape MUST be a rectangle. Can it be done? Note a square IS a rectangle.

We have one 1 by 1 rectangle, one 2 by 2 rectangle, one 3 by 3 rectangle, one 4 by 4 rectangle, and so on.

Here's the rule: we put these squares down ONE AT A TIME, and at EVERY MOMENT IN TIME our shape MUST be a rectangle. Can it be done? Note a square IS a rectangle.

The I LOVE RECTANGLES Game

Imagine we put the 4 by 4 square down. That gives us a rectangle, so far so good. Can we put down anything else next to it and still have a rectangle?

We have placed a 4 by 4 square.
This is a rectangle!

These are the squares we have left. We have a 1 by 1 , a 2 by 2 , a 3 by 3 , a 5 by 5 , a 6 by (not drawn) and so on. Can we place anything next to the 4 by 4 and still have a rectangle?

The I LOVE RECTANGLES Game

Imagine we put the 4 by 4 square down. That gives us a rectangle, so far so good. Can we put down anything else? Let's try putting down the 3 by 3 .

We have placed a 4 by 4 square. This is a rectangle!

We see the 3 by 3 will not fit next to the 4 by 4 and still give a rectangle!

These are the squares we would have left if we try to use a 3 by 3 . We would have a 1 by 1 , a 2 by 2 , a 5 by 5 , a 6 by 6 (not drawn) and so on.

The I LOVE RECTANGLES Game

In fact, no matter WHAT square we put down first, we cannot put any more down! If we put down a 5 by 5 , to keep it a rectangle we would need something that has a side of length 5 , but we only have ONE of each square!

We have to modify the game. We need to give at least ONE more square. What is the smallest square we can give?

The I LOVE RECTANGLES Game

In fact, no matter WHAT square we put down first, we cannot put any more down! If we put down a 5 by 5 , to keep it a rectangle we would need something that has a side of length 5 , but we only have ONE of each square!

We have to modify the game. We need to give at least ONE more square. What is the smallest square we can give? Answer: a 1 by 1 square! Can we do it now?

The I LOVE RECTANGLES Game

OK, we want to put the squares down one at a time so that we always have a rectangle. We cannot put a square on top of a square. Which should we put down first? Which should we put down second?

The I LOVE RECTANGLES Game

OK, we want to put the squares down one at a time so that we always have a rectangle. We cannot put a square on top of a square. Which should we put down first? Which should we put down second?

Makes sense to start with the two 1 by 1 squares, as they fit! Here is placing the first 1 by 1 square. Now we have one 1 by 1 , one 2 by 2 , one 3 by 3 , and so on.

The I LOVE RECTANGLES Game

OK, we want to put the squares down one at a time so that we always have a rectangle. We cannot put a square on top of a square. Which should we put down first? Which should we put down second?

Makes sense to start with the two 1 by 1 squares, as they fit! Here is placing the second 1 by 1 next to the first 1 by 1 .

The I LOVE RECTANGLES Game

We have placed the two 1 by 1 squares, we have a 2 by 2 , a 3 by 3 , a 4 by 4 , a 5 by 5 and so on. What should we place next to the two 1 by 1 squares so that we still have a rectangle? Note the two 1 by 1 squares have formec

STOP CAN ANSWER THIS!

STOP

The I LOVE RECTANGLES Game

We had a 1 by 2 rectangle, so we need a square that has a side of length 1 or a side of length 2. Looking at our squares, we see we can use the 2 by 2 square!
Building on this success, what should we put down next? Note we now have a rectangle that is 2 by $3 \ldots$

The I LOVE RECTANGLES Game

We had a 2 by 3 rectangle, so we need a square that has a side of length 2 or a side of length 3 . Looking at our squares, we see we can use the 3 by 3 square!
Building on this success, what should we put down next? Note we now have a 3 by 5 rectangle.

SPEND A MOMENT AND SEE IF YOU CAN ANSWER THIS!

The I LOVE RECTANGLES Game

We had a 2 by 3 rectangle, so we need a square that has a side of length 2 or a side of length 3 . Looking at our squares, we see we can use the 3 by 3 square!
Building on this success, what should we put down next? Note we now have a 3 by 5 rectangle. Hint: the 4 by 4 square does not fit!

SPEND A MOMENT AND SEE IF YOU CAN ANSWER THIS!

The I LOVE RECTANGLES Game

We had a 3 by 5 rectangle. Looking at our squares, we see we can use the 5 by 5 square!
Building on this success, what should we put down next? Note we now have a 5 by 8 rectangle. The 4 by 4 is too small, we still have a 6 by $6, \ldots$.

We still have a 6 by 6, a 7 by 7, an 8 by 8 , a 9 by 9 (not drawn), a 10 by 10 (not drawn), and so on.....

The I LOVE RECTANGLES Game

We had a 5 by 8 rectangle. We need to add something with a side of length 5 or 8 . Thus we won't use the 4 by 4 , the 6 by 6 or the 7 by 7 , but we will use the 8 by $8 \ldots .$.

The I LOVE RECTANGLES Game

We write down the squares used in the order used:
1 by 1,1 by 1,2 by 2,3 by 3,5 by 5,8 by $8, \ldots$.

The I LOVE RECTANGLES Game

Let's just write down the side lengths of the squares in the order used:
$1,1,2,3,5,8, \ldots$ DO YOU NOTICE A PATTERN?

The I LOVE RECTANGLES Game

Let's just write down the side lengths of the squares in the order used (we'll add a few more terms to the sequence):
$1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots$ DO YOU NOTICE A PATTERN?

The I LOVE RECTANGLES Game

Let's just write down the side lengths of the squares in the order used:
$1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots$.
We start 1, 1, and then after that each term is the sum of the previous two terms! $2=1+1,3=2+1,5=3+2,8=5+3$, and so on. Can you continue the pattern?

The Fibonacci Sequence

The numbers
$1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots$. are called the Fibonacci numbers, and have many wondrous properties. See for example
https://www.youtube.com/watch?v=me6Dnl2DOtM .

ADVANCED TOPIC!

Advanced: you can calculate area two ways. It is length times width, which here is 21 by 34 . It is also the sum of the areas of each square, which is $1^{2}+1^{2}+2^{2}+3^{2}+$ $5^{2}+8^{2}+13^{2}+21^{2}$. These are equal! You can thus prove the sum of the squares of the first n Fibonacci numbers is the $\mathrm{n}^{\text {th }}$ Fibonacci number times the $(\mathrm{n}+1)^{\text {st }}$ Fibonacci number!

What is $\frac{100}{9801} ?$

What is $\frac{10100}{970299} ?$

What is $\frac{100}{9899} ?$

What is $\frac{100}{9801} ?$ 9801

What is $\frac{10100}{970299} \quad 0.010409162536496482012$

What is $\frac{100}{9899} \quad 0.01010203050813213455904636$

0.0102030405060708091011121314151617181920212223242526272829303 13233343536373839404142434445464748495051525354555657585960616 26364656667686970717273747576777879808182838485868788899091929 3949596979900010

The Geometric Series Formula

From Shooting Hoops to the Geometric Series Formula

$$
\begin{aligned}
&|x|<1 \quad S_{n}=1+x+\cdots+x^{n} \\
& x S_{n}=\frac{x+\cdots+x^{n}+x^{n+1}}{(1-x) S_{n}}=1-x^{n+1} \\
& \text { so } S_{n}=\frac{1}{1-x}-\frac{x^{n+1}}{1-x} \\
& \text { if }|x|<1 \text { as } n \rightarrow \infty \quad \text { Sn } \rightarrow \frac{1}{1-x}
\end{aligned}
$$

The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is one of the few sums we can evaluate exactly.

If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots=\frac{1}{1-r}$.

This is often proved by first computing the finite sum, up to r^{n}, and taking a limit. Note since $|r|<1$ that each term r^{n} gets small fast.....

The Geometric Series Converges if $|r|<1$

$$
1+r+r{ }_{2}^{2}+{ }_{h}^{3} r 3_{k}^{y}+r 4+\cdots=\frac{1}{1-r} \text {. }
$$

Why does this converge? Take $r=1 / 2$. We then have $1+1 / 2+1 / 4+\ldots .=\frac{1}{1-\frac{1}{2}}=$ 2 , and we can view this as we start at 0 , and each step covers half the distance to 2 . We thus never rearh it in finitelv manv stens hut we rover half the ground each tir

The Geometric Series Converges if $|r|<1$

$$
1+r+r 2+r 3+r 4+\cdots=\frac{1}{1-r}
$$

Why does this converge? Take $r=1 / 2$. We then have $1+1 / 2+1 / 4+\ldots .=\frac{1}{1-\frac{1}{2}}=$ 2 , and we can view this as we start at 0 , and each step covers half the distance to 2 . We thus never rearh it in finitelv manv stens hut we rover half the ground each time

The Geometric Series Converges if $|r|<1$

$$
1+r+r 2+r 3+r 4+\cdots=\frac{1}{1-r}
$$

Why does this converge? Take $r=1 / 2$. We then have $1+1 / 2+1 / 4+\ldots .=\frac{1}{1-\frac{1}{2}}=$ 2 , and we can view this as we start at 0 , and each step covers half the distance to 2 . We thus never reach it in finitelv manv steds, but we cover half the ground each time

The Geometric Series Converges if $|r|<1$

$$
1+r+r 2+r 3+r 4+\cdots=\frac{1}{1-r}
$$

Why does this converge? Take $r=1 / 2$. We then have $1+1 / 2+1 / 4+\ldots .=\frac{1}{1-\frac{1}{2}}=$ 2 , and we can view this as we start at 0 , and each step covers half the distance to 2 . We thus never reach it in finitely many steps, but we cover half the ground each time

The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is one of the few sums we can evaluate exactly.

Lemma: If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$.
Proof: Let $S_{n}=1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}$
Then $\quad r S_{n}=r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}+r^{n+1}$
What should we do now?

The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is one of the few sums we can evaluate exactly.

Lemma: If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$.
Proof: Let $S_{n}=1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}$
Then $\quad r S_{n}=r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}+r^{n+1}$
Subtract: $S_{n}-r S_{n}=1-r^{n+1}$,
So (1-r) $S_{n}=1-r^{n+1}$, or S_{n}

The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is one of the few sums we can evaluate exactly.

Lemma: If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$.
Proof: Let $S_{n}=1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}$
Then $\quad r S_{n}=r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}+r^{n+1}$
Subtract: $S_{n}-r S_{n}=1-r^{n+1}$,
So (1-r) $S_{n}=1-r^{n+1}$, or $S_{n}=\frac{1-r^{n+1}}{1-r}$.
If we let n go to infinity, we see $\mathrm{r}^{\mathrm{n}+1}$ goes to

The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It is one of the few sums we can evaluate exactly.

Lemma: If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$.
Proof: Let $S_{n}=1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}$
Then $r S_{n}=r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}+r^{n+1}$
Subtract: $S_{n}-r S_{n}=1-r^{n+1}$,
So (1-r) $S_{n}=1-r^{n+1}$, or $S_{n}=\frac{1-r^{n+1}}{1-r}$.
If we let n go to infinity, we see $\mathrm{r}^{\mathrm{n}+1}$ goes to 0 , so we get the infinite sum is $\frac{1}{1-r}$.

Simpler Game: Hoops

Game of hoops: first basket wins, alternate shooting.

We will prove the Geometric Series Formula just by studying this basketball game!

Simpler Game: Hoops: Mathematical Formulation

Bird and Magic (l'm old!) alternate shooting; first basket wins.

- Bird always gets basket with probability p.
- Magic always gets basket with probability q.

Let x be the probability Bird wins - what is x ?

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.

Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.
- Bird wins on $3^{\text {rd }}$ shot: $(1-p)(1-q) \cdot(1-p)(1-q) \cdot p$.

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.
- Bird wins on $3^{\text {rd }}$ shot: $(1-p)(1-q) \cdot(1-p)(1-q) \cdot p$.
- Bird wins on $\mathrm{n}^{\text {th }}$ shot:

$$
(1-p)(1-q) \cdot(1-p)(1-q) \cdots(1-p)(1-q) \cdot p
$$

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.
- Bird wins on $3^{\text {rd }}$ shot: $(1-p)(1-q) \cdot(1-p)(1-q) \cdot p$.
- Bird wins on $\mathrm{n}^{\text {th }}$ shot:

$$
(1-p)(1-q) \cdot(1-p)(1-q) \cdots(1-p)(1-q) \cdot p
$$

Let $r=(1-p)(1-q)$. Then

$$
\begin{aligned}
x & =\operatorname{Prob}(\text { Bird wins }) \\
& =p+r p+r^{2} p+r^{3} p+\cdots \\
& =p\left(1+r+r^{2}+r^{3}+\cdots\right)
\end{aligned}
$$

the geometric series.

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) * ? ? ?
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x
$$

Thus

$$
(1-r) x=p \quad \text { or } \quad x=\frac{p}{1-r}
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right)
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x
$$

Thus

$$
(1-r) x=p \quad \text { or } \quad x=\frac{p}{1-r}
$$

As $x=p\left(1+r+r^{2}+r^{3}+\cdots\right)$, find

$$
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}
$$

Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:
If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots=\frac{1}{1-r}$.

We proved this when $r=(1-p)(1-q)$, where p and q are the probabilities of making a basket for Bird and Magic. What are the ranges for p and q ? We have what range of p and q ?

Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:
If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots=\frac{1}{1-r}$.

We proved this when $r=(1-p)(1-q)$, where p and q are the probabilities of making a basket for Bird and Magic. What are the ranges for p and q ? We have $0 \leq p, q \leq 1$ BUT we cannot have $p=q=0$, or the game never ends. Thus we only proved the Geometric Series Formula for what range of r ?

Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:
If $|r|<1$ then $1+r+r^{2}+r^{3}+r^{4}+\ldots=\frac{1}{1-r}$.

We proved this when $r=(1-p)(1-q)$, where p and q are the probabilities of making a basket for Bird and Magic. What are the ranges for p and q ? We have $0 \leq p, q \leq 1$ BUT we cannot have $p=q=0$, or the game never ends. Thus we only proved the Geometric Series Formula for $0 \leq r<1$. Is there a way to deduce the formula for $|r|<1$ and r negative from what we have already done? (YES)
\diamond Power of Perspective: Memoryless process.
\diamond Can circumvent algebra with deeper understanding! (Hard)
\diamond Depth of a problem not always what expect.
\diamond Importance of knowing more than the minimum: connections.
\diamond Math is fun!

New Sum: The Harmonic Series

The Harmonic Series $\left\{\mathrm{H}_{\mathrm{n}}\right\}$ is defined as the sequence where $H n=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
Thus the first few terms are
-1,

- $1+1 / 2=3 / 2=1.5$,
- $1+1 / 2+1 / 3=11 / 6$ or about 1.83,
- $1+1 / 2+1 / 3+1 / 4=25 / 12$ or about 2.08
- $\mathrm{H}_{100}=\quad$ or about 5.18
- H_{10000} is $\frac{14466636279520351166221518043104131447711}{27881500918849986581352357412492142272}$
- $\mathrm{H}_{1000000}$ is about 14.3927; the terms are growing but VERY slowly.....

The Harmonic Series Diverges!

The Harmonic Series $\left\{\mathrm{H}_{n}\right\}$ is the sequence where $H n=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.

Let H be the limit as n goes to infinity of H_{n}, thus it is the sum of the reciprocals of integers. We claim $\mathrm{H}=\infty$, so the sum diverges

Proof: Assume H is finite, let $H_{\text {even }}$ be the sum of the reciprocals of even numbers, $H_{\text {odd }}$ the sum of the odd terms.
Hodd $=\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots \quad$ Heven $=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\cdots$

As $1 / 1>1 / 2,1 / 3>1 / 4$, what can you say about the size of $H_{\text {odd }}$ versus the size of $H_{\text {even }}$?

The Harmonic Series Diverges!

The Harmonic Series $\left\{\mathrm{H}_{n}\right\}$ is the sequence where $H n=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.

Let H be the limit as n goes to infinity of H_{n}, thus it is the sum of the reciprocals of integers. We claim $\mathrm{H}=$ ∞, so the sum diverges

Proof: Assume H is finite, let $H_{\text {even }}$ be the sum of the reciprocals of even numbers, $H_{\text {odd }}$ the sum of the odd terms. As $1 / 1>1 / 2,1 / 3>1 / 4$, and so on we see the sum of the odd terms is larger than the sum of the evens.

Thus $\mathrm{H}=\mathrm{H}_{\text {even }}+\mathrm{H}_{\text {odd }}>\mathrm{H}_{\text {even }}+\mathrm{H}_{\text {even }}=2 \mathrm{H}_{\text {even }}$.
Note however that $H_{\text {even }}=1 / 2+1 / 4+1 / 6+1 / 8+\ldots=\frac{1}{2}(1+1 / 2+1 / 3+1 / 4+\ldots)=\frac{1}{2} H$.
Why is this true?

The Harmonic Series Diverges!

The Harmonic Series $\left\{\mathrm{H}_{n}\right\}$ is the sequence where $H n=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.

Let H be the limit as n goes to infinity of H_{n}, thus it is the sum of the reciprocals of integers. We claim $\mathrm{H}=$ ∞, so the sum diverges

Proof: Assume H is finite, let $H_{\text {even }}$ be the sum of the reciprocals of even numbers, $H_{\text {odd }}$ the sum of the odd terms. As $1 / 1>1 / 2,1 / 3>1 / 4$, and so on we see the sum of the odd terms is larger than the sum of the evens.

Thus $\mathrm{H}=\mathrm{H}_{\text {even }}+\mathrm{H}_{\text {odd }}>\mathrm{H}_{\text {even }}+\mathrm{H}_{\text {even }}=2 \mathrm{H}_{\text {even }}$.
Note however that $H_{\text {even }}=1 / 2+1 / 4+1 / 6+1 / 8+\ldots=\frac{1}{2}(1+1 / 2+1 / 3+1 / 4+\ldots)=\frac{1}{2} H$.
So $\mathrm{H}>2 \mathrm{H}_{\text {even }}=2 * \frac{1}{2} \mathrm{H}=\mathrm{H}$; why is this a contradiction?

The Harmonic Series Diverges!

The Harmonic Series $\left\{H_{n}\right\}$ is the sequence where $H n=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.

Let H be the limit as n goes to infinity of H_{n}, thus it is the sum of the reciprocals of integers. We claim $\mathrm{H}=$ ∞, so the sum diverges

Proof: Assume H is finite, let $H_{\text {even }}$ be the sum of the reciprocals of even numbers, $H_{\text {odd }}$ the sum of the odd terms. As $1 / 1>1 / 2,1 / 3>1 / 4$, and so on we see the sum of the odd terms is larger than the sum of the evens.

Thus $\mathrm{H}=\mathrm{H}_{\text {even }}+\mathrm{H}_{\text {odd }}>\mathrm{H}_{\text {even }}+\mathrm{H}_{\text {even }}=2 \mathrm{H}_{\text {even }}$.
Note however that $H_{\text {even }}=1 / 2+1 / 4+1 / 6+1 / 8+\ldots=\frac{1}{2}(1+1 / 2+1 / 3+1 / 4+\ldots)=\frac{1}{2} H$.
So $H>2 H_{\text {even }}=2 * \frac{1}{2} H=H$; but H cannot be larger than H, contradiction, thus our assumption that H converges is false!

The Harmonic Series Diverges!

The Harmonic Series $\left\{\mathrm{H}_{\mathrm{n}}\right\}$ is the sequence where $H n=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.
The divergence of this sum is so important we give another proof.
$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\cdots$

If we group terms together, we can get infinitely many sums that are more than $1 / 2$, so it diverges.

What should we group with $1 / 3$ to get terms that sum to more than $1 / 2$?

The Harmonic Series Diverges!

The Harmonic Series $\left\{\mathrm{H}_{n}\right\}$ is the sequence where $H n=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.
The divergence of this sum is so important we give another proof.

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\cdots
$$

If we group terms together, we can get infinitely many sums that are more than $1 / 2$, so it diverges.
Note $1 / 3$ and $1 / 4$ are each at least $1 / 4$, so their sum is at least $2 * 1 / 2=1 / 2$.
Note $1 / 5, \ldots, 1 / 8$ are each at least $1 / 8$, so their sum is at least $4 * 1 / 8=1 / 2$.
Note $1 / 9, \ldots, 1 / 16$ are each at least $1 / 16$, so their sum is at least $8 * 1 / 16=1 / 2$.

Math 150: Multivariable Calculus: Spring 2023:
Lecture 05: Sequences and Series: https://youtu.be/gtLVCKB32B8
Plan for the day.

- Understanding finite and infinite sums.
- Limit Laws.

Calculus 4th Edition

- Convergence / Divergence Tests.

Author(s)	Jon Rogawski; Colin Adams; Robert Franzosa
Publisher	W.H. Freeman \& Company
Format	Reflowable
Print ISBN	9781319050733,1319050735
eText ISBN	9781319055844,1319055842
Edition	4 th
Copyright	2019

DEFINITION

Sequence

A sequence $\left\{a_{n}\right\}_{\text {is an ordered collection of numbers defined by a function }} f$ on a set of sequential integers. The values $a_{n}=f(n)$ are called the terms of the sequence, and n is called the index. Informally, we think of a sequence $\left\{a_{n}\right\}$ as a list of terms:
$a_{1}, \quad a_{2}, \quad a_{3}, \quad a_{4}, \quad \ldots$
The sequence does not have to start at $n=1$. It can start at $n=0, n=2$, or any other integer.

DEFINITION

Limit of a Sequence

We say $\left\{a_{n}\right\}$ converges to a limit L and write
$\lim _{n \rightarrow \infty} a_{n}=L \quad$ or $\quad a_{n} \rightarrow L$

if, for every $\epsilon>0$, there is a number M such that $\left|a_{n}-L\right|<\epsilon_{\text {for all }} n>M$.

- If no limit exists, we say that $\left\{a_{n}\right\}$ diverges.
- If the terms increase without bound, we say that $\left\{a_{n}\right\}$ diverges to infinity.

DEFINITION

Limit of a Sequence

We say $\left\{a_{n}\right\}$ converges to a limit L and write
$\lim _{n \rightarrow \infty} a_{n}=L \quad$ or $\quad a_{n} \rightarrow L$
if, for every $\epsilon>0$, there is a number M such that $\left|a_{n}-L\right|<\epsilon_{\text {for all }} n>M$.

- If no limit exists, we say that $\left\{a_{n}\right\}$ diverges.
- If the terms increase without bound, we say that $\left\{a_{n}\right\}$ diverges to infinity.

THEOREM 2

Limit Laws for Sequences
Assume that $\left\{a_{n}\right\}_{\text {and }}\left\{b_{n}\right\}$ are convergent sequences with
$\lim _{n \rightarrow \infty} a_{n}=L, \quad \lim _{n \rightarrow \infty} b_{n}=M \quad$ Li M are finite
Then

$$
\text { i. } \lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}=L \pm M
$$

ii. $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)=L M$ $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}=\frac{L}{M} \quad$ if $M \neq 0$
iii.
$\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}=c L \quad$ for any constant c

THEOREM 3

Squeeze Theorem for Sequences

Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}_{\text {be sequences such that for some number }} M$,

$$
b_{n} \leq a_{n} \leq c_{n} \quad \text { for } n>M \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=L
$$

Then $\lim _{n \rightarrow \infty} a_{n}=L$.

DEFINITION

Bounded Sequences

A sequence $\left\{a_{n}\right\}_{\text {is }}$

- Bounded from above if there is a number M such that $a_{n} \leq M_{\text {for all }} n$. The number M is called an upper bound.
- Bounded from below if there is a number m such that $a_{n} \geq m_{\text {for all }} n$. The number m is called a lower bound.

The sequence $\left\{a_{n}\right\}_{\text {is called bounded if it is bounded from above and below. A sequence that is not bounded is called }}$ an unbounded sequence.

THEOREM 6

Bounded Monotonic Sequences Converge

- If $\left\{a_{n}\right\}_{\text {is increasing and }} a_{n} \leq M$, then $\left\{a_{n}\right\}_{\text {converges and }} \lim _{n \rightarrow \infty} a_{n} \leq M$.
- If $\left\{a_{n}\right\}_{\text {is decreasing and }} a_{n} \geq m$, then $\left\{a_{n}\right\}_{\text {converges and }} \lim _{n \rightarrow \infty} a_{n} \geq m$.

Say $\left\{a_{n}\right\}$'s bounded free above hut not increasing! Must it conugsc? No
\rightarrow consider $\left\{a_{n}\right\}=(-1)^{n}:$ doesn't converge
Plot $\quad M+\begin{array}{lll}\uparrow & a_{3} \\ a_{n} \\ i & a_{1} & a_{n}\end{array}$

Convergence of an Infinite Series

An infinite series $\sum_{n=k}^{\infty} a_{n}$ converges to the sum S if the sequence of its partial sums $\left\{S_{N}\right\}_{\text {converges to }} S$:

$\lim _{N \rightarrow \infty} S_{N}=S$
 $N \rightarrow \infty$

In this case, we write $S=\sum_{n=k}^{\infty} a_{n}$.

- If the limit does not exist, we say that the infinite series diverges.
- If the limit is infinite, we say that the infinite series diverges to infinity.

Geometric

$$
S_{N}=1+x+x^{2}+\cdots+x^{N}
$$

$$
\begin{aligned}
& =\frac{1-x^{2+1}}{1-x} \\
& =\frac{1}{1-x}-\frac{x^{2+1}}{1-x}
\end{aligned}
$$

$$
\lim _{N \rightarrow \infty} S_{N}=\frac{1}{1-x} \quad \text { if }|x|<1
$$

THEOREM 1

Linearity of Infinite Series

If $\sum a_{n}$ and $\sum b_{n}$ converge, then $\sum\left(a_{n}+b_{n}\right), \sum\left(a_{n}-b_{n}\right)$, and $\sum c a_{n}$ also converge, the latter for any constant c. Furthermore,

$$
\begin{aligned}
\sum\left(a_{n}+b_{n}\right) & =\sum a_{n}+\sum b_{n} \\
\sum\left(a_{n}-b_{n}\right) & =\sum a_{n}-\sum b_{n} \\
\sum c a_{n} & =c \sum a_{n}
\end{aligned}
$$

$$
\text { (} c \text { any constant) }
$$

Partial Sums of a Geometric Series

For the geometric series $\sum_{n=0}^{\infty} c r^{n}$ with $r \neq 1$,
$S_{N}=c+c r+c r^{2}+c r^{3}+\cdots+c r^{N}=\frac{c\left(1-r^{N+1}\right)}{1-r}$

THEOREM 3

Sum of a Geometric Series

Let $c \neq 0$. ${ }_{\text {If }}|r|<1$, then
$\sum_{n=0}^{\infty} c r^{n}=c+c r+c r^{2}+c r^{3}+\cdots=\frac{c}{1-r}$

If $|r| \geq 1$, then the geometric series diverges.

THEOREM 4
nth Term Divergence Test

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0, \text { then the series } \sum_{n=1}^{\infty} a_{n} \text { diverges. }
$$

If a_{n} too Pred There is on ε such That There are intindily ninny n with $\left|a_{n}\right|>\varepsilon$

Example! $a_{n}=\frac{1}{1000}+\frac{(-1)^{1}}{2000}$
Notation: -1 Doerexists and t for all

THEOREM 2

Integral Test

Let $a_{n}=f(n)$, where f is a positive, decreasing, and continuous function of x for $x \geq 1$.
i. If $\int_{1}^{\infty} f(x) d x \sum_{\text {converges, then }}^{\infty} a_{n}$ converges.
ii. If $\int_{1}^{\infty} f(x) d x \sum_{\text {diverges, then }}^{\infty} a_{n}$ diverges.

$a_{0}=1 / 1 \quad f(x)=1 / x$ replace 1 win x

$$
\sum_{n=1}^{\infty} \frac{1}{n} \text { dirogls }
$$

$$
\begin{aligned}
& \int_{1}^{n} \frac{1}{x} d x \leqslant \sum_{m=1}^{n} a_{n} \cdot 1 \\
& \int_{1}^{1} \frac{1}{x} d x+1 \geqslant \sum_{m=1}^{1} a_{m i l}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m=1}^{n} \frac{1}{m} \approx \int_{1}^{n} \frac{1}{x} d x \\
&=\left.\ln (x)\right|_{1} ^{1}=\ln (n) \\
& 0 \\
&\left.\log (x)\right|_{1} ^{1}=\log (n)
\end{aligned}
$$

THEOREM 4

Direct Comparison Test
Assume that there exists $M>0$ such that $0 \leq a_{n} \leq b_{n}$ for $n \geq M$.
false:

$$
\sum_{n=1}^{\infty} b_{n}
$$

$$
\sum_{n=1}^{\infty} a_{n}
$$

lat $a_{n}=-1$
i. If $\sum_{n=1}^{\infty} b_{n} \sum_{\text {converges, then }}^{\infty} a_{n=1}^{\infty} a_{n}$ also converges.

$$
\text { If just had } a_{n} s b_{n}
$$

ii. If $n=1 \quad \sum_{\text {diverges, then }}^{\infty} \sum_{n=1}^{\infty} b_{n}$ also diverges.
if $E b_{n}$ diverges or thing
if Elan concusses! nothing
1.1. 10.1: Sequences - Problems. \#1: Exercise 10.1.24: Determine the limit of $a_{n}=\frac{n}{\sqrt{n^{3}+1}}$. \#2: Exercise 10.1.62. Find the limit of $b_{n}=n!/ \pi^{n}$. \#3: Exercise 10.1.68. Use L'Hopital's Rule to find the limit of $b_{n}=\sqrt{n} \ln \left(1+\frac{1}{n}\right)$.
1.2. 10.2: Summing an Infinite Series - Problems. \#1: Exercise 10.2.15: Find the sum of $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots$.\#2: Exercise 10.2.18: Use the nth Term Divergence Test to prove that $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}$ diverges. \#3: Exercise 10.2.27: Evaluate $\sum_{n=3}^{\infty}\left(\frac{3}{11}\right)^{-n}$. \#4: Exercise 10.2.37: Evaluate $\frac{7}{8}-\frac{49}{64}+\frac{343}{512}-\frac{2401}{4096}+\cdots$.
1.3. 10.3: Convergence of Series with Positive Terms - Problems. \#1: Exercise 10.3.10: Use the Integral Test to determine whether $\sum_{n=1}^{\infty} n e^{-n^{2}}$ is a convergent infinite series. \#2: Exercise 10.3.25. Use the Direct Comparison Test to determine whether $\sum_{n=1}^{\infty} \frac{2}{3^{n}+3^{-n}}$ is a convergent infinite series. \#3: Exercise 10.3.57: Determine convergence or divergence for $\sum_{k=1}^{\infty} 4^{1 / k}$. \#4: Exercise 10.3.68: Determine convergence or divergence for $\sum_{n=1}^{\infty} \frac{\sin (1 / n)}{\sqrt{n}}$.

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \quad \lim _{\operatorname{lom}_{x \rightarrow a} \frac{f(x)}{g(x)}}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad f(a)=5(a)=0 \\
& i f(x)-g \cdot(a) \\
& x \operatorname{lop}_{x \rightarrow a} \quad \frac{1}{x-a}
\end{aligned}
$$

Math 150: Multivariable Calculus: Spring 2023:
Lecture 06: Sequences and Series: https://youtu.be/kOIOjyHQtNc
Plan for the day.

- Absolute and Conditional Convergence.
- Alternating Series.

Calculus 4th Edition

- Convergence / Divergence Tests.

Author(s)	Jon Rogawski; Colin Adams; Robert Franzosa
Publisher	W.H. Freeman \& Company
Format	Reflowable
Print ISBN	9781319050733,1319050735
eText ISBN	9781319055844,1319055842
Edition	4th
Copyright	2019

DEFINITION

Absolute Convergence
The series $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|_{\text {converges. }}$
THEOREM 1

$$
\begin{aligned}
& \text { Ex: } \\
& \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots \\
& \frac{1}{2}(\underbrace{\frac{1}{1}-\frac{1}{3}}_{\frac{2}{1 \cdot 3}}+\underbrace{\frac{1}{3}-\frac{1}{5}}_{\frac{2}{3}}+\underbrace{\frac{1}{5}-\frac{1}{7}}_{\frac{2}{5.7}}+\cdots)
\end{aligned}
$$

Absolute Convergence Implies Convergence
If $\sum\left|a_{n}\right|_{\text {converges, then }} \sum a_{n}$ also converges.
DEFINITION

$$
\begin{aligned}
& \frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots \\
& d \text { verges } b_{n}=\frac{1}{2 n-1} \\
& a_{n}=\frac{1}{2 n} \text { ham } b_{n} \geqslant a_{n}
\end{aligned}
$$

Conditional Convergence
An infinite series $\sum a_{n}$ converges conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|_{\text {diverges. }}$

Alternating Series Test

Assume that $\left\{b_{n}\right\}$ is a positive sequence that is decreasing and converges to 0 :

$$
b_{1}>b_{2}>b_{3}>b_{4}>\cdots>0, \quad \lim _{n \rightarrow \infty} b_{n}=0
$$

Then the following alternating series converges:

Fulthermore, if
then
$0<S<b_{1}$ and $S_{p}<S<S_{q}$ for p even and q odd

THEOREM 1

Ratio Test

Assume that the following limit exists:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|
$$

i. If $\rho<1$, then $\sum a_{n}$ converges absolutely.
ii. If $\rho>1$, then $\sum a_{n}$ diverges.
iii. If $\rho=1$, the test is inconclusive.

Ex: $a_{n}=r^{n}$

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{r^{n+1}}{r^{n}}\right|=\lim _{n \rightarrow \infty}|r|
$$

convoge if $|r|<1$, divide $|f| r|>|$

$$
\begin{aligned}
& \varepsilon_{x} a_{n}=1 / n \\
& \rho=\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{n+1}}{\frac{1}{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{n+1}=1
\end{aligned}
$$

no information
$E_{x} \cdot a_{n}=1 / n^{2}$ corvees by the intagal test

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{1 /(n+1)^{2}}{1 / n^{2}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1
$$

no information

Sketch of Prof
Assume $p=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$

$\exists \varepsilon>0$ such that $\forall n$ sufficiently lase $\left|\frac{a_{n+1}}{a_{n}}\right|<\rho+\varepsilon<1$ $\left|a_{n+1}\right| \leq(p+\varepsilon)\left|a_{n}\right|$ for $n b \mathrm{cg}$
$\left|a_{n+2}\right| \leqslant(p+\varepsilon)\left|a_{n+1}\right| \leqslant(p+\varepsilon)^{2}\left|a_{n}\right|$
$\left|a_{n+3}\right| \leq(p+\varepsilon)\left|a_{n+2}\right| \leq(p+\varepsilon)^{3}\left|a_{n}\right|$

$$
\left\lvert\, a_{n}(+\left|a_{n+1}\right|+\left|a_{n+2}\right| t \cdots \leqslant\left|a_{n}\right|(\underbrace{1+\rho+\varepsilon)+(p+\varepsilon)^{2}+\cdots}_{\frac{1}{1-\rho+c)}})\right.
$$

Converges

THEOREM 2
Root Test

Assume that the following limit exists:
Ex: $a_{n}=1 / n!$ consider $\sum_{n=1}^{\infty} 1 / n!$

$$
1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{220}+\cdots
$$

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \\
& \text { i. If } L<1 \text {, then } \sum a_{n} \text { converges absolutely. } \\
& \text { ii. If } L>1 \text {, then } \sum a_{n} \text { diverges. } \\
& \text { iii. If } L=1 \text {, the test is inconclusive. } \\
& \begin{aligned}
L & =\lim _{n \rightarrow \infty} 1 / n \\
& =\lim _{n \rightarrow \infty}^{n!} \underbrace{\left.\left(\frac{n}{2}\right)^{n / 2}\right)^{n} / n}_{(n \cdot(n-1) \cdots 3 \cdot 2.1)^{1 / n}}
\end{aligned}
\end{aligned}
$$

Compuison test:
ably, $1 / n!\leq 1 / n^{2}$ conveges

$$
\frac{1}{n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1} \text { us } \frac{1}{n^{2}}
$$

Comparison $1 / n!\leq 1 / 2 n$ if a is big

$$
\begin{aligned}
\text { Ratio! } \rho & =\lim _{n \rightarrow \infty} \frac{1 /(n+1)!}{1 / n!}=\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n+1}=0 \text { Converges }
\end{aligned}
$$

1.4. 10.4: Absolute and Conditional Convergence - Problems. \#1: Exercise 10.4.7: Determine whether the series converges absolutely, conditionally, or not at all: $\sum_{n=1}^{\infty}(-1)^{n} e^{-n} / n^{2}$. \#2: Exercise 10.4.26: Determine whether the series converges absolutely, conditionally, or not at all: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!}$. \#3: Exercise 10.4.36: Determine whether the following series converges conditionally: $1-\frac{1}{3}+\frac{1}{2}-\frac{1}{5}+\frac{1}{3}-\frac{1}{7}+\frac{1}{4}-\frac{1}{9}+\frac{1}{5}-\frac{1}{11}+\cdots$.
1.5. 10.5: The Ratio and Root Tests and Strategies for Choosing Tests - Problems. \#1: Exercise 10.5.18: Use the Ratio Test to evaluate $\sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!}$. \#2: Exercise 10.5.25: Show that $\sum_{n=1}^{\infty} \frac{r^{n}}{n}$ converges if $|r|<1$. \#3: Exercise 10.5.40: Use the Root Test to evaluate $\sum_{n=1}^{\infty}\left(2+\frac{1}{n}\right)^{-n}$. \#4: Exercise 10.5.60: Evaluate $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{1}{n}\right)$.

Consider $e^{x}:=\sum_{n=0}^{\infty} x^{n} / n!=1+x+x^{2} / 2!+x^{3} / 3!+\cdots \cdot$

$$
\begin{aligned}
& \text { Consider } e^{x}:=\sum_{n=0} / n!=\left(+x+x\left(2!+x / 3!+\cdots \lim _{n \rightarrow \infty}\left|\frac{x^{n+e} /(n+1)!}{x^{n} / n!}\right|=\lim _{n \rightarrow \infty}\left|\frac{n!}{(n+1)!} \frac{x^{n+1}}{x}\right|=\lim _{n \rightarrow \infty} \frac{1}{n+1}|x|=0\right.\right. \\
& \text { Rath! } p=
\end{aligned}
$$

Converges absolutely $\forall x$

$$
\begin{aligned}
& \text { Converges absolutely } \forall x \\
& e^{x} e^{y}=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{y n}{n!}\right) \sum_{i s}^{\infty} \sum_{k=0}^{\infty} \frac{(x+y)^{k}}{k!}
\end{aligned}
$$

Math 150: Multivariable Calculus: Spring 2023:
Lecture 07: Taylor Series: https://youtu.be/pLqCQFS9KMM
Plan for the day.

- Taylor Series.
- Errors in Taylor Expansions.

Calculus 4th Edition

- Famous Taylor Series and Applications.

FOURTH EDITION C|ALCULUS
Note: all quoted text taken from the textbook for the class:

Author(s)	Jon Rogawski; Colin Adams; Robert Franzosa
Publisher	W.H. Freeman \& Company
Format	Reflowable
Print ISBN	9781319050733,1319050735
eText ISBN	9781319055844,1319055842
Edition	4th
Copyright	2019

With series we can make sense of the idea of a polynomial of infinite degree:
$F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$

Specifically, a power series with center c is an infinite series

$$
F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

THEOREM 1

Radius of Convergence

Every power series

$$
F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

has a radius of convergence R, which is either a nonnegative number $(R \geq 0)$ or infinity $(R=\infty)$. If R is finite,
$F(x)$ converges absolutely when $|x-c|<R$ and diverges when $|x-c|>R$. If $R=\infty$, then $F(x)$ converges absolutely for all x.
$\Sigma x: a_{n}=1 / 2 n \quad c=3$

$$
P=\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{x-3}{2}\right)^{n+1} /\left(\frac{x-3}{2}\right)^{n}\right|
$$

$$
\begin{aligned}
b_{1}=a_{1}(x-c)^{n} & =\frac{1}{21}(x-3)^{n} \\
& =\left(\frac{x-3}{2}\right)^{n}
\end{aligned}
$$

Want $p<1$ to toneme
so reed $\left|\frac{x-3}{2}\right|<1$
So $|x-3|<2$ s. $1<x<5$

THEOREM 2

Term-by-Term Differentiation and Integration

Assume that
$F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$
has radius of convergence $R>0$. Then F is differentiable on $(c-R, c+R)$. Furthermore, we can integrate and differentiate term by term. For $x \in(c-R, c+R)$,

$$
\begin{aligned}
F^{\prime}(x) & =\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1} \\
\int F(x) d x & =A+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-c)^{n+1} \quad(A \text { any constant })
\end{aligned}
$$

For both the derivative series and the integral series the radius of convergence is also R.
$T_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \quad$ Deg \cap Taylor Series
Zerih ode: $T_{0}(x)=f(a)$ note $T_{0}(a)=f(a)$
1st Ode: $T_{1}(x)=f(a)+f^{\prime}(a)(x-a)$
Tate: $T_{1}^{\prime}(x)=0+f^{\prime}(a) * 1$
so $T_{\prime}^{\prime}(a)=f^{\prime}(a)$
zoan ode : $T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}$
$y-f(a)=f^{\prime}(a)(x-a)$
$\left.\Rightarrow y=f(a)+f^{\prime} / 9\right)(x-a)$

$$
\begin{aligned}
& T_{2}^{\prime}(x)=0+f^{\prime}(a)+1+\frac{f^{\prime \prime}(a)}{2!} 2(x-a)^{\prime} \\
& T_{2}^{\prime \prime}(x)=0+0+\frac{f^{\prime \prime}(a)}{2!} 2 \cdot 1 \\
& \tau_{2}(a)=f(a), T_{2}^{\prime}(a)=f^{\prime}(a), \tau_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)
\end{aligned}
$$

For $n^{\text {h }}$ oder, $(\zeta a)=f(a), \ldots . T^{(a)}(a)=f^{(n)}(a)$

DEFINITION

Taylor Series

If $f_{\text {is infinitely differentiable at }} x=c$, then the Taylor series for $f(x)$ centered at c is the power series

$$
T(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

Questions: 1) Does it Conure, ad if so for what x ?
z) What does it converge to? Does it converge to $f(x)$.
Answers:

1) NOT ALWAYS GOING TO CONVERGE
2) CAN CONVERGE TD SONETHING AHER THON $f(x)$

THEOREM 1

The polynomial T_{n} centered at a agrees with $f_{\text {to order }} n$ at $x=a$, and it is the only polynomial of degree at most n with this property.
Assume that $f^{(n+1)}$ exists and is continuous. Let K be a number such that $\left|f^{(n+1)}(u)\right| \leq K_{\text {for all }} u$ between a and x. Then

$$
\left|f(x)-T_{n}(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1)!}
$$

where T_{n} is the $n_{\text {th }}$ Taylor polynomial centered at $x=a$.

For a proof of a weaker error bound, using the MVT and the IVT (with proofs of each), see https://web.williams.edu/Mathematics/sjmiller/public html/150Sp23/handouts/MVT TaylorSeries.pdf

THEOREM 2

Let $I=(c-R, c+R)$, where $R>0$, and assume that f is infinitely differentiable on I. Suppose there exists $K>0$ such that all derivatives of f are bounded by K on I :
$\left|f^{(k)}(x)\right| \leq K \quad$ for all $k \geq 0 \quad$ and $\quad x \in I$
Then f is represented by its Taylor series in I :
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n} \quad$ for all $x \in I$ Note Kos ante of 1 !

Taylor Series

Goal is to see how well Taylor Series approximate functions, how listtle later terms change approximation

For definiteness, will do $\operatorname{Cos}[x]$

```
In[0]= coeff[x0_, n_] := If[Mod[n, 4] == 0, Cos[x0],
    If[Mod[n, 4] == 1, - Sin[x0],
        If[Mod[n, 4] == 2, - Cos[x0], Sin[x0]]
    ]];
approx[x_, x0_, n_] := Sum[coeff[x0, nn] (x-x0)^nn/nn!, {nn, 0, n}]
```

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 \operatorname{Pic}, x 0+2 \operatorname{Pic}\}$,
Epilog \rightarrow \{PointSize[.025], Point[\{x0, $\operatorname{Cos[x0]\}]\}],\{ x0,0,20\mathrm {Pi}/2\} ,\{ n,1,40\} ,~}$ \{c, 4, .01\}]

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 \operatorname{Pic}, x 0+2 \operatorname{Pic}\}$,
Epilog \rightarrow PPointSize[.025], Point[\{x0, $\operatorname{Cos}[x 0]\}]\}],\{x 0,0,20 \mathrm{Pi} / 2\},\{n, 1,40\}$, \{c, 4, .01\}]

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 P i c, x 0+2 P i c\}$, Epilog \rightarrow PPointSize[.025], Point[\{x0, $\operatorname{Cos[x0]\}]\}],\{ x0,0,20\mathrm {Pi}/2\} ,\{ n,1,40\} ,~}$ \{c, 4, .01\}]

$$
\begin{aligned}
& f(x)=\cos x \in \\
& f(0)=1 \\
& f^{\prime}(x)=-\sin x \\
& f^{\prime}(0)=0 \\
& f^{\prime \prime}(x)=-\cos x \\
& f^{\prime \prime}(0)=-1 \\
& f^{\prime \prime \prime}(x)=\sin x \\
& f^{\prime n \prime}(x)=\cos x
\end{aligned}
$$

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 \operatorname{Pic}, x 0+2 \operatorname{Pic}\}$,
Epilog \rightarrow \{PointSize[.025], Point[\{x0, $\operatorname{Cos[x0]\}]\}],\{ x0,0,20\mathrm {Pi}/2\} ,\{ n,1,40\} ,~}$ \{c, 4, .01\}]

$$
\begin{aligned}
& T_{2}(x) \\
& =1-\frac{x^{2}}{2!}
\end{aligned}
$$

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 P i c, x 0+2 P i c\}$,
Epilog \rightarrow PPointSize[.025], Point[\{x0, $\operatorname{Cos[x0]\}]\}],\{ x0,0,20\mathrm {Pi}/2\} ,\{ n,1,40\} ,~}$ \{c, 4, .01\}]

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 \operatorname{Pic}, x 0+2 \operatorname{Pic}\}$, Epilog \rightarrow PPointSize[.025], Point[\{x0, $\operatorname{Cos[x0]\}]\}],\{ x0,0,20\mathrm {Pi}/2\} ,\{ n,1,40\} ,~}$ \{c, 4, .01\}]

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 \operatorname{Pic}, x 0+2$ Pic $\}$, Epilog \rightarrow \{PointSize[.025], Point[\{x0, $\operatorname{Cos}[x 0]\}]\}],\{x 0,0,20 \mathrm{Pi} / 2\},\{n, 1,40\}$, \{c, 4, .01\}]

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 \operatorname{Pic}, x 0+2 \operatorname{Pic}\}$,
Epilog \rightarrow \{PointSize[.025], Point[\{x0, $\operatorname{Cos[x0]\}]\}],\{ x0,0,20~Pi/2\} ,\{ n,1,40\} ,~}$ \{c, 4, .01\}]

Manipulate[Plot[\{Cos[x], approx[x, x0, n]\}, $\{x, x 0-2 \operatorname{Pic}, x 0+2 \operatorname{Pic}\}$, Epilog \rightarrow PPointSize[.025], Point[\{x0, $\operatorname{Cos[x0]\}]\}],\{ x0,0,20\mathrm {Pi}/2\} ,\{ n,1,40\} ,~}$ \{c, 4, .01\}]

Plot $\left[\operatorname{Cos}[x]-\operatorname{Sum}\left[x^{\wedge}(2 k)(-1)^{\wedge} k / F a c t o r i a l[2 k]\right.\right.$, $\{\mathrm{k}, 0,4\}],\{x,-\mathrm{Pi}, \mathrm{Pi}\}]$

Plot [Cos[x] - Sum [x^(2k) (-1)^k/Factorial[2k], $\{k, 0,15\}],\{x,-P i, P i\}]$

Manipulate [Plot [Exp[-1/x^2], $\{x,-c, c\}],\{c, 10, .25\}]$

Manipulate [Plot [Exp[-1/x^2], $\{x,-c, c\}],\{c, 10, .25\}]$

$$
\begin{aligned}
& \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{8}}{6!}+\cdots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

$i^{2}=-1 \quad$ where $i=\sqrt{-1}$

$$
e^{i x}=\cos x+i \sin x, e^{i x} e^{i y}=e^{i(x+y)}
$$

$$
\binom{a}{n}=\frac{a(a-1)(a-2) \cdots(a-n+1)}{n!}, \quad\binom{a}{0}=1
$$

THEOREM 3

The Binomial Series
For any exponent a and for $|x|<1$,

$$
(1+x)^{a}=1+\frac{a}{1!} x+\frac{a(a-1)}{2!} x^{2}+\frac{a(a-1)(a-2)}{3!} x^{3}+\cdots+\binom{a}{n} x^{n}+\cdots
$$

1.6. 10.6: Power Series - Problems. \#1: Exercise 10.6.14: Find the interval of convergence: $\sum_{n=8}^{\infty} n^{7} x^{n}$. \#2: Exercise 10.6.29: Find the interval of convergence: $\sum_{n=1}^{\infty} \frac{2^{n}}{3 n}(x+3)^{n}$. \#3: Exercise 10.6.59: Find all values of x such that $\sum_{n=1}^{\infty} \frac{x^{n^{2}}}{n!}$ converges.
1.7. 10.7: Taylor Polynomials - Problems. \#1: Exercise 10.7.9: Calculate the Taylor polynomials T_{2} and T_{3} for $f(x)=\tan (x)$ centered at $x=0$. \#2: Exercise 10.7.29: Find T_{n} for all n for $f(x)=\cos x$ centered at $x=\frac{\pi}{4}$. \#3: Exercise 10.7.33: Find T_{2} and use a calculator to compute the error $\left|f(x)-T_{2}(x)\right|$ for $a=1, x=1.2$, and $f(x)=x^{-2 / 3}$.
1.8. 10.8: Taylor Series - Problems. \#1: Exercise 10.8.13: Find the Maclaurin series and find the interval on which the expansion is valid for $f(x)=e^{x-2}$. \#2: Exercise 10.8.15: Find the Maclaurin series and find the interval on which the expansion is valid for $f(x)=\ln (1-5 x)$. \#3: Exercise 10.8.37: Find the Taylor series centered at $c=4$ and the interval on which the expansion is valid for $f(x)=1 / x^{2}$. \#4: Exercise 10.8.70: Find the function with $f(x)=x^{4}-\frac{x^{12}}{3}+\frac{x^{20}}{5}-\frac{x^{28}}{7}+\cdots$ as its Maclaurin series. \#5: Exercise 10.8.90: Use Euler's Formula to demonstrate $\cos z=\left(e^{i z}+e^{-i z}\right) / 2$.

Math 150: Multivariable Calculus: Spring 2023:
Lecture 08: Taylor Series II: https://youtu.be/KevnjvST4Kg
Plan for the day.

- Taylor Series Computations.
- Taylor Series and Trigonometric Identities.

Calculus 4th Edition

- Multivariable Taylor Series.

Note: all quoted text taken from the textbook for the class:

Author(s)	Jon Rogawski; Colin Adams; Robert Franzosa
Publisher	W.H. Freeman \& Company
Format	Reflowable
Print ISBN	9781319050733,1319050735
eText ISBN	9781319055844,1319055842
Edition	4th
Copyright	2019

What is the Taylor Series of $f(x)=\cos (x) \sin (x)$?
Taylor Series of $f(x)$ is

$$
\begin{aligned}
& T_{f}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \quad \text { note } T_{f}^{(n)}(0)=f^{(n)}(0) \\
& f(0)=0 \\
& f^{\prime}(x)=-\sin x \sin x+\cos x \cos x=\cos ^{2} x-\sin ^{2} x \\
& f^{\prime}(0)=1 \\
& f^{\prime \prime}(0)=2 \cos x(-\sin x)-2 \sin x \cos x \quad \frac{G e f}{T_{f}}(x)= \\
& =-4 \cos x \sin x=-4 f(x) \quad x-\frac{4}{3!} x^{3}+\ldots \\
& f^{\prime \prime}(0)=0 \quad f^{\prime \prime \prime}(0)=-4, \quad f^{(i n)}(0)=16, \ldots
\end{aligned}
$$

$f(x)=\cos x \sin x$
Malh is Lazs: reduce to known

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{1=0}^{\infty} \frac{(-1)^{1} x^{2 n}}{(2 n)!} \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x 7}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{214}}{(21+n!} \\
\cos x \sin x & =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right) \\
& =x+\left(-\frac{1}{2!}+1+1 * \frac{-1}{3!}\right) x^{3}+\cdots \\
& =x-\frac{2}{3} x^{3}+\cdots \text { o! } x-\frac{4}{3!} x^{3}+\cdots
\end{aligned}
$$

Aside: Feynman: $\quad U=0$
Unwodiness: $(F-m a)^{2}+\left(F-m c^{2}\right)^{2}+\cdots \cdot$

$$
\begin{aligned}
f(x) & =\cos x \sin x \\
f(x) & =\sin x \cos x \\
& =\frac{1}{2} 2 \sin x \cos x=\frac{1}{2} \sin (2 x)
\end{aligned}
$$

Know $\sin (u)=u-\frac{u^{3}}{3!}+\frac{4^{5}}{5!}-\frac{4^{7}}{7!}+\cdots$
let $u=2 x$

$$
\begin{aligned}
\text { Thus } \frac{1}{2} \sin (2 x)=\frac{1}{2}\left(2 x-\frac{(2 x)^{3}}{3!}+\cdots\right)= & \frac{1}{2}\left(2 x-\frac{8 x^{3}}{3!}+\cdots\right) \\
& =x-i+x^{3}(3!+\cdots
\end{aligned}
$$

Try

$\overrightarrow{O H}=\cos y$
from $\triangle O A B$
Look of \triangle ot C
$\overline{O A}$ is cosy
so $\overline{O C}$ is $\cos y * \cos (x)$
$\overline{O C}$ is $\cos x \cos y$ overshot $O D$ bs $D C$

$$
\begin{aligned}
\overline{D C}=\overline{E A} & =h_{y p} * \sin (x) \\
& =\sin 5 \sin x
\end{aligned}
$$

$\cos x \overline{O D}=\overline{O C}-\overline{D C}=\cos x \cos s-\sin x \sin$,

Trig by Calculus

$$
\begin{aligned}
& e^{x}=1+x+x^{2} / 2! \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \quad \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
\end{aligned}
$$

Iderthi: $e^{x} e^{y}=e^{x+y}$
Pythagoras: $e^{i x} e^{-i x}=e^{0}=1$

$$
\text { But This is }(\cos x+i \sin x)(\cos (-x)+i \sin (-x))
$$

$$
\text { using fix }=\cos x+i \sin x \text {, rote } \cos (-x)=\cos x \sin (-x)=-\sin x
$$

$$
e^{-i x}=\cos x-i \sin x=\cos (-x)+i \sin (-x)
$$

$$
(\cos x \operatorname{tis} \sin)(\cos x-i \sin x)=\cos ^{2} x-i^{2} \sin x
$$

$$
=\cos ^{2} x+\sin ^{2} x
$$

Angl Addition

$$
\begin{aligned}
& e^{i x} e^{i y}=e^{i(x+3)}=\cos (x+4)+i \sin (x+y) \\
& (\cos x+i \sin x)(\cos y+i \sin y) \\
& =(\cos x \cos y-\sin x \sin y)+i(\sin x \cos y+\cos x \sin y) \\
& \text { (f } a+i b=c+i d \text { the } a=c, b=d \text {, f } a, i, \operatorname{cod} \in \mathbb{R} \\
& \text { recall } i=\sqrt{-1} \text { sc } i^{2}=-1
\end{aligned}
$$

Bis tens: $e^{i x}=\cos x+i \sin x$

$$
e^{i x} e^{i y}=e^{i(x+9)} \quad \text { win } i^{2}=-1
$$

$$
\begin{aligned}
& f(x, y)=\sin (y) \cos (x+y) \\
& \sin (y)=y-y^{3} / 3!+\cdots \\
& \cos (u)=1-u^{2}(2!+u y / y!-\cdots \text { tate } u=x+y \\
& \cos (x+y)=1-\frac{(x+y)^{2}}{2!}+\frac{(x+y)^{y}}{y!}-\cdots \\
& =1-\frac{x^{2}+2 x y+y^{2}}{2!}+\frac{x^{y}+4 x^{3} y+\cdots+y^{4}}{y!} \cdots \\
& \sin (y) \cos (x+y)=0+0 x+1 y+0 x^{2}+0 x y+0 y^{2} \\
&
\end{aligned}
$$

Partial Derivatives
$\frac{\partial f}{\partial x}$ means fate the deriu wilh vespect to x, ladbing all othe wables coustant.

$$
\begin{aligned}
& f(x)=3 x^{2}+17 x+8 \quad f^{\prime}(x)=\frac{d f}{d x}=0 \frac{0}{x}+17 \\
& f(x, y)=x^{2} y+17 x+8 y^{3}, \frac{\partial f}{\partial x}=2 x y+17+0
\end{aligned}
$$

$$
\begin{aligned}
& \text { rear ab } \\
& \text { pathalit } \\
& \text { pathall }
\end{aligned} \quad \frac{\partial f}{\partial y}=x^{2}+0+24 y^{2}
$$

Math 150: Multivariable Calculus: Spring 2023:
Lecture 09: Introduction to Vectors: https://youtu.be/K0J6WHQwLQQ
Plan for the day.

- Definition of Vectors.
- Vector Algebra and Properties, unit vectors, i, i, k....

Calculus 4th Edition

- Distance Formula.
- Equations of Lines.

Note: all quoted text taken from the textbook for the class:

Author(s)	Jon Rogawski; Colin Adams; Robert Franzosa
Publisher	W.H. Freeman \& Company
Format	Reflowable
Print ISBN	9781319050733,1319050735
eText ISBN	9781319055844,1319055842
Edition	4th
Copyright	2019

Vectors: Magnituat ad Dir retrod

$$
\begin{aligned}
& \text { Wort in } \mathbb{R}^{3} \text { — } \mathbb{R}^{n} \\
& \mathbb{R}^{3}=\{(x, y, z): x, y, z \in \mathbb{R}\}
\end{aligned}
$$

\vec{v} for a vector v vi \vec{v}

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

$$
\begin{array}{ll}
\vec{e}_{1}=(1,0,0, \ldots, 0) & \hat{i}=(1,0,0) \\
\vec{e}_{2}=(0,1,0, \ldots, 0) & \hat{j}=(0,1,0) \\
\vec{e}_{1}=(0,0,0, \ldots, 0,1) & \hat{k}=(0,0,1)
\end{array}
$$

" $e^{\text {" for }}$ Euclidean Space in \mathbb{R}^{n}
hat means unit vector: lest !

Vectors have rue propenes
$\vec{u}, \vec{v}, \vec{\omega}$ vectors a, b are scolds (hent \mathbb{R} or \mathbb{C})

1) $a \vec{u}$ Is save der as \vec{t} and a tires as for Gif ais neg, titis (80° the direction)
Ex: $\vec{v}=(1,2) \quad a=3$ $a=-1$

$$
\swarrow-\vec{v}
$$

2) $\vec{v}+\vec{w}$: Parallelogan Pele $=\vec{\omega}+\vec{v}$

Commativi为
3) $\vec{v}-\vec{w}=\vec{v}+(-1) \vec{w}$
4) $\vec{u}+\vec{v}+\vec{\omega}$ is $(\vec{u}+\vec{v})+\vec{\omega}$ or $\vec{u}+(\vec{u}+\vec{\omega})$ associaticis
$\varepsilon_{x}:\left(\begin{array}{c}(1,0,0) \\ \vec{u}\end{array},\left(\begin{array}{l}0,1,0) \\ \underline{e} \\ \frac{0}{u}\end{array}\right)\right.$
then $\vec{u} \neq \overrightarrow{0}=\langle 1,1,0\rangle$

$$
\begin{aligned}
(\vec{u}+\vec{u})+\vec{\omega} & =\langle 1,1,0\rangle+\langle 0,0,1\rangle \\
& =\langle 1,1,1\rangle
\end{aligned}
$$

Ex: $\langle 1,4,8\rangle$ and $\langle 2,-3,8\rangle$

$$
\operatorname{Trer}\langle 1,4,8\rangle+\langle 2,-3,8\rangle=\langle 3,1,16\rangle
$$

$$
\begin{aligned}
\vec{v}+\vec{\omega} & =\left\langle v_{1}, v_{2}, \ldots, v_{1}\right\rangle+\left\langle w_{1}, w_{1}, \ldots, \omega_{n}\right\rangle \\
& =\left\langle v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right\rangle \\
& =\left\langle w_{1}+v_{1}, \ldots, w_{1}+v_{1}\right\rangle \text { normal } \\
& =\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle+\left\langle v_{1}, \ldots, v_{n}\right\rangle \\
& =\vec{\omega}+\vec{v}
\end{aligned}
$$

5) $a(\vec{v}+\vec{w})=a \vec{v}+a \vec{w}$ Distributive Law
6) Special Vector:

Zero vector \vec{O}
nate: $\overrightarrow{0}+\vec{v}=\vec{u}+\overrightarrow{0}=\vec{V}$

Leasth of a Vector?
Psthagoren Formula

$$
a^{2}+b^{2}=c^{2}
$$

Proot

Bry Suruc area is $(a+6)^{2}$ Little seme is c^{2} each triack is $\frac{1}{2}$ \&b $\frac{50}{(a+t b)^{2}}=c^{2}+4 \cdot \frac{1}{2}$ 旳 $a^{2}+29 b+b^{2}=c^{2}+2 / 1$

Lasthon the Plone

$$
\begin{aligned}
& \text { lesthis } \sqrt{x^{2}+y^{2}} \\
& \vec{v}=\langle x, y\rangle\|\vec{v}\| \text { or }|\vec{v}| \operatorname{ss} \sqrt{x^{2}+s^{2}} \\
& \text { (1station for leach) }
\end{aligned}
$$

3-Spuce: Dy Theyons Twice

$$
\begin{aligned}
& \|\vec{v}\|^{2}=\left\|\vec{v}_{z}\right\|^{2}+\underbrace{\left\|\vec{v}_{x y}\right\|^{2}}_{\left\|\vec{v}_{x}\right\|^{2}+\left\|\vec{v}_{y}\right\|^{2}} \\
& \underbrace{\vec{v}_{x y}}_{\vec{v}_{x}} \| \text { If } \| \vec{v}=\left\langle\vec{v} \|, y=\sqrt{x^{2}+y^{2}+z^{2}}\right.
\end{aligned}
$$

$$
\vec{v}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \text { then }\|\vec{v}\|=\sqrt{x_{1}^{2}+\cdots+x_{1}^{2}}
$$

Eqota line

now use This

Slope - Interaph $\rightarrow m$ slope
b is the y-intercopt
Point: Slope
slope m, Point $\left(x_{0}, y_{0}\right)$
Get $y-y_{0}=m\left(x-x_{0}\right)$
or $y=y_{0}+n\left(x-x_{0}\right)$

Lines in higher dimasion
Point $\vec{P}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ direction \vec{v}

All points of the form

$$
\begin{gathered}
\overrightarrow{P_{t}}=\vec{P}_{0}+t \vec{v} \quad t \in \mathbb{R} \\
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+t\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \\
x(t)=x_{0}+t v_{x} \\
\text { or } y(t)=y_{0}+t v_{s} \\
z(t)=z_{0}+t v_{z}
\end{gathered}
$$

Slopers $\frac{\Delta y}{\Delta x}=\frac{y-y_{0}}{x-x_{0}}$ Wrate This as a vecto$\langle 1, m\rangle$

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

3.1. 12.1: Vectors in the Plane - Problems. \#1: Exercise 12.1.44: Determine the unit vector e_{w}, where $w=\langle 24,7\rangle$. \#2: Exercise 12.1.49: Determine the unit vector that makes an angle of $4 \pi / 7$ with the x-axis. \#3: Exercise 12.1.52: Determine the unit vector that points in the direction from $(-3,4)$ to the origin.
3.2. 12.2: Three-Dimensional Space: Surfaces, Vectors, and Curves - Problems. \#1: Exercise 12.2.34: Describe the surface given by the equation $x^{2}+y^{2}+z^{2}=9$, with $x, y, z \geq 0$. \#2: Exercise 12.2 .38 : Give an equation for the sphere centered at the origin passing through $(1,2,-3)$. \#3: Exercise 12.2.50: Find a vector parametrization for the line passing through $(1,1,1)$ which is parallel to the line passing through $(2,0,-1)$ and $(4,1,3)$.

Math 150: Multivariable Calculus: Spring 2023:

Lecture 10: Vectors: https://youtu.be/OkeO ByxMEE

Plan for the day.

- Equations of Lines.

Calculus 4th Edition

- Equations of Planes.
- Dot Product.

Note: all quoted text taken from the textbook for the class.

Jon Rogamski - Colin Adams - Robert Franzosa

Author(s) Jon Rogawski; Colin Adams; Robert Franzosa

Publisher	W.H. Freeman \& Company
Format	Reflowable
Print ISBN	9781319050733,1319050735
eText ISBN	9781319055844,1319055842
Edition	4 th
Copyright	2019

3.3. 12.3: Dot Product and the Angle Between Two Vectors - Problems. \#0: Exercise 12.3.13: Determine whether
$\langle 1,1,1\rangle$ and $\langle 1,-2,-2\rangle$ are orthogonal, and, if not, whether the angle between them is acute or obtuse. \#1: Exercise
12.3.25: Find the angle between $\langle 1,1,1\rangle$ and $\langle 1,0,1\rangle$. \#2: Exercise 12.3.57: Find the projection of $u=\langle-1,2,0\rangle$
along $v=\langle 2,0,1\rangle$. \#3: Exercise 12.3.64: Compute the component of $u=\langle 3,0,9\rangle$ along $v=\langle 1,2,2\rangle$.

Eq of aline

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
\text { Let } x & =x_{0}+t \\
y & =y_{0}+m\left(x-x_{0}\right) \\
& =y_{0}+m t
\end{aligned}
$$

$$
\binom{x}{y} \cdot\binom{x(t)}{y(t)}=\binom{x_{0}+t}{y_{0}+m t}
$$

$$
=\binom{x_{0}}{y_{0}}+\binom{1}{m} t
$$

$\binom{x(t)}{y(t)}=\binom{x_{0}}{y_{0}}+\vec{v} t$

Ex:

$$
\begin{aligned}
& \sum x i \\
& \binom{x(t)}{y(t)}=\binom{x_{0}}{y_{0}}+\binom{z}{z m} s \\
& \left(x_{0}\right)+\left(\begin{array}{l}
1
\end{array}\right) 2 \$ \$
\end{aligned}
$$

$$
=\binom{x_{0}}{y_{0}}+\binom{1}{m} 2,2
$$

Let $t=2$ so r $s=t / 2$
Thing to mate x-coodinte 1
$\sum_{x: \vec{v}}=\binom{2}{3} \rightarrow\binom{1}{312}$
sene direction

$$
\vec{v}=\binom{-3}{6} \rightarrow\binom{1}{-2}
$$

Dare: $\vec{v}=\binom{0}{m} \rightarrow \underset{\substack{\text { Don nt } \\ \text { Do! }}}{\text { Col }}$

Geneal Ez of a line:
Point \vec{P}_{0} and direction \vec{v}
line is $\vec{P}(t)=\vec{P}_{0}+t \vec{v}$ or $x(t)=x_{0}+t v_{x}$

$$
z(t)=z_{0}+t v_{z}
$$

one free variable: 1-dim

Eq of a non-degesent plone
Irpet: Point $\overrightarrow{P_{0}}$, two indeperlet ders \vec{V} and $\vec{\omega}$ Otpet: $\vec{P}(t, s)=\overrightarrow{\vec{P}_{s}}+t \vec{u}+s \vec{v}$

two dimesional vars! t, s
$\varepsilon_{x:} \vec{\Gamma}_{0}+t \vec{v}+\beta \vec{w}$ and $\vec{p}_{0}+u \vec{v}+q(\vec{v}+\vec{w})$
$\operatorname{san} \overrightarrow{P_{0}}+t \vec{u}+S \vec{u}=\overrightarrow{P_{0}}+u \vec{v}+q(\vec{u}+\vec{w})$

$$
t \vec{v}+s \vec{u}=(u+\varepsilon) \vec{v}+\varepsilon \vec{u}
$$

G (ven $t, S \rightarrow u=t-s \quad q=s$
Giver $u, q \longrightarrow t=u+q \quad s=q$

Normal Approach

Plane is all points \vec{p} such That $\vec{P}-\vec{P}_{0}$ is perperdick (ormogond, L) to The normal direction $\vec{n}:\left(\vec{p}-\vec{p}_{0}\right) \perp \vec{n}$

Det Prodect / Inner Prodcet

$$
\begin{aligned}
\vec{v} \cdot \vec{w} \text { or }(\vec{v}, \vec{\omega}) \text { is } v_{1} w_{1}+\cdots & +v_{1} w_{1} \\
\text { Recall }\|\vec{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}} \text { ar }\|\vec{v}\|^{2} & =v_{1}^{2}+\cdots+v_{1}^{2} \\
& =\vec{v} \cdot \vec{v}
\end{aligned}
$$

THEOREM 2
Dot Product and the Angle

Let θ be the angle between two nonzero vectors \mathbf{v} and \mathbf{w}. Then

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \quad \text { or } \quad \cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

$$
\mathbf{v} \perp \mathbf{w} \quad \text { if and only if } \quad \mathbf{v} \cdot \mathbf{w}=0
$$

Projection of u along v

Assume $\mathbf{v} \neq \mathbf{0}$. The projection of \mathbf{u} along \mathbf{v} is the vector

$$
\mathbf{u}_{\| \mathbf{v}}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|}\right) \mathbf{e}_{\mathbf{v}}
$$

$\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|}$
This is sometimes denoted $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$. The scalar $\overline{\|\mathbf{v}\|}$ is called the component or the scalar component of \mathbf{u} along \mathbf{v} and is sometimes denoted $\operatorname{comp}_{\mathbf{v}} \mathbf{u}$.

Reasonatk!

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{v}\| \cos \theta_{v \omega}\left(=v_{1} w_{1}+\cdots+v_{n} w_{n}\right)
$$

dabk \vec{U}, tripl is
\rightarrow LHS: each tern \uparrow by a factor of 6
RHS: $\|\vec{v}\|$ is T by factor of 2

$$
\|\vec{w}\| \text { is } \uparrow \text { by a factord } 3
$$

$\cos \theta$ unchuged
Reasonabl! Scales corcetly!

Law of Cosines

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos \theta \\
& \theta=90 \rightarrow c^{2}=a^{2}+b^{2} \text { known! } \\
& a^{2}=c^{2}+b^{2}-2 b c \cos \phi
\end{aligned}
$$

I: $c^{2}=x^{2}+h^{2}$ or $h^{2}=c^{2}-x^{2}$
II: $a^{2}=(b-x)^{2}+h^{2}$ or $h^{2}=a^{2}-(b-x)^{2}$

$$
\Rightarrow h^{2}=c^{2}-x^{2}=a^{2}-(b-x)^{2}
$$

So $\left.c^{2}=a^{2}+x^{2}-\left(b^{2}-2 b x+x^{2}\right)=a^{2}-b^{2}+26 x\right)$
so $c^{2}+b^{2}-2 b x=\varepsilon^{2}$ tore as $C x \cos d=x$

$$
\begin{aligned}
& 2+(5-2)=5 \\
& 17+(11-17)=11
\end{aligned}
$$

Law of cosines: $\|\vec{v}-\vec{\omega}\|^{2}=\|\vec{v}\|^{2}+\|\vec{\omega}\|^{2}-2\|\vec{v}\|\|\vec{\omega}\| \cos \theta$

$$
\begin{aligned}
\|\vec{v}-\vec{w}\|^{z}= & (\vec{v}-\vec{\omega}) \cdot(\vec{v}-\vec{\omega}) \\
& a \vec{v} \cdot \vec{w}=a(\vec{v} \cdot \vec{w}) \text { and }(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{\omega} \\
& \left(v_{1}-w_{1}, v_{2}-w_{2}, \ldots\right) \cdot\left(v_{1}-w_{1}, \cdots\right) \\
& \left(v_{1}-w_{1}\right)^{2}+\cdots . . \searrow
\end{aligned}
$$

$$
\begin{aligned}
\|\vec{v}-\vec{w}\|^{2}= & (\vec{u}-\vec{w}) \cdot(\vec{v}-\vec{\omega})=\vec{v} \cdot \vec{u}-\vec{w} \cdot \vec{v}-\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{w} \\
= & \|\vec{v}\|^{2}-p \vec{v} \cdot \vec{w}+\|\vec{\omega}\|^{2}=\|\vec{v}\|^{2}+\|\vec{v}\|^{2} \\
& \quad-\vec{w}\|\vec{v}\| \vec{v} \| \cos \theta \\
& \text { be Law of cosines }
\end{aligned}
$$

$\Rightarrow \vec{\nu} \cdot \vec{\omega}=\|\vec{v}\|\|\vec{\omega}\| \cos \theta$

$$
\cos \theta=\frac{\vec{v} \cdot \vec{\omega}}{\|\vec{v}\|\|\vec{w}\|} \text { if } \theta=\pi / 2 \text { perperdicdar test! } \vec{u} \cdot \vec{\omega}=0
$$

Plane: \vec{P}_{0} normal (a, b, c) Then eq of the plane is

$$
\begin{aligned}
& \left((x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right)-(a, b, c)=0 \\
& \text { or } a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& a\left(x-x_{0}\right)+b\left(b+b y+c z=\vec{P}_{0} \cdot \vec{n}=d\right. \\
& \text { or } a x+b
\end{aligned}
$$

3.3. 12.3: Dot Product and the Angle Between Two Vectors - Problems. \#0: Exercise 12.3.13: Determine whether $\langle 1,1,1\rangle$ and $\langle 1,-2,-2\rangle$ are orthogonal, and, if not, whether the angle between them is acute or obtuse. \#1: Exercise 12.3.25: Find the angle between $\langle 1,1,1\rangle$ and $\langle 1,0,1\rangle$. \#2: Exercise 12.3.57: Find the projection of $u=\langle-1,2,0\rangle$ along $v=\langle 2,0,1\rangle$. \#3: Exercise 12.3.64: Compute the component of $u=\langle 3,0,9\rangle$ along $v=\langle 1,2,2\rangle$.

Math 150: Multivariable Calculus: Spring 2023:

Lecture 11: Cross Product: https://youtu.be/KpJmKkFqJe0

Plan for the day.
Calculus 4th Edition

- Cross Product.

- Coordinate Systems.

Note: all quoted text taken from the textbook for the class.

Jon Rogamaki • Colin Adams • Robert Franzosa
7.7. 12.4: The Cross Product - Problems. \#0: Preliminary Question 12.4.6: When is the cross product $v \times w$ equal to zero? \#1: Exercise 12.4.16: Calculate $(j-k) \times(j+k)$. \#2: Exercise 12.4.30: What are the possible angles θ between two unit vectors e and f if $\|e \times f\|=1 / 2$?
7.9. 12.5: Planes in 3-Space - Problems. \#1: Exercise 12.5.13: Find a vector normal to the plane specified by $9 x-4 y-11 z=2$. \#2: Exercise 12.5.18: Find the equation of the plane that passes through $(4,1,9)$ and is parallel to $x+y+z=3$. \#3: Exercise 12.5.48: Find the trace of the plane specified by $3 x+4 z=-2$ in the $x z$ coordinate plane. \#4: Exercise 12.5.63: Find an equation of a plane making an angle of $\pi / 2$ with the plane $3 x+y-4 z=2$.

Given vectors \vec{a} and \vec{b}, where

$$
\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

and

$$
\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle
$$

Then the cross product of \vec{a} and \vec{b} is:

$$
\vec{a} \times \vec{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle .
$$

Show $\vec{a} \times \vec{b}$ is 1 to $b 0 / h \quad \vec{a}$ and \vec{b}
prot show $(\vec{a} \times \vec{b}) \cdot \vec{a} 15$ zero (He number)

$$
E x^{s} \vec{i} \times \vec{k}=\langle 1,0,0\rangle \times\langle 0,0,1\rangle=\langle 0,-1,0\rangle=-\vec{j}
$$

- Determinants of sizes 2×2 and 3×3 :

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

- The cross product of $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ is the determinant

$$
\begin{aligned}
& \vec{i}=(1,0,0) \\
& \vec{j}=(0,1,0) \\
& \vec{k}=(0,0,1)
\end{aligned}
$$

- The cross product $\mathbf{v} \times \mathbf{w}$ is the unique vector with the following three properties:
i. $\mathbf{v} \times \mathbf{w}$ is orthogonal to \mathbf{v} and \mathbf{w}.
ii. $\mathbf{v} \times \mathbf{w}$ has length $\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta_{\text {(where }} \theta$ is the angle between \mathbf{v} and \mathbf{w}).
iii. $\{\mathbf{v}, \mathbf{w}, \mathbf{v} \times \mathbf{w}\}$ is a right-handed system.
- Properties of the cross product:
i. $\mathbf{w} \times \mathbf{v}=-\mathbf{v} \times \mathbf{w}$
ii. $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ if and only if $\mathbf{w}=\lambda \mathbf{v}$ for some scalar or $\mathbf{v}=\mathbf{0}$
iii. $(\lambda \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w})$
iv. $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w} \quad$ and $\quad \mathbf{v} \times(\mathbf{u}+\mathbf{w})=\mathbf{v} \times \mathbf{u}+\mathbf{v} \times \mathbf{w}$

$$
\begin{array}{lll}
\vec{i} \times \vec{i}=\overrightarrow{0} & \vec{j} \times \vec{i}=-\vec{k} & \vec{k} \times \vec{i}=\vec{j} \\
\vec{i} \times \vec{j}=\vec{k} & \vec{j} \times \vec{j}=\overrightarrow{0} & \vec{k} \times \vec{j}=-\vec{i} \\
\vec{i} \times \vec{k}=-\vec{j} & \vec{j} \times \vec{k}=\vec{i} & \vec{k} \times \vec{k}=\overrightarrow{0} \\
\left\langle a_{1}, a_{2}, a_{3}\right\rangle \times\left\langle b_{1}, b_{2}, b_{3}\right\rangle \\
=\left(a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}\right) \times\left(b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}\right) \\
=\left(a_{3} b_{2}-a_{2} b_{3}\right) \vec{i}+\cdots
\end{array}
$$

Area is base* height
bast is $\|\langle a, b\rangle\|$
height is $\|<c, d\rangle \| \sin \theta$
Areas $\left(a^{2}+b^{2}\right)^{\frac{1}{2}}\left(c^{2}+d^{2}\right)^{\frac{1}{2}} \sin \theta$ use

$$
\begin{aligned}
& \text { Area is }\left(a^{2}+b^{2}\right)^{\frac{1}{2}}\left(c^{2}+d^{2}\right)^{\frac{1}{2}} \sin \theta \quad \text { use } \\
& \text { Area }=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \sin \theta
\end{aligned}
$$

Aside: Dot Paloct
$\xrightarrow{\vec{u}=(x, y)}$
$\longrightarrow \vec{v}=(a, 0)$

$$
\vec{u} \cdot \vec{u}=x \cdot a+y \cdot 0=x \cdot a
$$

$$
\begin{aligned}
& \text { Area }=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(1-\cos ^{2} \theta\right) \\
& \begin{aligned}
&(a, b\rangle\cdot\langle c, d)=\|(a, b)\| \|<c, d\rangle \| \cos \theta \\
&(a c+b d)^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \cos ^{2} \theta
\end{aligned} \\
& \begin{aligned}
\text { Area }^{2}= & \left(a^{2}+b^{2}\right)\left(c^{2}+1^{2}\right)-(a c+b d)^{2} \\
= & a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2} \\
& -b^{2} d^{2}-2 a b c d \\
\text { Area }= & a^{2} c^{2} d^{2}-2 a b c d+b^{2} c^{2}
\end{aligned} \\
& \begin{aligned}
\text { Area }^{2}= & (a d-b c)^{2} \quad \text { so Area is ad -bc } \\
& =\left|\begin{array}{ll}
a \\
c d
\end{array}\right|
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \langle a, b, 0\rangle \times\langle c, d, 0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \vec{i} b_{0}+\vec{j} 0 \cdot c+\vec{k} a d-\vec{k} c b-\vec{i} d_{0}-\vec{j} 0 a \\
& =(a d-b c) k
\end{aligned}
$$

Eq of a plame thr \vec{P}_{c} and containing ders $\vec{\nu}$ and $\vec{\omega}$

$$
\begin{aligned}
& \quad\left(\vec{p}-\vec{p}_{0}\right) \cdot \vec{n}=0 \\
& \vec{n}=\vec{v} \times \vec{w} \quad \vec{p} \cdot \vec{n}=\overrightarrow{p_{0}} \cdot \vec{n} \quad \vec{n}=(a, b, c) \\
& \vec{n}=\frac{\vec{v} \times \vec{v}}{\|\vec{v} \times \vec{w}\|}=\hat{n} \quad a x+b y+c z=d=(x, y, z)
\end{aligned}
$$

Projecturs

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

7.7. 12.4: The Cross Product - Problems. \#0: Preliminary Question 12.4.6: When is the cross product $v \times w$ equal to zero? \#1: Exercise 12.4.16: Calculate $(j-k) \times(j+k)$. \#2: Exercise 12.4.30: What are the possible angles θ between two unit vectors e and f if $\|e \times f\|=1 / 2$?
7.9. 12.5: Planes in 3-Space - Problems. \#1: Exercise 12.5.13: Find a vector normal to the plane specified by $9 x-4 y-11 z=2$. \#2: Exercise 12.5.18: Find the equation of the plane that passes through $(4,1,9)$ and is parallel to $x+y+z=3$. \#3: Exercise 12.5.48: Find the trace of the plane specified by $3 x+4 z=-2$ in the $x z$ coordinate plane. \#4: Exercise 12.5.63: Find an equation of a plane making an angle of $\pi / 2$ with the plane $3 x+y-4 z=2$.
Do all but one of the aboue.

Math 150: Multivariable Calculus: Spring 2023:

Lecture 12: Level Sets, Special Coordinates: https://youtu.be/6QEQIMQf7g8

Plan for the day.

Calculus 4th Edition

- Level Sets
- Coordinate Systems.

Note: all quoted text taken from the textbook for the class.

Jon Rogamaki - Colin Adams - Robert Franzosa
3.7. 12.7: Cylindrical and Spherical Coordinates - Problems. \#1: Exercise 12.7.12: Describe $x^{2}+y^{2}+z^{2} \leq 10$ in cylindrical coordinates. \#2: Exercise 12.7.15: Describe $x^{2}+y^{2} \leq 9$, with $x \geq y$, in cylindrical coordinates. \#3: Exercise 12.7.50: Describe $x^{2}+y^{2}+z^{2}=1$, with $z \geq 0$, in spherical coordinates. \#4: Exercise 12.7.54: Describe $x^{2}+y^{2}=3 z^{2}$ in spherical coordinates.

Rogawski et al., Multivariable Calculus, 4e, © 2019 W. H. Freeman and Company

$$
x=r \cos \theta \quad r=\sqrt{x^{2}+y^{2}}
$$

$$
y=r \sin \theta
$$

$$
z=z
$$

Poler
 Coordinates

$x=r \cos \theta \quad r=\sqrt{x^{2}+2}$ $y=r \sin t \quad \tan \theta=s / x$

$$
0 \leqslant \theta<2 \pi
$$

Crole of sadus R

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
& \text { or } \\
r= & \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

$$
\left\{(x, y) ; x^{2}+y^{2}=R^{2}\right\}
$$

bounday

$\tan \theta=y / x$
$\{(r, t): r=R\}$
$\rightarrow \theta=\arctan \left(\frac{y}{x}\right)$
banduy

$$
\left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\}
$$

folled in

$$
\begin{aligned}
& \{(r, G): r \leq R\}
\end{aligned}
$$

Roqawski et al., Multivariable Calculus, 4 e ,

$x=r \cos \theta=\rho \sin \phi \cos \theta, \quad y=r \sin \theta=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi$

Spherical to rectangular
Rectangular to spherical
$x=\rho \sin \phi \cos \theta=(\rho \sin \phi) \cos t=r \cos t$
$y=\rho \sin \phi \sin \theta=(\rho \sin \phi) \sin t=r \sin \theta$
$z=\rho \cos \phi$
$\cos \phi=\frac{z}{\rho}$
$p \geqslant 0$
$0 \leqslant \varphi \leqslant \pi$
If only departs on p :

$$
f(x, y, z)=f(\rho \sin \rho \cos \theta, \ldots, \ldots-)
$$

$0 \leqslant \theta<2 \pi$

$$
=g(\rho)
$$

Thew functor
Rogawski et al., Multivariable Calculus,
Le, © 2019 W. H. Freeman and Company

Level Sets
The level set of f of height c is all inputs sent to c bs f.

$\sum_{x}=f(x, y, z)=x^{2}+y^{2}+z^{2}$
Fire all (x, y, z) st $x^{2}+s^{2}+z^{2}=c$
Case 1: c <0
lead Sot 15 empty
Case 2: $C=0$
lees set is the angin $(0,0,1)$
Case 3: $c>0$
leer set is a sphere at raters δ
$\Sigma_{x}: f(x, y)=\sin (x+y)$
Find level sets of heart c
Case 1: $|c|>1$
level set is empty
Case 2: $|c| \leq 1$

Solve $\sin (x+y)=c$
Fix x, let $y=\arcsin (c)-x$ then $\sin (x+r)=c$

$$
\begin{aligned}
& \sin (\alpha)=\sin (\beta) \text { She } \beta=\alpha+2 \pi n \\
& \Rightarrow y=\arcsin (c)-x+2 \pi n \quad n \in \mathbb{Z} \\
& \text { and } y=\pi-(\arcsin (c)-x)+2 \pi n \quad m \in \mathbb{Z}
\end{aligned}
$$

$E l$ lapse

all $(x, 5)$ st
$\|(x, y)-(-c, 0)\|$
$f\|(x<y)-(c, 0)\|$
= Constant
$(x, y)=(9,0)$
distances ar $a-c$ and $a+c$ sum of distances is $(a-c)+(a+c)=2 q$

\& algebra

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

$$
\begin{aligned}
& \left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1 \\
& \left(\begin{array}{ll}
u=a \cos \theta \\
y \underbrace{\left(\frac{a \cos \theta}{a}\right)^{2}+\left(\frac{b \sin \theta}{b}\right)^{2}}_{\cos ^{2} \theta+\sin ^{2} \theta}=1 \quad u=b \sin \theta \\
\underbrace{2}=1 \quad \text { YES! }
\end{array}\right.
\end{aligned}
$$

3.7. 12.7: Cylindrical and Spherical Coordinates - Problems. \#1: Exercise 12.7.12: Describe $x^{2}+y^{2}+z^{2} \leq 10$ in cylindrical coordinates. \#2: Exercise 12.7.15: Describe $x^{2}+y^{2} \leq 9$, with $x \geq y$, in cylindrical coordinates. \#3: Exercise 12.7.50: Describe $x^{2}+y^{2}+z^{2}=1$, with $z \geq 0$, in spherical coordinates. \#4: Exercise 12.7.54: Describe $x^{2}+y^{2}=3 z^{2}$ in spherical coordinates.

Math 150: Multivariable Calculus: Spring 2023:
Lecture 13: Mathematica: https://youtu.be/izUcZOhwYeY
Plan for the day.

- Learning how to use Mathematica

Math 150: Multivariable Calculus: Spring 2023: Lecture 14: Method of Least Squares: https://youtu.be/I2Z47ypMtBI

Math 150: Multivariable Calculus: Spring 2023:
Lecture 15: Chaos, Fractals, Newton's Method: https://youtu.be/sRVXHXuMnJ4
Slides: https://web.willams.edu/Mathematic/s/similer/pubbic $h \mathrm{tm} /$ /math/talks/CToshiningsc Hampshirecollege2022.pdf
Math 150: Multivariable Calculus: Spring 2023:
Lecture 16: In class exam.
Lecture 17: Review

Math 150: Multivariable Calculus: Spring 2023:

Lecture 18: Introduction to Differentiation

Plan for the day.

- Review writing up problems well.
- Review derivative in one-dimension.
- Discuss partial derivatives.
- Discuss tangent plane / hyperplanes.
- Discuss big theorems on differentiability.
$\lim _{x \rightarrow \infty} \frac{2^{1}+3^{n}}{n^{2}+n^{3}}$ as an dos rot go to zen,
$\lim _{x \rightarrow \infty} \frac{n^{2}+1^{3}}{2^{n}+3^{n}}$ as terms $\rightarrow 0$, has a chance

$$
\frac{n^{2}+n^{3}}{2^{n}+3^{n}}=\frac{n^{3}(1+1 / n)}{3^{n}\left(1+(2 / 3)^{n}\right)}
$$

Find b_{n} st $0 \leq \frac{n^{2}+n^{3}}{2^{n}+3^{n}} \leq b_{n}$ and $\sum b_{n}<\infty$ note $n^{2}+n^{3} \leq 2 n^{3}$

$$
2^{1}+3^{n} \geqslant 2^{n} \text { or } 2^{1}+3^{1} \geqslant 3^{1}
$$

The above shows $\frac{n^{2}+n^{3}}{2^{n}+3^{n}} \leqslant \frac{2 n^{3}}{3^{n}}$, so by he Comparison test if $\sum_{n=1}^{\infty} \frac{2 n^{3}}{3^{n}}$ courses, so tor does the original series.

Tr ratio test on $b_{n}=2 \cdot n^{3} / 3^{n}$

$$
\begin{aligned}
p=\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{\mathbb{z}(n+1)^{3} / 3^{n+1}}{\mathbb{z} \cdot n^{3}\left(3^{n}\right.} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{n^{3}} \cdot \frac{1}{3} \\
& =\frac{1}{3} \lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{3}=\frac{1}{3}\left(\lim _{n \rightarrow \infty} \frac{n+1}{n}\right)^{3} \\
& =\frac{1}{3}
\end{aligned}
$$

As $\rho<1$, by ratio test it converges.

Compore x^{m} us b^{x}
More geralls! x^{r} us $b^{x} \quad r>0$
Clacm: $x^{r} / b^{x} \longrightarrow 0$ as $x \rightarrow \infty$ for $b>1$
Example: x^{r} us e^{x}
wlog, let m be the smollst intere $\geqslant r$ If $x^{m} / e^{x} \rightarrow 0$ so too does x^{r} / e^{x}

$$
\text { as } x^{n} \geqslant x^{r}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{m}}{e^{x}} & =\lim _{x \rightarrow \infty} \frac{m x^{m-1}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{m(n-1) x^{m-2}}{e^{x}} \\
& =\cdots=\lim _{x \rightarrow \infty} \frac{m!}{e^{x}}=0
\end{aligned}
$$

Instad have $b^{x}=e^{x \log (b)}=e^{x \ln (b)}$

$$
\left(b^{x}\right)^{\prime}=e^{x \log b} \cdot(x \log 5)^{\prime}=b^{x} \cdot \ln b
$$

Aside: $\lim _{n \rightarrow 0} n^{1 / n}=1$
Proof: study $\log \left(n^{2 n}\right)=\frac{1}{n} \log (n)=\frac{\log (n)}{n}$

$$
\lim _{n \rightarrow \infty} \frac{\log (n)}{n}=\lim _{n \rightarrow \infty} \frac{k_{n}}{1}=0
$$ as $\frac{\log (n)}{n} \rightarrow 0, e^{\log (n) / n}=n^{1 / n} \rightarrow 1$

let $n=e^{x}$ as $n \rightarrow \infty, x \rightarrow \infty$
Thas $\lim _{n \rightarrow \infty} \frac{\log (0)}{n}=\lim _{x \rightarrow \infty} \frac{\log \left(e^{x}\right)}{e^{x}}=\lim _{\substack{n \rightarrow \infty \\ \text { (iest }+\infty}} \frac{x}{e^{x}}=0$
(jist didet)

Deriu:

$$
\begin{aligned}
& \text { Deriv: } \\
& f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& \Rightarrow \lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{(x-a)}=0 \\
& \begin{array}{l}
\text { lots } f^{\prime}(a) \frac{x-a}{x-a}=f^{\prime}(a) \\
\text { lise }
\end{array}
\end{aligned}
$$

loote of $f(x)$, subtract tangert line approx, show it is SO Goon still goto zeo wher cliude by $x-a$.

Rartial Derivatoer
$\frac{\partial f}{\partial x}$ neas tatee derev wot x, all dhe vaccables fixed

$$
\begin{aligned}
f(x, y, z) & =x^{3}+\sin \left(y^{3} \sin (y) \tan \left(z+y^{2}\right)\right) \\
\frac{\partial f}{\partial x} & =3 x^{2} \\
\frac{\partial f}{\partial s} & =\cos \left(y^{3} \sin (y) \tan \left(z+y^{2}\right)\right) * \\
& * \frac{\partial}{\partial y}\left[\left(y^{3} \sin (y) \tan \left(z+y^{2}\right)\right)\right]
\end{aligned}
$$

$201 m$

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-f(a, b)-\frac{\partial f}{\partial x}(a, b)(x-a)-\frac{\partial f}{\partial y}(a, b)(y-b)}{\|(x, y)-(a, b)\|} \\
=0
\end{gathered}
$$

If $y=b$ ulwass: subtraction tangent line in The x-dir
If $x=a$ always: similar in the y-dir (target line in the y-dir)

Gereal: $f\left(x_{1}, \ldots, x_{1}\right)$ is dcff at $\left(a_{1}, \ldots, a_{n}\right)$ if

is zero.

$$
\begin{aligned}
& \vec{x}=\left(x_{1}, \ldots, x_{n}\right) \quad \vec{a}=\left(a_{1}, \ldots, a_{n}\right), \text { Say } f \text { is differstioble if } \\
& \lim _{\vec{x} \rightarrow \vec{a}} \frac{f(\vec{x})-f(\vec{a})-(D f)(\vec{a}) \cdot(\vec{x}-\vec{a})}{\|\vec{x}-\vec{a}\|}=0 \\
& \text { wher } D f=\left(\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)=\operatorname{grad}(f) \\
& \text { so }(D f)(\vec{a})-(\vec{x}-\vec{a})=\frac{\partial f}{\partial x_{1}}(\vec{a})\left(x_{1}-a_{1}\right)+\ldots+\frac{\partial f}{\partial x_{n}}(\vec{a})\left(x_{n}-\vec{a}\right)
\end{aligned}
$$

In 1 -din conside $f(x)=|x|$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1 \\
& \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{-x}{x}=-1
\end{aligned}
$$

not deffectiobs!
$\frac{\partial f}{\partial x}=f_{x}$ is the partiol deris of f wrt x
$\frac{\partial f}{\partial y}=$ fy sloula with respections
what abat $f_{x y}$? Is this

$$
\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y} f\right) \cong \frac{\partial}{\partial y}\left(\frac{\partial}{\partial x} f\right) ?
$$

nught not be the sand! $\left(f_{x}\right) y$?

Bonusi Review Session: 3-28-23 hitps://voutu.belceTXDndmuig
Tests for Convesence

1) does $a_{n} \rightarrow 0$ as $\rightarrow \rightarrow \infty$ If 10, dineresi: $\sum_{n=1}^{\infty} a_{1}$
If eep, nay conurge
ex. $\sum \frac{1}{n}$ divages but $\sum \frac{1}{n^{2}}$ corvenes p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}= \begin{cases}\text { converges } & \text { if } p>1 \\ \text { dicuges } & \text { if } p \leq 1\end{cases}$
2) Comparison test:
$0 \leq a_{1} \leq b_{n}$ and $\sum b_{1}$ onverse, tha Ean rauge $0 \leq c_{1} \leq a_{n}$ and Ecn diurges the Ean dicuses
Ex: $\quad a_{n}=\frac{2^{n}+3^{n}}{n^{4}+4^{n}} \leq \frac{3^{n}+3^{n}}{4^{n}}=\frac{2 \cdot 3^{n}}{4^{1}}=2\left(\frac{3}{4}\right)^{n}$
Grometox Series, $r=3 / 4$ so Conceses

$$
\frac{z^{1}+3^{n}}{n^{4}+4^{n}} \geqslant \frac{z^{1}+z^{n}}{4^{1}+4^{1}}=\frac{2-z^{1}}{z \cdot 4^{n}}=\left(\frac{z}{4}\right)^{1}
$$

not usetul as lowe bound
3) Interal test: Say a_{n} is non-increasing $f(1)=a_{n}$ and f is non-increasing

Exitar $\sum_{n=10}^{\infty} \frac{1}{n(\log n)^{2}}:$ Cowerges

$$
\text { 4) Ratio: } \begin{aligned}
& \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \text { if }\left\{\begin{array}{cc}
<1 & \text { converses } \\
=1 & \text { io info } \\
31 & \text { divers }
\end{array}\right. \\
& E x!a_{n}=n^{3} / 3^{n} \\
& \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\left(n+13 / 3^{n+1}\right.}{n^{3} / 3^{n}} \\
&=\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n+1}} \frac{(n+1)^{3}}{n^{3}}=\lim _{n \rightarrow 0} \frac{1}{3}\left(\frac{n+1}{n}\right)^{3} \\
&=\frac{1}{3}\left(\lim _{n \rightarrow \infty} \frac{n+1}{n}\right)^{3}=\frac{1}{3} \quad \text { Convene } \\
&\left(+\frac{1}{n}\right.
\end{aligned}
$$

5) Rot test : $p=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left|a_{1}\right|^{1 / n}$ if $\left\{\begin{array}{lll}\infty & 1 & \text { ron } \\ =1 & 1 & n_{0}, n_{0} \\ >1 & \text { div }\end{array}\right.$
note: $n^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$
Study $\log \left(n_{11}^{1 / n}\right)$ show goes to 0

$$
\begin{aligned}
& \frac{1}{n} \log (n)=\frac{\log (n 1}{n} \lim _{n \rightarrow \infty} \frac{1 / n}{1}=0 \\
& \lim _{n \rightarrow \infty} \frac{\log (n)}{n}={ }_{\text {L' Hep } 1+a l}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Exi } a_{n}=n^{3} / 3^{n} \\
& \rho=\lim _{n \rightarrow \infty}\left(\frac{n^{3}}{3^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n^{3 / n}}{3^{n / n}} \\
&=\lim _{n \rightarrow \infty} \frac{\left(n^{1 / n}\right)^{3}}{3}=\frac{1}{3}\left(\lim _{n \rightarrow \infty} n^{1 / n}\right)^{3}=\frac{1}{3}<1 \\
& \text { cancoges }
\end{aligned}
$$

Spheiral Courdinotes
$(x, y, z) \longleftrightarrow \rho, \theta, \varphi)$
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$0 \leq \phi \leq \pi$ norh \rightarrow Suth pok

$0 \subseteq \theta \leq 2 \pi$ parallel to equestor pu'ar seodinotes with $r=\rho \sin p$ and G

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned} \Rightarrow \begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta
\end{aligned}
$$

Ess a lires, ploncos...
line Thr \vec{P} in direction \vec{O}

$$
\begin{aligned}
& \vec{p}(z)=\vec{p}+t \vec{v} \\
& \left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right)+t\left(\begin{array}{l}
u_{x} \\
u_{y} \\
v_{z}
\end{array}\right) \\
& t=0 \cdot \vec{P}(0)=\vec{p} \\
& t=\vec{P}(1)=\vec{p}+\vec{u}
\end{aligned}
$$

lane hor \vec{p}_{1} and \vec{p}_{2}

$$
V \vec{U}=\vec{p}_{2}-\vec{p}_{i}
$$

$$
\varepsilon_{q} \text { is } \vec{P}(t)=\vec{P}_{1}+t \vec{v}
$$

Ex of a Plane

$$
\vec{P}(t, s)=\vec{p}+t \vec{v}+s \vec{v}
$$

Normal Form

$$
\begin{aligned}
& \vec{p}(t)-\vec{p} \perp \vec{n} \\
& \vec{n} \cdot(\vec{p}-\vec{p})=0 \\
& \vec{n} \cdot \vec{p}=\vec{n} \cdot \vec{p} \\
& n=(a, b, r) \quad \vec{p}=(x, y, z) \\
& a x+b y+c z=d \\
& \text { whee } d=\vec{n} \cdot \vec{p}
\end{aligned}
$$

yow are in pare phalli The $\vec{U} \times \vec{\omega}$ and \vec{n} are in sane direction

Math 150: Multivariable Calculus: Spring 2023:

Lecture 19: Level Sets, Limits, Partial Differentiation: https://youtu.be/CF1y6yZDvao

Plan for the day: 14.1-14.3

- Review Level Sets, Domain and Range
- Review Limits
- Review Partial Derivatives

Homework due at the start of class 20:

5.1. 14.1: Functions of Two or More Variables - Problems. \#1: Exercise 14.1.18: Describe the domain and range of $g(r, s)=\cos ^{-1}(r s)$. \#2: Exercise 14.1.21: Matching functions with their graphs, see book. \#3: Exercise 14.1.22: Matching functions with their contour maps, see book.
5.2. 14.2: Limits and Continuity in Several Variables - Problems. \#1: Exercise 14.2.5: Using continuity, evaluate $\lim _{(x, y) \rightarrow(\pi / 4,0)} \tan x \cos y$. \#2: Exercise 14.2.32: Evaluate $\lim _{(x, y) \rightarrow(0,0)} x y /\left(\sqrt{x^{2}+y^{2}}\right)$. \#3: Exercise 14.2.40: Evaluate $\lim _{(x, y) \rightarrow(0,0)}(x+y+2) e^{-1 /\left(x^{2}+y^{2}\right)}$.
5.3. 14.3: Partial Derivatives - Problems. \#1: Exercise 14.3.20: Compute the first-order partial derivatives of $z=$ $x /(x-y)$. \#2: Exercise 14.3.23: Compute the first-order partial derivatives of $z=(\sin x)(\cos y)$. \#3: Exercise 14.3.35: Compute the first-order partial derivatives of $U=e^{-r t} / r$. \#4: Exercise 14.3.58: Compute the derivative $g_{x y}(-3,2)$ of $g(x, y)=x e^{-x y}$. \#5: Exercise 14.3.69: Find a function such that $\partial f / \partial x=2 x y$ and $\partial f / \partial y=x^{2}$.

- Level curve: The curve $f(x, y)=c_{\text {in the }} x y$-plane

Rogawski et al., Multivariable Calculus, 4 e , © 2019 W. H. Freeman and Company

IF FIGURE 9 The level curve consists of all points (x, y) where the function takes on the value c.
$(x-\sqrt{3})(x+\sqrt{3})$

Thus, the level curve corresponding to c consists of all points (x, y) in the domain of f in the $x y$-plane where the function takes the value c. Each level curve is the projection onto the $x y$-plane of the horizontal trace on the graph that lies above it.

Contour interval: 0.8 km
Horizontal scale: 2 km -

Function does not change $A \underset{200}{ } B$ along the level curve

$$
A \backsim{ }_{400} C
$$

Contour interval: 100 m
Horizontal scale: $200 \mathrm{~m} \longrightarrow$
(B)

Rogawski et al., Multivariable Calculus, 4e, © 2019 W. H. Freeman and Company

FIGURE 14

Contour Example: $\mathrm{f}(\mathrm{x}, \mathrm{y})=\cos \left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)$
Solve for (x, y) such hat $\cos \left(x^{2}+s^{2}\right)=C$ for a fixed c.
Empty of $|c|>1$
leal sets union of circles if $k \mid \leq 1$
Ex:c $=1:$ Then $x^{2}+y^{2}=0, \pm 2 \pi, \pm 4 \pi, \pm 6 \pi \ldots$
 only positive skins matter

Plot3D $\left[\operatorname{Cos}\left[x^{\wedge} 2+y^{\wedge} 2\right],\{x,-4,4\},\{y,-4,4\}\right]$

ContourPlot $\left[\operatorname{Cos}\left[x^{\wedge} 2+y^{\wedge} 2\right],\{x,-4,4\},\{y,-4,4\}\right.$, PlotLegends \rightarrow Automatic $]$

Manipulate $\left[P \operatorname{lot} 3 \mathrm{D}\left[\left\{\mathrm{c}, \operatorname{Cos}\left[\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right]\right\},\{x,-4,4\},\{y,-4,4\}\right],\{c,-1,1\}\right]$

DEFINITION

THEOREM 1

Limit Laws

Limit

$$
\lim _{\text {Assume that }}(x, y) \rightarrow P \text { and }(x, y) \lim _{(x, y) \rightarrow P} g(x, y) \text { exist. }
$$

Assume that $f(x, y)$ is defined near $P=(a, b)$. Then

$$
\lim _{(x, y) \rightarrow P} f(x, y)=L
$$

if, for any $\epsilon>0$, there exists $\delta>0$ such that if $(x, y)_{\text {satisfies }}$
$0<d((x, y),(a, b))<\delta, \quad$ then $\quad|f(x, y)-L|<\epsilon$
i. Sum Law:

$$
\lim _{(x, y) \rightarrow P}(f(x, y)+g(x, y))=\lim _{(x, y) \rightarrow P} f(x, y)+\lim _{(x, y) \rightarrow P} g(x, y)
$$

ii. Constant Multiple Law: For any number k,

$$
\lim _{(x, y) \rightarrow P} k f(x, y)=k \lim _{(x, y) \rightarrow P} f(x, y)
$$

iii. Product Law:

$$
\lim _{(x, y) \rightarrow P} f(x, y) g(x, y)=\left(\lim _{(x, y) \rightarrow P} f(x, y)\right)\left(\lim _{(x, y) \rightarrow P} g(x, y)\right)
$$

iv. Quotient Law: If $\lim _{(x, y) \rightarrow P} g(x, y) \neq 0$,
$\lim _{(x, y) \rightarrow P} \frac{f(x, y)}{g(x, y)}=\frac{\lim _{(x, y) \rightarrow P} f(x, y)}{\lim _{(x, y) \rightarrow P} g(x, y)}$

Continuous if the limit equals the value of the function at the point.
Methods to find limits:

- Direct substitution.

$$
\lim _{(x, y) \rightarrow(0,9} \frac{x^{2}+e^{x y}-y}{x y+z}=\frac{1}{2} \text { replace } \begin{aligned}
& x \text { with } \\
& y \text { with }
\end{aligned}
$$

- Polar transformation.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{x^{2}+y^{2}}
$$

$$
\lim _{x \rightarrow 0} \frac{x^{4}+x^{8}}{x^{2}+x^{4}}=0
$$

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow 0 \\
(y=0)}} \frac{x^{y}}{x^{2}}=\lim _{x \rightarrow 0} x^{2}=0 \\
& \lim _{\substack{s \rightarrow 0 \\
(x=0)}} \frac{y y}{y^{2}}=0 \lim _{\substack{x \rightarrow 0 \\
y=x}} \frac{2 x^{y}}{2 x^{2}}=
\end{aligned}
$$

$X=r \cos \theta, y=r \sin \quad(x, s) \rightarrow 0, \alpha$ have $r \rightarrow 0, \theta$ free

The partial derivatives are the rates of change with respect to each variable separately. A function $f(x, y)$ of two variables has two partial derivatives, denoted f_{x} and f_{y}, defined by the following limits (if they exist):

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}, \quad f_{y}(a, b)=\lim _{k \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}
$$

Thus, f_{x} is the derivative of $f(x, b)$ as a function of x alone, and f_{y} is the derivative of $f(a, y)$ as a function of y alone. We refer to f_{x} as the partial derivative of f with respect to x or the x-derivative of f. We refer to f_{y} similarly. The Leibniz notation for partial derivatives is

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=f_{x}, & \frac{\partial f}{\partial y}=f_{y} \\
\left.\frac{\partial f}{\partial x}\right|_{(a, b)}=f_{x}(a, b), & \left.\frac{\partial f}{\partial y}\right|_{(a, b)}=f_{y}(a, b)
\end{array}
$$

Higher Order Partial Derivatives

The higher order partial derivatives are the derivatives of derivatives. The second-order partial derivatives of f are the partial derivatives of f_{x} and f_{y}. We write $f_{x x}$ for the x-derivative of f_{x} and $f_{y y}$ for the y-derivative of f_{y} :
$f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)$
We also have the mixed partials:
$f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right), \quad f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$
The process can be continued. For example, $f_{x y x}$ is the x-derivative of $f_{x y}$, and $f_{x y y}$ is the $y_{\text {-derivative of }} f_{x y}$ (perform the differentiation in the order of the subscripts from left to right). The Leibniz notation for higher order partial derivatives is

$f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, \quad f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}, \quad f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}, \quad f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}$

THEOREM 1

Clairaut's Theorem: Equality of Mixed Partials
If $f_{x y}$ and $f_{y x}$ both exist and are continuous on a disk D, then $f_{x y}(a, b)=f_{y x}(a, b)_{\text {for all }}(a, b) \in D$. Therefore, on D,

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

The Heat Equation

Show that $u(x, t)=\frac{1}{2 \sqrt{\pi t}} e^{-\left(x^{2} / 4 t\right)}$, defined for $t>0$, satisfies the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 20: Tangent Planes, Approximation, Directional Derivatives:

https://youtu.be/sndlgROiTxI

Plan for the day: 14.4-14.5

- Tangent Planes and Differentiability

- Approximation
- Directional Derivatives

Homework due at the start of class 22 (not 21 - class 21 is on applications):

5.4. 14.4: Differentiability, Tangent Planes, and Linear Approximation - Problems. \#1: Exercise 14.4.5: Find an equation of the tangent plane at $(4,1)$ of $f(x, y)=x^{2}+y^{-2}$. \#2: Exercise 14.4.14: Find the points on the graph of $f(x, y)=(x+1) y^{2}$ at which the tangent plane is horizontal. \#3: Exercise 14.4.23: Estimate $f(2.1,3.8)$ assuming that $f(2,4)=5, f_{x}(2,4)=0.3$, and $f_{y}(2,4)=-0.2$.
5.5. 14.5: The Gradient and Directional Derivatives - Problems. \#1: Exercise 14.5.24: Calculate the directional derivative of $\sin (x-y)$ at $P=(\pi / 2, \pi / 6)$ in the direction of $v=\langle 1,1\rangle$. \#2: Exercise 14.5.35: Determine the direction in which $f(x, y, z)=x y / z$ has maximum rate of increase from $P=(1,-1,3)$, and give the rate of change in that direction. \#3: Exercise 14.5.41: Find a vector normal to the surface $x^{2}+y^{2}-z^{2}=6$ at $P=(3,1,2)$. \#4: Exercise 14.5.55: Find a function $f(x, y, z)$ such that $\nabla f=\langle z, 2 y, x\rangle$.

FIGURE 1 Tangent plane to the graph of $f(x, y)$.

REMINDER

A plane through the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\mathbf{n}=\langle A, B, C\rangle$ has equation $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$

If $f(x, y)$ is differentiable at (a, b), then the tangent plane to the graph at $(a, b, f(a, b))$ is the plane with equation $z=L(x, y)$. Explicitly, the equation of the tangent plane is

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

$f(a+\Delta x, b+\Delta y) \approx f(a, b)+f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y$

$$
\begin{array}{ll}
(x, y)=\left(a+\Delta a_{1} b+\Delta b\right) & \begin{array}{l}
\text { assume tow } \\
f(a, b),
\end{array} f_{x}(a, b), f_{y}(a, b)
\end{array}
$$

Let $f(x, y)=\operatorname{sqrt}\left(x^{\wedge} 2+3 y\right)$. Approximate $f(4.1,2.9)$.

$$
\begin{aligned}
& (a, b)=(y, 3) \quad f(y, 3)=5 \quad \Delta a=-1 \quad \Delta 6=-.1 \\
& f_{x}(x y)=\frac{\partial}{\partial x}\left(x^{2}+3 y\right)^{1 / 2}=\frac{1}{2}\left(x^{2}+3 y\right)^{-1 / 2} \frac{\partial}{\partial x}\left(x^{2}+3 y\right)=\frac{x}{\sqrt{x^{2}+3 y}} \\
& f_{x}(y, 3)=\frac{y}{5}=\frac{8}{10}=-8 \\
& f_{y}(x, y)=\frac{\partial}{\partial y}\left(x^{2}+3 y\right)^{1 / 2}=\frac{1}{2}\left(x^{2}+3 y\right)^{-1 / 2} \frac{\partial}{\partial y}\left(x^{2}+3 y\right)=\frac{3}{2 \sqrt{x^{2}+3 y}} \\
& f_{y}(4,3)=\frac{3}{2.5}=\frac{3}{10}=.3
\end{aligned}
$$

$$
\begin{aligned}
f(4.1,2.9) & =f(4,3)+f_{x}(4,3)(.1)+f_{5}(4,3)(-.1) \\
& =5+(.8)(.1)+(.3)(-.1)=5.05
\end{aligned}
$$

How for is $(4,1,2.9)$ from $(4,3)$? $I_{5} \sqrt{(4,1-4)^{2}+(2.9-3)^{2}}$ or $\sqrt{2} / 10 \approx .141$

$$
f(4.1,2,9) \simeq 5.0574 \ldots
$$

notice err is Mechsondle Phon how to ce moved.

The gradient of a function of n variables is the vector

$$
u=x-y \quad x=\frac{u+v}{2}
$$

$$
\nabla f=\left\langle\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle
$$

A function $f_{\text {that is defined along a path }}^{\mathbf{r}}(t)_{\text {results in a composition }} f(\mathbf{r}(t))$. The Chain Rule for Paths is used to find the derivative of these composite functions.

If $f_{\text {and }} \mathbf{r}(t)$ are differentiable, then

$$
\begin{aligned}
& t \longrightarrow r(t)=(x(t), y(t), z(t)) \rightarrow f(r(t)) \\
&=f(x(t), y(t), z(t)) \\
& f: \mathbb{R}^{3} \rightarrow \mathbb{R} \\
& r: \mathbb{R} \rightarrow \mathbb{R}^{3} \quad \text { so for: } \mathbb{R} \rightarrow \mathbb{R} \\
& g(t)=f(r(t)), g: \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& g(t)=f(x(t), y(t), z(t)) \\
& g^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(x(t+h), y(t+h), z(t+h)-f(x(t), y(t), z(t))}{h} \\
& \frac{f(x(t+h), y(t+h), z(t+h))-f(x(t), y(t+h), z(t+h))+f(x(t), y(t+h), z(t+h)): 0}{h} \\
& f(x(t+h), y(t+h), z(t+h)-f(x(t), y(t+h), z(t+h) \\
& \text { " } a=x(t) \text { " } \\
& \text { " } x^{2}=x(t+h)^{\prime \prime} \\
& { }^{*} x \rightarrow 9^{\prime \prime} \quad 5^{k} h \rightarrow 0^{k} \\
& \text { pe dere } \\
& f_{x}(r(t)) x^{\prime}(t)
\end{aligned}
$$

The directional derivative of $f_{\text {at }} P=(a, b)_{\text {in the direction of a unit vector }} \mathbf{u}=\langle h, k\rangle_{\text {is the limit (assuming it exists) }}$

$$
D_{\mathrm{u}} f(P)=D_{\mathbf{u}} f(a, b)=\lim _{t \rightarrow 0} \frac{f(a+t h, b+t k)-f(a, b)}{t}
$$

If f is differentiable at P and \mathbf{u} is a unit vector, then the directional derivative in the direction of \mathbf{u} is given by

$$
D_{\mathbf{u}} f(P)=\nabla f_{P} \cdot \mathbf{u}
$$

$$
\begin{aligned}
r(t) & =\vec{P}+t \vec{u}=(x(t), y(t)) \quad r(d)=\overrightarrow{\vec{p}} \\
r^{\prime}(t) & =\vec{u}=(h, t)=\left(x^{\prime}(t), y^{\prime}(t)\right) \\
g(t) & =f(r(t) \\
g^{\prime}(t) & =\nabla f_{r(t)} \cdot r^{\prime}(t) \quad \text { so for cs if cs } \nabla f_{\vec{p}} \cdot \vec{u}
\end{aligned}
$$

$$
\begin{aligned}
& \text { D咅f is } D f_{\vec{p}} \cdot \vec{u} \\
& \text { Tatee } \vec{u}=(1,0,0) \Rightarrow \frac{\partial f}{\partial x} \\
& \vec{u}=(0,1,0) \Rightarrow \frac{\partial f}{\partial y}
\end{aligned}
$$

AL Whis TAKE

$$
\|\vec{u}\|=1
$$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 21: Application (Trafalgar), Review: https://youtu.be/gxCZOZZx9KQ

Plan for the day: 14.4-14.5

- Application: Battle of Trafalgar
- Review: Differentiation Rules

Homework due at the start of class 22:

5.4. 14.4: Differentiability, Tangent Planes, and Linear Approximation - Problems. \#1: Exercise 14.4.5: Find an equation of the tangent plane at $(4,1)$ of $f(x, y)=x^{2}+y^{-2}$. \#2: Exercise 14.4.14: Find the points on the graph of $f(x, y)=(x+1) y^{2}$ at which the tangent plane is horizontal. \#3: Exercise 14.4.23: Estimate $f(2.1,3.8)$ assuming that $f(2,4)=5, f_{x}(2,4)=0.3$, and $f_{y}(2,4)=-0.2$.
5.5. 14.5: The Gradient and Directional Derivatives - Problems. \#1: Exercise 14.5.24: Calculate the directional derivative of $\sin (x-y)$ at $P=(\pi / 2, \pi / 6)$ in the direction of $v=\langle 1,1\rangle$. \#2: Exercise 14.5.35: Determine the direction in which $f(x, y, z)=x y / z$ has maximum rate of increase from $P=(1,-1,3)$, and give the rate of change in that direction. \#3: Exercise 14.5.41: Find a vector normal to the surface $x^{2}+y^{2}-z^{2}=6$ at $P=(3,1,2)$. \#4: Exercise 14.5.55: Find a function $f(x, y, z)$ such that $\nabla f=\langle z, 2 y, x\rangle$.

Differential Equations: I: First Order

Lots of differential equations can study.
Consider $f^{\prime}(x)=a f(x)$ with initial condition $f(0)=C$.
Special case: $a=1$ solution $f(x)=C e^{x} \ldots$
Solution: $f(x)=C e^{a x}(f(0)=C$ yields unique soln $)$.
Check: $f(x)=C e^{a x}$ then $f^{\prime}(x)=a C e^{a x}=a f(x)$.

Differential Equations: II: Second Order

What about $f^{\prime \prime}(x)=a f^{\prime}(x)+b f(x)$?
Similar to our difference equations! Try exponential!
$f(x)=e^{\rho x}\left(e^{\rho x}=\left(e^{\rho}\right)^{x}\right.$ like r^{n} from before) yields

$$
\rho^{2} e^{\rho x}=a \rho e^{\rho x}+b e^{\rho x} .
$$

Yields characteristic equation

$$
\rho^{2}-a \rho-b=0 \text { with roots } \rho_{1}, \rho_{2},
$$

general solution (if $\rho_{1} \neq \rho_{2}$)

$$
f(x)=\alpha e^{\rho_{1} x}+\beta e^{\rho_{2} x}
$$

In general have several variables and/or related quantities.

Consider a system involving $f(x)$ and $g(x)$:

$$
\begin{aligned}
f^{\prime}(x) & =a f(x)+b g(x) \\
g^{\prime}(x) & =c f(x)+d g(x)
\end{aligned}
$$

How do we solve? Think back to similar examples.

$$
\begin{aligned}
f^{\prime}(x) & =a f(x)+b g(x) \\
g^{\prime}(x) & =c f(x)+d g(x)
\end{aligned}
$$

In linear algebra solved for one variable in terms of others.

$$
g(x)=\frac{1}{b} f^{\prime}(x)-\frac{a}{b} f(x), \text { substitute: }
$$

$$
\begin{aligned}
{\left[\frac{1}{b} f^{\prime}(x)-\frac{a}{b} f(x)\right]^{\prime} } & =c f(x)+d\left[\frac{1}{b} f^{\prime}(x)-\frac{a}{b} f(x)\right] \\
f^{\prime \prime}(x) & =(a+d) f^{\prime}(x)+(c b-a d) f(x)
\end{aligned}
$$

reducing to previously solved problem!

$$
V^{\prime}(x)=A V(x), \quad V(x)=\binom{f(x)}{g(x)}, \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Formally looks like $f^{\prime}(x)=a f(x)$, guess solution is

$$
V(x)=e^{A x} V(0), \text { where }
$$

$$
e^{A x}=I+A x+\frac{1}{2!} A^{2} x^{2}+\frac{1}{3!} A^{3} x^{3}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} x^{k}
$$

Can justify term-by-term differentiation of series for $e^{A x}$, see importance of matrix exponential.

Mentioned Baker-Campbell-Hausdorf formula; in general product of matrices is hard but $\left(e^{A x}\right)^{\prime}=A e^{A x}=e^{A x} A$.

Application: Battle of Trafalgar

Modified from Mathematics in Warfare by F. W. Lancaseter.

Battle of Trafalgar

Wikipedia: "The battle was the most decisive naval victory of the war.
Twenty-seven British ships of the line led by Admiral Lord Nelson aboard HMS Victory defeated thirty-three French and Spanish ships of the line under French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain, just west of Cape Trafalgar, in Caños de Meca.

Forces $r(t)$ and $b(t)$, effective fighting values N and M :

$$
\begin{aligned}
b^{\prime}(t) & =-N r(t) \\
r^{\prime}(t) & =-M b(t)
\end{aligned}
$$

Can solve using techniques from before: what do you expect solution to look like?

If take derivatives again find

$$
b^{\prime \prime}(t)=-N r^{\prime}(t)=N M b(t), \quad \text { yields }
$$

$b(t)=\beta_{1} e^{\sqrt{N M} t}+\beta_{2} e^{-\sqrt{N M} t}, \quad r(t)=\alpha_{1} e^{\sqrt{N M} t}+\alpha_{2} e^{-\sqrt{N M} t}$.
$b^{\prime}(t) / b(t)=r^{\prime}(t) / r(t)$ yields $N r(t)^{2}=M b(t)^{2}$ (square law).

Trafalgar
Nelson outnumbered - how could he win?

Nelson assumed for the purpose of framing his plan of attack that his own force would consist of forty sail of the line, against forty-six of the com-

Analysis of Nelson's Plan: II

If for the purpose of comparison we suppose the total forces had engaged under the conditions described by Villeneuve as "the usage of former days," we have:-

Strength of combined fleet, $46^{2} \ldots .=2116$
" British " $40^{2} \ldots=1600$
Balance in favour of enemy 516

Dealing with the position arithmetically, we have:-
 Strength of British (in arbitrary n^{2} units), $32^{2}+8^{2}=1088$
 And combined fleet, $23^{2}+23^{2}=1058$
 British advantage 30

Wikipedia: "The battle was the most decisive naval victory of the war. Twenty-seven British ships of the line led by Admiral Lord Nelson aboard HMS Victory defeated thirty-three French and Spanish ships of the line under French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain, just west of Cape Trafalgar, in Caños de Meca.The Franco-Spanish fleet lost twenty-two ships, without a single British vessel being lost."

AfterMATH of Battle of Trafalgar

British: 0 of 27 ships, 1,666 dead or wounded.
Franco-Spanish: 22 of 33 ships, 13,781 captured, dead or wounded.

Biggest issue is deterministic.
Make fighting effectiveness random variables!
Leads to stochastic differential equations.

```
http://en.wikipedia.org/wiki/
Stochastic_differential_equation.
```

v

(®)

$$
\begin{aligned}
& g(t)=f(r(t)) \\
& g^{\prime}(t)=f_{x}(r(t)) x^{\prime}(t)+f_{y}(r(t)) y^{\prime}(t)+f_{z}\left(r(t) z^{\prime}(t)\right. \\
& d \\
& \frac{\partial f}{\partial x}\left(r(t) \frac{d x}{d t}(t)\right.
\end{aligned}
$$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 22: Chain Rule, Optimization / $2^{\text {nd }}$ Derivative Test:

 https://youtu.be/kNqwNfczw74Plan for the day: 14.6-14.7

- Chain Rule

- Optimization / Second Derivative Test

Homework due at the start of class 23: Extra credit if you do 14.6.31 - we will not do implicit differentiation in the class (we will do more applications instead).
5.6. 14.6: Multivariable Calculus Chain Rules - Problems. \#1: Exercise 14.6.8: Use the Chain Rule to calculate $\partial f / \partial u$ for $f(x, y)=x^{2}+y^{2}, x=e^{u+v}, y=u+v$. \#2: Exercise 14.6.12: Use the Chain Rule to evaluate $\partial f / \partial s$ at $(r, s)=(1,0)$, where $f(x, y)=\ln (x y), x=3 r+2 s$, and $y=5 r+3 s$. \#3: Exercise 14.6.31: Use implicit differentiation to calculate $\partial z / \partial y$ for $e^{x y}+\sin (x z)+y=0$.
5.7. 14.7: Optimization in Several Variables - Problems. \#1: Exercise 14.7.12: Find the critical points of $f(x, y)=$ $x^{3}+y^{4}-6 x-2 y^{2}$, then apply the Second Derivative Test. \#2: Exercise 14.7.17: Find the critical points of $f(x, y)=$ $\sin (x+y)-\cos x$, then apply the Second Derivative Test. \#3: Exercise 14.7.24: Show that $f(x, y)=x^{2}$ has infinitely many critical points (as a function of two variables) and that the Second Derivative Test fails for all of them. What is the minimum value of f ? Does $f(x, y)$ have an local maxima?

Chain Rule for Paths

$$
\begin{aligned}
& g(t)=f(r(t)) \\
& g^{\prime}(t)=\frac{d g}{1 t}
\end{aligned}
$$

${ }_{\text {If }} f_{\text {and }} \mathbf{r}(t)$ are differentiable, then

$$
\frac{d}{d t} f(\mathbf{r}(t))=\nabla f_{\mathbf{r}(t)} \cdot \mathbf{r}^{\prime}(t)
$$

In the cases of two and three variables, this chain rule states:

$$
\begin{aligned}
\frac{d}{d t} f(\mathbf{r}(t))=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \\
\frac{d}{d t} f(\mathbf{r}(t))=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
\end{aligned}
$$

The Chain Rule expresses the derivatives of $f_{\text {with respect to the independent variables. For example, the partial }}$ derivatives of $f(x(s, t), y(s, t), z(s, t))$ are

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}
$$

$$
\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
$$

Rogawski et al., Multivariable Calculus, 4e, © 2019 W. H. Freeman and Company

FIGURE 1 Keeping track of the relationships between the variables.

THEOREM 2

General Version of the Chain Rule

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a differentiable function of n variables. Suppose that each of the variables x_{1}, \ldots, x_{n} is a differentiable function of m independent variables t_{1}, \ldots, t_{m}. Then, for $k=1, \ldots, m$,

$$
\frac{\partial f}{\partial t_{k}}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{k}}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{k}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{k}}
$$

$$
\begin{aligned}
& x=r \cos \theta \quad x(r, \theta)=r \cos \theta \\
& y=r \sin \theta \quad y(r, \theta)=r \sin \theta \\
& f(r, t)=f(x(r, t), y f, \theta) \\
& f(x, y)=x^{3}+x y-y^{2} \\
& \begin{array}{ll}
\frac{\partial x}{\partial r}=\cos \theta & \frac{\partial x}{\partial \theta}=-r \sin \theta \\
\frac{\partial y}{\partial r}=\sin \theta & \frac{\partial y}{\partial \theta}=r \cos \theta
\end{array} \\
& \text { Find } \frac{\partial}{\partial \theta} f(x(r, \infty), y(r, \infty)) \\
& \frac{1}{2} \sin 2 \theta \\
& \text { optan 1: } f(x(r, \theta), y(r, \theta))=r^{3} \cos ^{3} \theta+r^{2} \cos \theta \sin \theta-r^{2} \sin ^{2} \theta \\
& \frac{\partial}{\partial \epsilon}\left(\sin ^{2} \theta\right)=\sin 2 \theta \\
& \frac{\partial}{\partial \theta} \cos ^{3} \theta=-3 \cos ^{2} \theta \sin \theta \\
& \neq \cos 36 / \epsilon=0) \\
& \frac{\partial}{\partial t} \sin ^{2} \theta=2 \sin \theta \cos \theta=\sin 2 \theta \\
& \frac{\partial f}{\partial x}=3 x^{2}+y \quad \frac{\partial f}{\partial x}(x(r, t), y(r, \theta))=3 r^{2} \cos ^{2} \epsilon+r 5 \ln \theta \\
& \begin{array}{c}
\frac{\partial x}{\partial \theta}=-r \sin \theta \Rightarrow \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}=-\left(3 r^{2} \cos ^{2} \operatorname{s}+15 \ln \theta\right) \\
* r s(10 \theta
\end{array}
\end{aligned}
$$

Local Extreme Values

A function $f(x, y)$ has a local extremum at $P=(a, b)_{\text {if there exists an open disk }} D(P, r)$ such that

- Local maximum: $f(x, y) \leq f(a, b)_{\text {for all }}(x, y) \in D(P, r)$
- Local minimum: $f(x, y) \geq f(a, b)$ for all $(x, y) \in D(P, r)$

- Local minimum: $f(x, y) \geq f(a, b)$ for all $(x, y) \in D(P, r) \quad$ loco(nay at (1,21

Critical Point

$$
f(x, y)=-(x-1)^{2}
$$

$$
-(y-2)^{2}
$$

A point $P=(a, b)$ in the domain of $f(x, y)$ is called a critical point if:

$$
f(x)=x^{3} \quad \text { hos } n 0
$$

- $f_{x}(a, b)=0$ or $f_{x}(a, b)$ does not exist, and
- $f_{y}(a, b)=0$ or $f_{y}(a, b)$ does not exist.

As in the one-variable case, there is a Second Derivative Test determining the type of a critical point (a, b) of a function $f(x, y)$ in two variables. This test relies on the sign of the discriminant $D=D(a, b)$, defined as follows:

$$
\begin{aligned}
& D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b) \\
& \frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2} \quad \\
& \text { Assure all } \\
& \text { durius cortiness } \\
& \text { so fry }=f_{s x}
\end{aligned}
$$

Second Derivative Test for $f(x, y)$

Let $P=(a, b)_{\text {be a critical point of }} f(x, y)$. Assume that $f_{x x}, f_{y y}, f_{x y}$ are continuous near P. Then

$$
D>0 \quad f_{x x}(a, b)>0, \quad f(a, b)
$$

i. If and then is a local minimum.
ii. If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
iii. If $D<0$, then f has a saddle point at (a, b).
iv. If $D=0$, the test is inconclusive.

If $D>0$, then $f_{x x}(a, b)$ and $f_{y y}(a, b)$ must have the same sign, so the sign of $f_{y y}(a, b)$ also determines whether $f(a, b)$ is a local minimum or a local maximum in the $D>0$ case.

Assare critical point (utos) at $x=0$ whorg assum $f(a)=0$
TaylorSeres: $f(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(c) \frac{x^{2}}{2!}+\cdots$
So $f(x)=f^{\prime \prime}(0) \frac{x^{2}}{2!}+\cdots$
If x is $\sin 011,\left|x^{3}\right| \operatorname{cec}|x|^{2}$
So $f(x) \simeq f^{\prime \prime}(0) x^{2} / 2!$

$$
\begin{array}{ll}
A(x)=x^{2} & B(x)=-x^{2} \\
B^{\prime}(x)=-2 x \\
A^{\prime}(x)=2 x \\
A^{\prime \prime}(x)=2 \\
A^{\prime \prime}(0)=2>0
\end{array} \bigcap_{B^{\prime \prime}} \quad \begin{aligned}
& B^{\prime \prime}(x)=-2 \\
& B^{\prime \prime}(0)=-2<0
\end{aligned}
$$

Multureriate Tïslor
Take $(x, y)=(0,0)$ and $f(0,0)=0 \quad$ (wlog)
Gcadent rs $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ and $(D f)(0,0)=(\rho, 0)$ at critical point

$$
\begin{aligned}
f(x, y)=f(0,0) & +(\nabla f)(0,0) \cdot(x, y)+\underbrace{\frac{1}{2}(x y)(H f(0,0)(x)} \begin{array}{l}
x \\
y
\end{array}) \\
& (H f f)(0,0)=\left(\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right)_{(0,0)}^{\sigma \text { cus a number }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}\left(\begin{array}{ll}
x y) & \left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right)\binom{x}{y} \quad \begin{array}{l}
f_{x x} f_{y y}-f_{x y}^{2} \\
\text { dete-mnant! }
\end{array} \\
=\frac{1}{2}(x y)\binom{f_{x x} x+f_{x s} y}{f_{x y} x+f_{y y} y} \\
=\frac{1}{2}\left[f_{x x} \cdot x^{2}+f_{x y} x y+f_{x s} x y+f_{y y} y^{2}\right] \\
=\frac{f_{x x}}{2} x^{2}+f_{x y} \cdot x y+\frac{f_{y y}}{2} y^{2}
\end{array}, l\right.
\end{aligned}
$$

Two derins wot x get $f_{x x}$ Two " "y, get $f_{x y}$ Oaderiv wrt x, on waty, get $f_{X S}$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 23: Lagrange Multipliers: https://youtu.be/omW5MRL_zVw

Plan for the day: 14.8

- Lagrange Multipliers

Homework due at the start of class 24:
5.8. 14.8: Lagrange Multipliers: Optimizing with a Constraint - Problems. \#1: Exercise 14.8.10: Find the minimum and maximum vales of $f(x, y)=x^{2} y^{4}$, subject to the constraint $x^{2}+2 y^{2}=6$. \#2: Exercise 14.8.15: Find the minimum and maximum vales of $f(x, y)=x y+x z$, subject to the constraint $x^{2}+y^{2}+z^{2}=4$. \#3: Exercise 14.8.18: Find the rectangular box of maximum volume if the sum of the lengths of the edges is 300 cm .

Optinization in Seem-1 Vevorbs
((1) Interior: look for $D F=\overrightarrow{0}=\left\langle\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{1}}\right\rangle$
(2) bavnary': Su-fure $g\left(x_{1}, \ldots, x_{1}\right)=c$

Den must have a λ st $\nabla f=\lambda \nabla_{g}$ at a cardidate

$$
\left.\begin{array}{l}
\partial f / \partial x_{1}=\lambda \partial s / \partial x_{1} \\
\vdots \\
\partial f / \partial x_{n}=\lambda \partial g / \partial x_{n} \\
g\left(x_{1}, \ldots, x_{n}\right)=c
\end{array}\right\} \begin{aligned}
& 1+1 \text { eqs } \\
& 1+1 \text { variables }
\end{aligned}
$$

$g\left(x_{1}, \ldots, x_{n}\right)=c \quad$ leedset of g of heisht c
Ex: $g(x, y)=x^{2}+4 y^{2}=C>0$

$$
g(x, y, z)=x^{2}+4 y^{2}+9 z^{2}=c
$$

Corve $r(t)$ on The ellipsoid atheisht C

$$
\begin{aligned}
& A(t)=g(r(t))=c \\
& \left.A^{\prime}(t)=(\nabla g)(r \mid t)\right) \cdot r^{\prime}(t)=0
\end{aligned}
$$

at eany $t,(\nabla g)\left(r(t)\right.$ is \perp to $r^{\prime}(t)$, he tanget to de curve $r(t)$ at t, ig is normar din

If ∇f is only in the Surface dir of $\nabla 9$, Don all der

If hove on surface, change is a direction derivative
$D_{r^{\prime}(t)} f=(D f)\left(r(f) \cdot r^{\prime} / t\right)$ $\left(\operatorname{recall}(\nabla g)(r(t))-r^{\prime}(t)=0\right)$ deriv of f as shias on the surface are zero, so have candid oates, fir maximin.
If Of has someming I to Dg, nave in Ra der for max λ and opparite dir for max \downarrow.
$E_{x:} f(x, y)=y x^{4}+2 y^{4}$

$$
g(x, y)=x^{2}+4 y^{2}=1
$$

Interior: Need $D F=\overrightarrow{0}$

$$
D f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial s}\right\rangle=\left\langle 16 x^{3}, 8 y^{3}\right\rangle
$$

If $(0,0)$ need $(x, y)=(0,9):$ MiN
Bandas $D F=\lambda \nabla y$ and $g(x, y)=1, \quad \nabla g=\langle 2 x, 8\rangle\rangle$

$$
\begin{array}{ll}
f_{x}=\lambda g_{x} & 16 x^{3}=\lambda 2 x \\
f_{y}=\lambda g_{y} & 8 y^{3}=\lambda 8 y \\
g(x, y=1 & x^{2}+4 y^{2}=1
\end{array}
$$

$$
\begin{array}{lrl}
16 x^{3}=\lambda 2 x & \text { Case } 1: x=0 & \text { Case } z: y=0 \\
8 y^{3}=\lambda 89 & \text { Get } 4 y^{2}=1 & x^{2}=1 \\
x^{2}+4 y^{2}=1 & \text { So } y= \pm 1 / 2 & \text { so } x= \pm 1
\end{array}
$$

Case $3: x, y \neq 0$
Dude list bs $2^{\text {nd }}$ equation: $\frac{16 x^{3}}{8 s^{3}}=\frac{\lambda 2 x}{\lambda 8 s}$ or $2\left(\frac{x}{4}\right)^{3}=\frac{1}{4}\left(\frac{x}{4}\right)$
As $x / y \neq 0$ get $(x / y)^{2}=\frac{1}{8}$ or $x^{2}=\frac{1}{8} y^{2}$ so $x= \pm \frac{\sqrt{2}}{4} y$ Now use $x^{2}+4 y^{2}=1$ So $\frac{1}{8} y^{2}+4 y^{2}=1$ - $-\frac{33}{8} y^{2}=1$ $y^{2}=\frac{33 / 8}{8}$ so $y= \pm \sqrt{\frac{33}{8}}$, and $x= \pm \frac{-\sqrt{66}}{4 \sqrt{8}}$
Condedates! $(\pm 1,0),\left(0, \pm \frac{1}{2}\right),\left(\pm \frac{\sqrt{66}}{4 \sqrt{8}} \pm \sqrt{\frac{33}{8}}\right)$ have 8 points Check all! really only 3

$$
g(x, y)=x^{2}+4 y^{2}=1 \quad f(x, y)=4 x^{4}+2 y^{4}
$$

Reduce to I-dim

$$
\begin{aligned}
& x=2 \cos \theta \quad y=\sin \theta \\
& x^{2}+4 y^{2}=4 \cos ^{2} \theta+451^{2} \theta=1 \\
& f(x(\theta), y(\theta))=4(2 \cos \theta)^{4}+2(\sin \theta)^{4}=: f(\theta)
\end{aligned}
$$

Find $f^{\prime}(\theta)=0$
Solve usiny Calc I 0

Faroe Brawn

100 meter of fence max rect ungula r area

$$
\text { y } \quad P=2 x+2 y=100
$$

$$
A=x y
$$

$x+y=50$ so $y=50-x$ so $\operatorname{Arara}(x)=x(50-x)$
boundary $x=0,50$: men
Thocan! $50 x-x^{2}$ simplify, Simptrs
critical Points! So $-2 x=0$ Get $x=25$ square

Math 150: Multivariable Calculus: Spring 2023:

 Lecture 24: Lagrange Multipliers II, Derivatives: https://youtu.be/-QEyiSaZQZoPlan for the day:

- Lagrange Multipliers
- Rules for Derivatives

Monday: Class 25: Sabermetrics lecture, prospectives visiting.
Midterm II: Class 26: Wednesday (can show up at 8am if wish)

Farmer Brown
LOO meter of foxe, maximize recturguler area

$$
2 x+2 y=100
$$

max Ky

$$
\begin{gathered}
g(x, y):=x+y=50 \\
\nabla f=\lambda \nabla g \\
g(x, y)=50
\end{gathered}
$$

Note: $\nabla f=\langle 9, x\rangle$

$$
V g=\langle 1,1\rangle
$$

$$
y=50-x
$$

$\max x(50-x)=50 x-x^{2}$

$$
\left.\begin{array}{l}
f(x, y)=x y \\
y=\lambda 1 \\
x=\lambda 1
\end{array}\right\}
$$

$x+y=50$

$$
\begin{aligned}
2 x & =50 \\
x & =25 \\
y & =25
\end{aligned}
$$

Farmer Tin

100 metes of fencing only need 3 sides
maximum area?

$$
\begin{array}{ll}
g(x, y):=x+2 g=100 & f(x, y)=x y \\
\nabla g=\langle 1, z\rangle & \nabla f=\langle y, x\rangle \\
\nabla f=\lambda \nabla g \\
g(x, y)=100 & \left\{\begin{array}{l}
y=\lambda \cdot 1 \\
x=\lambda \cdot 2 \\
x+2 y=100
\end{array}\right.
\end{array}
$$

$2 \lambda+2 \lambda=100$ So $\lambda=25$
las $x=50$ $y=25$

\#possibilitious: $9!\approx 360,000$ or 330,000
Relue by 3! $=6$

Math 150: Multivariable Calculus: Spring 2023: Lecture 25: Sabermetrics; Lecture 26: Midterm II Lecture 27: Fundamental Theorem of Calculus: https://youtu.be/IQjOIHPx3-4 Plan for the day:

- Need inputs (IVT, MVT)
- Proof of Fundamental Theorem of Calculus in 1 Variable

Monday: Class 25: Sabermetrics lecture, prospectives visiting. Slides:
https://web.williams.edu/Mathematics/sjmiller/public html/math/talks/PythagWLT alk DeveloperCloud85 2017.pdf Video: https://youtu.be/reUdQONPbPY
Paper: https://web.williams.edu/Mathematics/sjmiller/public html/math/papers/MillerEt Al Pythagoras.pdf

Midterm II: Class 26: Wednesday (can show up at 8am if wish)

Intermedoce Valve Thn (IUT)
If f is cont on [a, b] Thence C is blw $f(a)$ and focs)
There is a $c \in[a, b]$ with $f(c)=C^{\prime}$

Prat: lat ata sar of midens so left is $\leq C_{1}$ rours $\geqslant C$, keen s.samis Conucato oryon cilve

The Mean Vole Tho (MVT)
If $f i s$ cont and diff on $[a, b]$ There $i s$ a $C \in[i, b]$
 ie, at some the the instantanas speed $\begin{gathered}\left.f(b)=f(s)+f^{\prime}(c)(s)-a\right) \\ =\text { avenge sped. }\end{gathered}$
Prot: ave speed is 70.
Case: alwuers trawl <70 : Cantradiatin
Case 2: alwasstraul $\gg 0$: Contradiction
Case 3: ecthe at some tine 70 or at some point $<>0$ and cud her point $\rightarrow>0$
$\leftrightarrow \mathrm{Sy}_{4}$ IUT hit 70 at sone tine

Banced
Sey f is baided by B if $|f(x)| \leq B$

$$
\varepsilon_{x ;} f(x)=x^{2}+3+3 x+e^{x \cos \left(2 x^{3}\right)}-170
$$

Say $x \in[-1,10]$

$$
\begin{aligned}
|f(x)| & \leq|x|^{2}+3+3|x|+e^{\left|x \cos \left(2 x^{3}\right)\right|}+(70 \mid \\
& \leq 100+3+30+e^{10}+1>0 \mid \\
& \leq 10^{1000}
\end{aligned}
$$

Fune Thenof Calc
Let f be a cont and diff function on a finte interul $[a, b]$ with $\left|f^{\prime}(x)\right| \leqslant B$ forsome B. Let $F^{\prime}=f$.
Thes the qrea unde the curve $y=f(x)$ from $x=a$ to $x=S$ is $F(b)-F(G)$, and denck his by $\underbrace{\int_{a}^{b} f(x) d x \text {. }}_{\text {aren }}$

$$
A_{\text {rea }}=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Rlenan Sums

on $\left[x_{k}, x_{k+1}\right]$ have $f\left(l_{k}\right) \leqslant f(x) \leqslant f\left(a_{k}\right)$

$$
f\left(l_{k}\right) \frac{1}{n} \leq \int_{x_{k}}^{x_{k+e}} f(x) d x \leq f\left(u_{k}\right) \frac{1}{n}
$$

Sum ove sll pleces:

$$
\underset{\substack{\text { Lornsom } \\ \text { with nplices }}}{L(1)}=\sum_{k=0}^{n-1} f\left(l_{k}\right) \frac{1}{n} \leq A_{\text {rea }} \leq \sum_{k=0}^{n-1} f\left(u_{k}\right) \frac{1}{n}=\text { iuph }
$$

Show $L(n)$ and $U(n)$ banse to a conmon ualve lo if yes, has to be the area
Study $U(n)-Z(n)=\sum_{k=0}^{n-1} \underbrace{\left.f\left(u_{k}\right)-f(1)^{2}\right]}_{\substack{\text { shownis } \\ \text { goes to 0 }}} \frac{1}{n}$

Study $f\left(u_{t}\right)-f\left(l_{k}\right)=f^{\prime}\left(c_{t}\right)\left(u_{t}-l_{k}\right)$ b, мит

$$
\begin{aligned}
& \text { Substatuc: } \\
& \frac{U(n)-L(n)}{n} \leq \sum_{k=0}^{n-1}\left(B \cdot \frac{1}{1}\right) \frac{1}{n} \\
& =\frac{B}{n^{2}} \sum_{k=0}^{n=1} 1=\frac{B n}{n^{2}}=\frac{B}{n} \rightarrow 0
\end{aligned}
$$

Carside: $10-1$

$$
\begin{aligned}
& +110-7 \\
& +17 \alpha-x e \\
& +24601-1701 \\
& \hline 24600
\end{aligned}
$$

telescoping sum
Conside:

$$
\begin{gathered}
\sum_{k=1}^{n}\left[F\left(x_{k}\right)-F\left(x_{k-1}\right)\right] \\
\begin{array}{c}
\\
= \\
+F\left(x_{k}\right)-F\left(x_{1}\right) \\
+F\left(x_{2}\right)-F\left(x_{k}\right) \\
\vdots \\
\vdots \\
\\
+F\left(x_{1}\right)-F\left(x_{2}\right) \\
F\left(x_{1}\right)-F\left(x_{1}\right)
\end{array}
\end{gathered}
$$

Know: $\sum_{k=1}^{n}\left[E\left(x_{k}\right)-F\left(x_{t-1}\right)\right]=F\left(x_{0}\right)-F\left(x_{0}\right)$

$$
\begin{aligned}
& \operatorname{MVT} F\left(x_{k}\right)-F\left(x_{k-1}\right)=F^{\prime}\left(m_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& \text { applet } F \quad \text { with m} m_{k} \text { in }\left[x_{k-1}, x_{k}\right]
\end{aligned}
$$

so $F\left(x_{t}\right)-F\left(x_{k-1}\right)=f\left(m_{t}\right) \frac{1}{1}$
an The interval $\left[x_{k-1}, x_{k}\right]$ haw $f\left(l_{k-1}\right) \leq f\left(m_{k}\right) \leq f\left(y_{k-1}\right)$
Get $L(n) \leq \sum_{k=1}^{n} f\left(n_{k}\right) \frac{1}{n} \leq U(n)$

$$
\begin{aligned}
& L(n) \leq \underbrace{\sum_{k=1}^{n} f\left(m_{k}\right) \frac{1}{n}} \leq u(n) \\
& L(n) \leq \underbrace{F \in U(n)}_{A\left(x_{n}\right)-F\left(x_{0}\right)} \leq \begin{array}{l}
x_{n}=\frac{n}{n}=1 \\
x_{0}=\frac{0}{n}=0
\end{array}
\end{aligned}
$$

This Area, dented $\int_{a}^{b} f(x) d x$, is $F(1)-F(o)$

Math 150: Multivariable Calculus: Spring 2023:
Lecture 28: Integration in Several Variables: https://youtu.be/gLEfgNRcKmA

Plan for the day:

- Integration in Several Variables
- Switching orders of integration (generalizing $f_{x y}=f_{y x}$).
11.1. 15.1: Integration in Two Variables - Problems.

15. Evaluate the integral

$$
\text { where } \mathcal{R}=[-4,4] \times[0,5]
$$

27. Evaluate

$$
\int_{0}^{1}\left[\int_{0}^{2}\left(x+4 y^{3}\right) d x\right] d y
$$

31. Evaluate

$$
\int_{1}^{2}\left[\int_{2}^{4} e^{3 x-y} d y\right] d x
$$

41. Evaluate

$$
\iint_{\mathcal{R}} e^{x} \sin y d A
$$

where $\mathcal{R}=[0,2] \times\left[0, \frac{\pi}{4}\right]$.

Basius of Integals in seuear Verriobles

$$
\begin{aligned}
R & =[a, b] \times[C, d] \\
& =\{(x, y)!x \in[(a, b], y \in[C, d]\}
\end{aligned}
$$

Find volume unde the surface

- Rectarsle in (X,s) plare:

$$
\left.\begin{array}{l}
a \leq x \leq b \\
c \leq 5 \leq d
\end{array}\right\} \text { all frote }
$$

- Recran suns
lork ut max/min in each rectangle su m, take lonit, show concuse to a rommon valu, deack hoss,

$$
\iint_{R} f(x, y) d A
$$

Hope:

Ruks of Intesration

$$
\begin{aligned}
& \text { - } \int \cdots \int_{\mathbb{R}} c f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{1} \\
& =C \int_{\mathbb{R}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1}, \ldots d x_{1} \\
& \text { - } \int \cdots \int_{\mathfrak{R}}\left[f\left(x_{1}, \ldots, x_{n}\right)+g\left(x_{2}, \ldots, x_{n}\right)\right] d x_{1} \ldots d x_{n} \\
& =\int \cdots \int_{R} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& +\int \cdots \int_{R} g\left(x_{1}, \cdots, x_{n}\right) d x_{1} \ldots d x_{1}
\end{aligned}
$$

Why Order Can Matte

Fubinis Thm
Assure f is a cont f n on a finit rectangk $[a, b] \times[-\alpha]=i R$.
Ther $\iint_{R} f d A=\int_{x=a}^{b}\left[\int_{y=c}^{d} f(x, y) d y\right] d x=\int_{y=c}^{d}\left[\int_{x=a}^{b} f(x, y) d x\right] d y$
Mor quentlys ok if $\iint_{R}|f| d A<\infty$

Harmonic Seres:

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\infty
$$

Alternating Harnonce

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \quad \text { converas to } \ln (2)(1 \text { mant })
$$

Reorder Alternatron Harmanerc

$$
\begin{aligned}
& 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7,} \frac{\frac{1}{4}, \ldots}{\frac{1}{n_{1}+2}+\frac{1}{n_{1}+4}+\cdots+\frac{1}{n_{3}}}-\frac{1}{2},-\frac{1}{4},-\frac{1}{6},-\frac{1}{8},-\frac{1}{10}, \cdots \\
& \stackrel{-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{2}-\cdots-\frac{1}{n_{2}}}{\longleftrightarrow}
\end{aligned}
$$

Simple Regions:
X-simple if far each x enter once, leave once y-simple " " " ${ }^{\prime}$ " " " lear once

Simple if x-Simple and y-simple

Math 150: Multivariable Calculus: Spring 2023:

 Lecture 29: Monte Carlo Integration: https://youtu.be/QHgSQDNQQTUPlan for the day:

- Erf Function
- Central Limit Theorem
- Monte Carlo Integration
$(\operatorname{Sn} x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x \quad \ln \operatorname{adin}$ compute by taylor Saris or identities from nice anger

$$
1^{2}=x^{2}+x^{2}
$$

So $2 x^{2}=1$

$$
\text { so } x=\sqrt{2} / 2
$$

$$
\begin{aligned}
& 1^{2}=\left(\frac{1}{2}\right)^{2}+y^{2} \\
& \sqrt{\frac{3}{4}}=y \\
& \text { or } y=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} x^{n} / n!=1+x+x^{2} / 2!+x^{3} / 3!+\cdots \\
& e^{i x}=\cos x+i \sin x \\
& \cos x=1-x^{2} / 2!+x^{4} / 4!-\cdots \\
& \sin x=x-x^{3} / 3!+x^{5} / 5!-\cdots
\end{aligned}
$$

Probability! $f(x)$ is a density if

- $f(x) \geqslant 0$
- $\int_{-\infty}^{\infty} f(x) d x=1$

Cumulative Distribution function is he prob at most x :

$$
\int_{-\infty}^{x} f(t) d t=F(x)
$$

Normal neen μ stardad devation σ is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

$$
\mu=0 \quad \sigma=1
$$

Find Pab at most x :

$$
\begin{aligned}
& \int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t \\
& \text { Wher } x=0 \quad \text { intec-al is } 1 / 2 \\
& \text { wher } x=\infty \quad \text { integal is } 1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{n}-\infty} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{\sqrt{2 \pi}} \int_{n=0}^{x} \sum_{n=0}^{\infty} \frac{\left(-t^{2} / 2\right)^{n}}{n!} d t \\
& \quad=\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} \frac{(-1)^{-\infty}}{n!2^{n}} \int_{-\infty}^{x} t^{2 n} d t \\
& =\left.\frac{1}{\sqrt{2 n}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} \frac{t^{2 n+1}}{2 n+1}\right|_{-\infty} ^{x} \\
& \quad=\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}}\left[\frac{x^{2 n+1}}{2 n+1} \frac{-(-\infty)^{2 n+1}}{2 n+1}\right] \\
& \text { SAN }
\end{aligned}
$$

Wont $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t$ for $x>0$

$$
\text { Write as } \begin{aligned}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} e^{-t^{2} / 2} d t & +\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-t^{2} / 2} d t \\
& =\frac{1}{2}+\left.\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} \frac{t^{2 n+1}}{2 n+1}\right|_{0} ^{x} \\
& =\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

"related to erf function"

Monte Carlo Intgation

Thrw 1 dats
Estinate:
for he arca of A (Cestal Cinit Theoren)

circe

$$
\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}=1
$$

area πr^{2}
area $\approx 1.52=\pi \frac{1}{2}$

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

Guess: $\pi\left(\frac{a+b}{2}\right)^{2} \pi \frac{9}{16}$
$\pi a^{+b a b=r} \pi \frac{8}{6}$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 30: Integration over Simple Regions: https://youtu.be/qOZZxLiFIPO

Plan for the day:

- Integration over Simple Regions:

6.2. 15.2: Double Integrals over More General Regions - Problems.

13. Calculate the double integral of $f(x, y)=x+y$ over the domain $\mathcal{D}=\left\{(x, y): x^{2}+y^{2} \leq 4, \quad y \geq 0\right\}$ (this is a semicircle of radius 2).
14. Calculate the double integral of $f(x, y)=x^{3} y$ over the domain $\mathcal{D}=\{(x, y): 0 \leq x \leq 5, \quad x \leq y \leq 2 x+3\}$.
15. Find the volume of the region bounded by $z=40-10 y, z=0, y=0, y=4-x^{2}$.

$$
\int_{x=-R}^{R}\left[\int_{y=-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} f(x, y) d y\right] d x
$$

Goon Ftimo:

- $f(x, y)=1$

Ara of $(1-6)$

- $f(x, y)=$
$\sqrt{1-x^{2}-s^{2}}$
henisphere

$$
\begin{aligned}
x^{2}+y^{2} & =R^{2} \\
y & = \pm \sqrt{R^{2}-x^{2}}
\end{aligned}
$$

$$
\int_{x=a}^{b}\left[\int_{y=y_{1}(x)}^{y_{2}(x)} f(x, y) d y d x\right.
$$

$$
\begin{aligned}
& f(x, y)=e^{-y^{2}} \\
& 1 \int_{y=0}^{1}\left[\int_{x=y}^{1} e^{-y^{2}} d x\right] d y \\
& =\left.\int_{y=0}^{1} e^{-y^{2}} x\right|_{y} ^{1} d y \\
& =\int_{y=0}^{1} e^{-y^{2}}(1-y) d y \text { Tabk }
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{0}^{(19)} \int_{0}^{1}\left[\int_{y=0}^{f(x, y)=e^{-y^{2}}>0} \int_{x=0}^{y} e^{-y^{2}} d x\right] d y \\
& =\left.\int_{y=0}^{1} e^{-y^{2}} x\right|_{0} ^{y} d y \\
& =\int_{y=0}^{1} e^{-y^{2}} y d y=\int_{u=0}^{1} e^{-u} \cdot \frac{1}{2} d u=\left.\frac{1}{2} e^{-u}\right|_{0}
\end{aligned}
$$

dst

$$
2 d
$$

often let $z=f(x, y)$ The

$$
\iint_{\substack{R_{\text {in }} \\ x 1-\text { plane }}} f(x, y) d A \quad \text { is he colure coder }
$$

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=R^{2} \\
z=\sqrt{1-x^{2}-y^{2}}
\end{array}\right.
$$

heni sphere

Volure (f satate about x-axis

$$
\int_{x=a}^{b} \pi f(x)^{2} d x
$$

using ud of a cylara
is $\pi r^{2} h$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 31: Triple Integrals: https://youtu.be/hD3qal6H1gg

Plan for the day:

- Triple Integrals
- Start of Polar Integration
- Gaussian Integral (if time permits)
15.3: Triple Integrals - Problems.

1. Integrate $f(x, y, z)=x z+y z^{2}$ over the region

$$
0 \leq x \leq 2, \quad 2 \leq y \leq 4, \quad 0 \leq z \leq 4
$$

11. Integrate $f(x, y, z)=x y z$ over the region

$$
0 \leq z \leq 1, \quad 0 \leq y \leq \sqrt{1-x^{2}}, \quad 0 \leq x \leq 1
$$

33. Let \mathcal{W} be the region bounded by $z=1-y^{2}, y=x^{2}$ and the plane $z=0$. Calculate the volume of \mathcal{W} as a triple integral.
$f(x, y)=\sqrt{1-x^{2}-y^{2}} \quad 0 \leq x^{2}+y^{2} \leq 1$

$$
\begin{aligned}
& z=F(x, y) \\
& z=\sqrt{1-x^{2}-y^{2}} \\
& z^{2}=1-x^{2}-s^{2} \\
& x^{2}+y^{2}+z^{2}=1 \quad \text { HEMUR SHES }
\end{aligned}
$$

$$
\iint_{0 \leq x^{2}(x)^{2} \leq 1} f(x, y) d A=\iint_{\substack{0 \leq x^{2}+s^{2} \in z^{2} \leq 1 \\ z \geqslant 0}} 1 d V
$$

$$
\begin{aligned}
& \int_{x=-1}^{1} \int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} 1 d z d y d x \\
& =\int_{x=-1}^{1} \int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}-d y} d y d x \\
& =\int_{0 \leqslant x^{2}+y^{2} \leq 1} f(x, y) d A
\end{aligned}
$$

Change of Variables
$x=r \cos t \quad r=\sqrt{x^{2}+y^{2}}$
$y=r s i n \theta \quad \theta=\arctan (y / x)$

$d x d y \leftrightarrow \square d r d \theta$
"Recall" if given rev) When area is

$$
\int_{\theta=\theta 1}^{\substack{\theta 2}} \frac{1}{2} r(\theta)^{2} d \theta h_{\substack{\text { hest } 2 r(\theta) \\ b_{\text {csc }}^{2 r(\theta) \Delta \theta}}}^{r=r(\theta)}
$$

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} 1 \frac{1}{n} \frac{1}{n}
$$

$$
n \times m \text { summands }
$$

$$
\begin{aligned}
& {\left[\pi(r+\Delta r)^{2}-\pi r^{2}\right] \frac{1 \theta}{2 \pi}} \\
& =\left[\pi r^{2}+2 \pi r \Delta r+\pi(f r)^{2}-\pi r^{2}\right] \frac{1 \theta}{2 \pi} \\
& =r \Delta r \Delta \theta+\frac{1}{2}(1 r)^{2} d \theta
\end{aligned}
$$

Polar Gavesion Factor
$d x d y \underset{\sqrt{1-x^{2}}}{\longleftrightarrow} r d r d \theta=d r \cdot r d \theta$

$$
\begin{aligned}
& d x d y \\
& \int_{x=-1}^{1} \int_{y=-\sqrt{1-x^{2}}}^{\leftrightarrows} 1-x^{2} \\
& \sqrt{1} \\
& \hline 1=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} 1 \cdot r d r d \theta \\
& \int_{x=-1}^{1} 2 \sqrt{1-x^{2}} d x=\int_{\theta=0}^{2 \pi} d \theta \cdot \int_{r=0}^{1} r d r \\
&=4 \int_{0}^{1} \sqrt{1-x^{2}} d x=\left.2 \pi \cdot \frac{r^{2}}{2}\right|_{0} ^{1}=\pi
\end{aligned}
$$

Gausslen Intesar : Normor $\mu=0, \alpha=1$

$$
\begin{aligned}
& I:=\int^{\infty} e^{-x^{2} / 2} d x>0 \\
& I^{2}=\int_{x=-\infty}^{-\infty} e^{-x^{2} / 2} d x \int_{y=-\infty}^{\infty} e^{-y^{2} / 2} d y \\
& =\int_{x=-\infty}^{y=-\infty} \int_{y=-\infty}^{y} e^{y=-\infty}-\left(x^{2}+y^{2}\right) / 2 d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\int_{\theta=0} \int_{r=0} e^{-r / 2} r d r d s=\int_{\theta=0}^{2} d \theta \cdot \int_{r=0} e^{r i} \\
=2 \pi\left(-e^{-r-2}+\theta^{\infty}\right)
\end{aligned} \\
& =2 \pi\left(-e^{-r-2 i=1)}\right)_{0}^{\theta=0}=2 \pi \Rightarrow \sqrt{r=0} I=\sqrt{2 \pi} \\
& \text { es } I 70 \text {, thece particiax }
\end{aligned}
$$

For Ens!

$$
\int_{-\infty}^{\varepsilon_{n} n!} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

Show equals 1 .

Wolure of a sphere

$$
\begin{aligned}
& \begin{array}{l}
\int_{x=-1}^{1} \quad \int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 2 \sqrt{1-x^{2}-y^{2}} d y d x \quad \begin{array}{l}
\text { Volure of a } \\
\text { Nunt sphe }
\end{array} \\
f(x, y)=2 \sqrt{1-x^{2}-y^{2}}=2 \sqrt{1-\left(x^{2}+y^{2}\right)}
\end{array} \\
& \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} 2 \sqrt{1-r^{2}} r d r d \theta=2 \pi \int_{r=0}^{1} \sqrt{1-r^{2}} \quad 2 r d r
\end{aligned}
$$

$$
\begin{aligned}
& d u=-\operatorname{zd} \text { so } \mathrm{zrdr}=-d u \\
& =2 \pi \int_{u=1}^{0} u^{1 / 2}(-1) d u=2 \pi \int_{u=0}^{1} u^{1 / 2} d u=\left.2 \pi \frac{u^{3 / 2}}{3 / 2}\right|_{0} ^{1}=\frac{4}{3} \pi
\end{aligned}
$$

Area Ccrale

$$
4 \int_{x=0}^{1} \sqrt{1-x^{2}} d x
$$

$$
\begin{aligned}
& x=\sin \theta \quad \begin{array}{ll}
x: 0 \rightarrow 1 \\
\theta: 0 \rightarrow \pi 1
\end{array} \\
& d x=\cos \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& x=0 \\
& =Y \int_{\theta=0}^{\pi / 2} \sqrt{1-\sin ^{2} \theta \cdot \cos \theta d \theta} \begin{array}{r}
\cos (\theta+\theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
=4 \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta d \theta \quad \cos (2 \theta)=2 \cos ^{2} t-1 \\
=4 \cdot \frac{1}{2} \int_{\theta=0}^{\pi / 2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right] d \theta=2 \cdot \int_{\theta=0}^{\pi / 2} 1 d \theta=2 \cdot \frac{1}{2}(\cos (\theta)+1)
\end{array} \\
& =7
\end{aligned}
$$

$$
=7
$$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 32: Polar, Cylindrical, Spherical Integrals, and the Gamma Function: https://youtu.be/Pjp19j-R4dw
Plan for the day:

- Review Polar
- Cylindrical Integrals
- Spherical Integrals

15.4: Integration in Polar, Cylindrical, and Spherical Coordinates - Problems.

7. Calculate the following integral by changing to polar coordinates:

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

27. Integrate $f(x, y, z)=x^{2}+y^{2}$ over the region $x^{2}+y^{2} \leq 9,0 \leq z \leq 5$ by changing to cylindrical coordinates. 45. Integrate $f(x, y, z)=y$ over the region $x^{2}+y^{2}+z^{2} \leq 1, x, y, z \leq 0$ by changing to spherical coordinates.

https://mathinsight.org/media/image/image/spherical coor dinates cartesian.png

https://mathworld.wolfram.com/CylindricalCo ordinates.html

(1) $3 d z$

$$
\begin{aligned}
d x d s d z & \leftrightarrow s r d r d t d z \\
& =d s \cdot r d \theta \cdot d z
\end{aligned}
$$

infinitesinal are is psind da
$x \quad d x d y d z \quad d \rho \cdot \rho d \phi \cdot \rho \sin \varphi d \theta$ $r d t=\rho \sin \alpha$ of s
$=\rho^{2} \sin \varphi d \rho d \epsilon d \varphi$
or

$$
\begin{aligned}
& \iiint_{0 \leq x^{2}+s^{2}+z^{2} \leq R} f(x, y, z) d x d s d z \\
& =\int_{\phi=0}^{\pi} \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{R} f(\rho \cos \theta \sin \phi, \rho \sin t \sin \phi, \rho \cos \phi) \rho^{2} \sin \varphi d \rho d \theta d \varphi \\
& z=\rho \cos \phi, r=\rho \sin \phi \quad x^{2}+y^{2}+z^{2}=\rho^{2} \\
& x=r \cos \theta=\rho \cos \theta \sin \phi \\
& y=r \sin \theta=\rho \sin \theta \sin \phi
\end{aligned}
$$

whog

10
force?

$$
\begin{aligned}
& \iint e^{-\left(x^{2}+y^{2}+z^{2}\right) / 2} d x d y d z \quad \begin{array}{l}
\left.\quad e^{-\left(x^{2}+y^{2}+z^{2} / 2\right.}\right) \\
=e^{-x^{2} / 2} e^{-y^{2} / 2} e^{-z^{2} / 2}
\end{array} \\
& \text { sphect } \\
& x^{2}+y^{2}+z^{2} \leqslant R^{2} \\
& \int_{x=-R}^{R} \int_{y=-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \\
& \int_{z=-\sqrt{R^{2}-x^{2}-y^{2}}}^{\sqrt{R^{2}-x^{2}-y^{2}}} e^{-\left(x^{2} x y^{2}+z^{2}\right) / 2} d z d y d x
\end{aligned}
$$

$$
\begin{gathered}
\int_{Q=0}^{\pi} \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{R} \underbrace{e^{-\rho^{2 / 2}} \cdot \rho^{2} \sin \rho d \rho d \theta d \rho} \\
A(\rho) \cdot B(\theta) \cdot C(\varphi) \\
A(\rho)=e^{-\rho^{2} / 2} \cdot \rho^{2} \\
B(\theta)=1 \\
C(\phi)=\sin ^{2 \pi} \\
=\underbrace{\int_{\phi=0}^{\pi} \sin \phi d \phi}_{\phi=0} \cdot \int_{\theta=0}^{2 \pi} 1 d \theta \cdot \int_{\rho=0}^{R} e^{-\rho^{2} / 2} \rho^{2} d \rho \\
2 \pi \int_{\rho=0}^{R} e^{-\rho^{2} / 2} \rho^{2} d \rho
\end{gathered}
$$

Garnine Function

$$
\Gamma(s):=\int_{x=0}^{\infty} e^{-x} x^{s / 1} d x=\int_{x=0}^{\infty} e^{-x} x^{s} \frac{d x}{x}
$$

Clam interal sonurges if $\operatorname{Re}(s)>0$
Danir near 0, Darge near as
x lase, interad lorks like $e^{-x}-x^{s-1}=\frac{x^{5-1}}{e^{x}}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{4 n-1}}{e^{x}}=\lim _{x \rightarrow 0} \frac{46 \cdot x^{45}}{e^{x}}=\cdots=\lim _{x \rightarrow \infty} \frac{46!}{e^{x}}=0 \\
& \text { Take } S=44, e^{-x} \cdot x^{4-1}=\frac{e^{-x} \cdot x^{47-1}}{x^{3}} \leq \frac{1}{x^{3}} \\
& x \text { big }
\end{aligned}
$$

Near o! $e^{-x} \cdot x^{s-1}$

$$
e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots \underset{\substack{x \in 1 x \\ \text { to xe }}}{\simeq} 1
$$

So near zen, $e^{-x} \cdot x^{s \prime-1} \approx x^{s-1}$. Tate ε small:

$$
\begin{aligned}
& \int_{0}^{\varepsilon} e^{-x} x^{s-1} d x \approx \int_{0}^{\varepsilon} x^{s-1} d x \\
& s=0 \text { get } \int_{0}^{\varepsilon} \frac{1}{x} d x=\left.\ln (x)\right|_{0} ^{\varepsilon}=\ln (\varepsilon)-\ln (0)
\end{aligned}
$$

$s>0$ get $\int_{0}^{\varepsilon} x^{s-1} d x=\left.\frac{x^{s}}{s}\right|_{0} ^{\varepsilon}=\frac{\varepsilon^{s}}{s}-0$ firth

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x
$$

Take $s=1$

$$
\begin{aligned}
& \Gamma(I)=\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=\left.e^{-x}\right|_{\infty} ^{0}=1 \\
& \Gamma(2)=\int_{0}^{\infty} e^{-x} \cdot x d x \\
& u=x \quad d u=e^{-x} d x \quad \lim _{x \rightarrow \infty} x e^{-x} \\
& d u=\lim _{x \rightarrow-\infty} \\
&=u v l_{0}^{\infty}-\int_{0}^{\infty} v d u=-\left.x e^{-x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-x} d x \\
&=1
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(3)= \int_{0}^{\infty} e^{-x} \cdot x^{2} d x \\
& \Gamma(n+1)= \int_{0}^{\infty} e^{-x} \cdot x^{n+1-1} d x \\
&= \int_{0}^{\infty} e^{-x} \cdot x^{n} d x \\
& u=x^{n} \quad d u=e^{-x} d x \\
& d u=n x^{n-1} d x \quad v=-e^{-x} \\
&= u u \int_{0}^{\infty}-\int_{0}^{\infty} v d u \\
&=-\left.x^{n} e^{-x}\right|_{0} ^{\infty}+\int_{0}^{\infty} n e^{-x} \cdot x^{n-1} d x \\
&=n \int_{0}^{\infty} e^{-x} x^{n-1} d x=n \Gamma(n)
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(n+1)=n \Gamma(n) \quad \Gamma(1)=1, \quad \Gamma(2)=1
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(n+1)=n!\text { if } n \geqslant 0 \text { integen }
\end{aligned}
$$

Math 150: Multivariable Calculus: Spring 2023:

 Lecture 33: Hypersphere Integrals, Ellipse Area: https://youtu.be/z7wfwZ9Lr0sPlan for the day:

- Gamma Function
- Generalized Spherical Coordinates?
- Volume of the n-sphere

Sanna Function
$\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{, s-1} d x$ conuses if $\operatorname{Re}(s)>0$
Showed: $\Gamma(n+1)=n \Gamma(n)$ if $n>0$ pos(10terer)
Ex: $\Gamma(1)=1, \Gamma(2)=1$

$$
\begin{aligned}
& \Gamma(1)=1, \Gamma(2) \quad \Gamma(2+1) \overline{i=2} 2 \cdot \Gamma(2)=2 \cdot 1=1! \\
& \Gamma(3)=\Gamma(4)=\Gamma(3+1) \overline{=}=3 \cdot \Gamma(3)=3 \cdot 2!=3!
\end{aligned}
$$

So $\Gamma(n+1)=n$! if $n \geqslant 0$ intege

Gaussion Intesal
$z \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / z} d x=1 \quad($ pros densts)

$$
\Gamma(s)=\int_{0}^{d} e^{-u} u^{s / 2} d u
$$

Chane varrabks: $u=x^{2} / 2$ so $d u=x d x$
So $d x=x^{-1} d u=(z u)^{-c / 2} d u \quad \begin{array}{ll}x & \text { u: to } \infty \\ \text { u: oto } \infty\end{array}$
Gef: $z \int_{u=0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-u}(2 u)^{-1 / 2} d u$

$$
\begin{aligned}
&=\pi^{-1 / 2} \int_{u=0}^{\infty} e^{-u} u^{\frac{1}{2}-1} d u=\Gamma\left(\frac{1}{2}\right) \pi^{-\frac{1}{2}}=1 \\
& \text { so } \Gamma\left(\frac{1}{2}\right)=\pi^{\prime \prime 2}=\sqrt{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Conside: } f\left(x_{1}, \cdots, x_{n}\right)=\prod_{k=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-x_{k}^{2} / 2} \\
& \begin{array}{c}
\int_{x_{1}=-\infty}^{\infty} \cdots x_{x_{1}=-\infty}^{\int_{1}^{2}+\cdots+x_{n}^{2} / 2} \\
= \\
=\underbrace{}_{\cdots}=(2 \pi)^{-n / 2} e^{-\left(x_{1}+\cdots\right.} e^{-\left(x_{1}^{2}+\cdots+x_{2}^{2}\right) / 2} d x_{1} \cdots \cdot d x_{1} \\
\int_{x_{1}=-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x_{1}^{2} / 2} d x_{1} \cdots \cdots \underbrace{\int_{\sqrt{2 \pi}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x_{1}^{2} / 2} d x_{1}}_{x_{1}=-\infty} \\
=
\end{array}
\end{aligned}
$$

$$
\int_{x_{1}=-\infty}^{\infty} \cdots \int_{x_{n}=-\infty}^{\infty}(2 \pi)^{-1 / 2} e^{-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) / 2} d x_{n} \cdots \cdot d x_{1}
$$

only depends on distance from arrisin....
1-dion spherical coordinates

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{n}\right) \longleftrightarrow \rho, \theta_{1}, \theta_{2}, \ldots, \theta_{n-1} \\
& d x_{1}, \ldots d x_{n} \longleftrightarrow g\left(\rho, \theta_{1}, \ldots, \theta_{n-1}\right) d \rho d \theta_{1} \ldots d \theta_{1-1} \\
& =\rho^{n-1} h\left(\theta_{1}, \ldots, \theta_{n-1}\right) d \rho d \theta_{1} \ldots d a_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& 1=\int_{x_{1}=-\infty}^{\infty} \cdots \int_{x_{n}=-\infty}^{\infty}(2 \pi)^{-1 / 2} e^{-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) / 2} d x_{1} \cdots \cdot d x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { somethis depeding } \\
& \text { on } n \\
& \text { Surfuce aca of he } \\
& n \text {-dinensional } \\
& \text { unit sphere }
\end{aligned}
$$

n=2: Circle: perenis 2π area πr^{2} $n=3$: Sphere: area is $y \pi r^{2}$ ad $\frac{4}{3} \pi r^{3}$

$$
\frac{A(r+\Delta r)-A(r)}{\Delta r} \approx \frac{\operatorname{per}(n(r)-\Delta r}{1 r}
$$

tate $(c n$ as $f r \rightarrow 0$

$$
A^{\prime}(r)=\operatorname{per}(n(r)
$$

$$
\begin{aligned}
& \left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1 \\
& \text { Area } \\
& 4 \int_{y=0}^{\text {Area }} \int_{x=0}^{\sqrt{1-(\operatorname{si/4})^{2}}} 1 d x d y \\
& \text { Chane varabbs: } \\
& \text { So } a u=x \quad b u=y \\
& d x=a d u \quad d y=b d v \\
& d x d s=a b d u d v \\
& =4 a b^{*} \int_{v=0}^{1} \int_{u=0}^{\sqrt{1-u^{2}}} 1 d u d v \\
& \text { cires: } u^{2}+v^{2}=1 \\
& \left.=4 a b \cdot \frac{1}{4} \pi\right)^{2}=\pi a b
\end{aligned}
$$

$$
u^{2}+v^{2}=1
$$

$v: 0 \rightarrow 1$

$u: 0 \rightarrow \sqrt{1-u^{2}}$

Math 150: Multivariable Calculus: Spring 2023:

Lecture 34: Change of Variables, Newton's Law of Gravity:

 https://youtu.be/ZEQJc6BtHrUPlan for the day:

- Change of Variables
- Newton's Law of Gravity
- Dropped a term in class today: For the correct calculation see:

https://www.youtube.com/watch?v=3Pt4E1BeUTw\&t=104s

15.6: Change of Variables - Problems.
7. Let $G(u, v)=(2 u+v, 5 u+3 v)$ be a map from the $u v$-plane to the $x y$-plane. Describe the image of the lin $v=4 u$ under G.
13. Calculate the Jacobian of $G(u, v)=(3 u+4 v, u-2 v)$.
17. Calculate the Jacobian of $G(r, \theta)=(r \cos \theta, r \sin \theta)$.
35. Calculate

$$
\iint_{\mathcal{D}} e^{9 x^{2}+4 y^{2}} d x d y
$$

where \mathcal{D} is the interior of the ellipse

$$
\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2} \leq 1
$$

Clare of varcebl:

$$
\begin{aligned}
& x=x(u, v) \quad y=y(u, v) \\
& \iint_{\mathbb{R}} f(x, y) d x d y \longleftrightarrow \iint_{\mathbb{R}^{p}} f(x(u, v, y(u, \nu)) d y d u
\end{aligned}
$$

$$
\begin{aligned}
& \text { Poler: } d x d s \longleftrightarrow r d-d t
\end{aligned}
$$

Sphuriondxdsdz $\longleftrightarrow \rho^{2} \sin \varphi d \rho d \theta d \varphi$ Elleses: $d x d s \leftrightarrow a 6$ dudu $=$

$$
\begin{aligned}
& \text { Areain } x y \text {-spece } \approx \vec{P}_{x} \vec{Q} \text { or } \operatorname{det}\left|\begin{array}{l}
\frac{\partial x}{\partial u} \Delta u \frac{\partial y}{\partial u} \Delta u \\
\frac{\partial x}{\partial u} \Delta v \\
\frac{\partial y}{\partial u} \Delta v
\end{array}\right| \\
& =\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right| \Delta u A U \quad \text { recall }\left|\begin{array}{ll}
a b \\
c d
\end{array}\right|=a d-b c
\end{aligned}
$$

Pdar:

$$
\begin{aligned}
& x(r, \theta)=r \cos \theta \\
& y(r, \theta)=r \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
&\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\
\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta \\
&=r \\
& d x d y \longleftrightarrow\left|\operatorname{det}\left(\begin{array}{ll}
x r & y r \\
x_{\theta} & y
\end{array}\right)\right| d r d \theta=r d r d \theta
\end{aligned}
$$

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

$\left(\frac{u}{a}\right)^{2}+\left(\frac{u}{b}\right)^{2}=1$

$$
u=u(x, y)
$$

$$
u=v(x, y)
$$

assume dessits is 1

$$
\begin{aligned}
& \text { Mass }=\frac{4}{3} \pi R^{3} \\
& \text { all nass at cete: } \frac{G \frac{4}{3} \pi R^{3} m}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq \rho \leq R \\
& 0 \leq \varphi \leq \pi \\
& 0 \leq \theta \leq 2 \pi \\
& \text { intuntesinal nass } 15 \\
& \rho^{2} \sin \varphi d \rho d \varphi d t
\end{aligned}
$$

WHOOPS - we forgot a key factor in the analysis!
We calculated the net force - we want just the component down!
We need to multiply by the cosine of the angle between r and s in the triangle!
Thus the calculation on the next few pages is off....
For the correct calculation see: https://www.youtube.com/watch?v=3Pt4E1BeUTw\&t=104s

$$
\begin{aligned}
& \frac{\text { Use Law of Cosines! }}{S^{2}=r^{2}+\rho^{2}-2 r \rho \cos \varphi} \\
& \int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi} \int_{\rho=0}^{R} G m \frac{\rho^{2} \sin p d \rho d \rho d \theta}{r^{2}+\rho^{2}-2 r \rho \cos \rho} \\
& 2 \pi G m \int_{\rho=0}^{R}\left[\int_{\phi=0}^{\pi} \frac{\rho^{2} \sin \phi d \alpha}{r^{2}+\rho^{2}-2 r \rho \cos \phi}\right] d \rho
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\int_{\phi=0}^{\pi} \frac{\rho^{2} \sin \phi d \alpha}{r^{2}+p^{2}-2 r p \cos \varphi}\right]} \\
& u=r^{2}+\rho^{2}-2 r \rho \cos \varphi \\
& d u=z r \rho \sin \phi d \rho \\
& \text { So } \rho \sin \phi d \theta=\frac{1}{2 r} d u \\
& =\int_{u=r-p}^{r+\rho} \frac{\rho}{z^{r}} \frac{d u}{u} \quad \phi: 0 \rightarrow \pi, u: \underbrace{r^{2}+\rho}_{\frac{r^{2}-2 r p+\rho^{2}-2 r \rho}{r-p} \text { to } r+\rho} \\
& =\frac{\rho}{z r} \ln \left(\frac{r+\rho}{r-\rho}\right) \text { need } \int_{0}^{R} 2 \pi G \eta \frac{\rho}{z r} \ln \left(\frac{r+\rho}{r \rho}\right) d \rho
\end{aligned}
$$

Math 150: Multivariable Calculus: Spring 2023:

 Bonus Lecture: Watch Green's Theorem in a Day: https://www.youtube.com/watch?v=aQbPrQ82K-YLecture 35: Review Class: https://youtu.be/TL1xHE819-I
Plan for the day:

- Review
15.6: Change of Variables - Problem

13. Calculate the Jacobian of $G(u, v)=(3 u+4 v, u-2 v)$.
14. Calculate the Jacobian of $G(r, \theta)=(r \cos \theta, r \sin \theta)$.

Calculate $\iint_{\mathcal{D}} e^{9 x^{2}+4 y^{2}} d x d y$,
where \mathcal{D} is the interior of the ellipse

$$
\iint_{D} f(x, y) d x d y
$$

(1) Region
(2) function
(3) Jarcbean
15.6: Change of Variables - Problems.
7. Let $G(u, v)=(2 u+v, 5 u+3 v)$ be a map from the $u v$-plane to the $x y$-plane. Describe the image of the line $v=4 u$ under G.
13. Calculate the Jacobian of $G(u, v)=(3 u+4 v, u-2 v)$.
17. Calculate the Jacobian of $G(r, \theta)=(r \cos \theta, r \sin \theta)$.
35. Calculate

$$
\iint_{\mathcal{D}} e^{9 x^{2}+4 y^{2}} d x d y
$$

where \mathcal{D} is the interior of the ellipse

$$
\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2} \leq 1 .
$$

Region: $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2} \leqslant 1$
Gereally! $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2} \leqslant 1$

$$
(x, y, z) \longleftrightarrow(u, v, w)
$$

(1)

$$
\left.\begin{array}{l}
u=x / a \\
v=y / b
\end{array}\right\} \text { or } \begin{aligned}
& x=a u \\
& y=b v \\
& z=c u
\end{aligned}
$$

(2) $d x d y z$
(3) Sphere
$=a b c d u d u d w$ $u^{2}+v^{2}+w^{2}$ $=1$

$$
\begin{aligned}
& \iiint e^{-\left(u^{2}+v^{2}+w^{2}\right)^{3 / 2}} a b c d u d u d w \\
& \begin{array}{l}
u^{2}+\lambda^{2}+\omega^{2} \leq 1 \leq \pi \\
=a b<\int_{\theta=0}^{1 a n} \int_{\phi=0}^{\pi} \int_{\rho=0}^{1} e^{-\rho^{3}} \rho^{2} \sin \phi d \rho d \rho d \theta
\end{array} \\
& =a b c \int_{\theta=0}^{\substack{\theta=0 \\
2 \pi}} d \theta \int_{\phi=0}^{\pi} \sin \rho=0 \\
& =a b c \cdot 2 \pi \cdot 2 \cdot \int_{\rho=0}^{1} e^{-p^{3}} \cdot \rho^{2} d \rho
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\int_{p=0}^{1} e^{-\rho^{3}} \rho^{2} d \rho & t=\rho^{3} \\
d t & =3 \rho^{2} d \rho \\
& \rho=0 \rightarrow 1 \\
t=0 \rightarrow 1 \\
\rho^{2} d \rho=\frac{1}{2}
\end{array} \\
& =\int_{t=0}^{1} e^{-t} \frac{1}{3} d t=-\left.\frac{1}{3} e^{-t}\right|_{0} ^{1}=\frac{1}{3}\left(1-\frac{1}{e}\right)^{p^{2} d p=\frac{1}{3} d t}
\end{aligned}
$$

Ansur: $\frac{4}{3} \pi a b c\left(1-\frac{1}{c}\right)$

distaxe ${ }^{2}$ is

$$
\begin{aligned}
& \|(r, s)-(t, u)\|^{2} \\
& =(r-t)^{2}+(s-u)^{2}
\end{aligned}
$$

Methel: Fix a pointor the cune $y=F(x)$, find point on $y=g(x)$ That is closest by using Lagrage Multipliest'

Fix (r, s) on curve $y=f(x)$
Find (t, u) Closest with $u=g(t)$
so d cstance $^{2}=(r-t)^{2}+(s-u)^{2}=\begin{aligned} & L(t, u) \quad c \mid u, t) \\ & \text { constrant } u \cdot x(t)=0\end{aligned}$
varlables (free)! t,u

$$
\begin{array}{ll}
\nabla L=\lambda D c & \frac{\partial L}{\partial u}=\lambda \frac{\partial c}{\partial u} \\
u-g(t)=0 & \frac{\partial c}{\partial t}=\lambda \frac{\partial c}{\partial t} \\
& u-g(t)=0
\end{array}
$$

optimal uiv as a Enctan of he fxed (r.s)

Meed 2: (r, s) on Glue $y=f(x)$ $(t, 4)$ on red $y=g(x)$
distance is $(r-t)^{2}+(s-u)^{2}$

Find Critical points:

$$
\begin{aligned}
\nabla d \text { cst }= & \left(\frac{\partial d \text { st }}{\partial r}, \frac{\partial d \text { st }}{\partial t}\right)=(0,0) \\
& \left(z(\sim t) \leqslant z(f(r)-g(t)) \cdot f^{\prime}(r),-\right)
\end{aligned}
$$

$$
\text { as } \rho=0<1 \text {, coxuss fo-all } x
$$

$$
\begin{aligned}
& \sum_{n=0}^{y} \frac{\left(500^{n} \cdot x^{1}\right.}{n!}=\sum_{n=0}^{\infty} \frac{(50 x)^{n}}{n!} \\
& e^{u}=1+u+u^{2} / 2!+u^{3} / 3!+\cdots \\
& u=150 x \text { si goveses to } e^{150 x} \\
& \text { Ratio: } \rho=\lim _{n \rightarrow \infty}\left|\frac{\mid(\ln +1}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{150^{n+1} x^{n+1} /(n+1)!}{150^{n} x^{1} / n!} \\
& =\lim _{n \rightarrow \infty} \frac{150 x}{n+1}=150 x \lim _{n \rightarrow \infty} \frac{1}{n+1}=0
\end{aligned}
$$

