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ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material in the book so
that you can do the problems to thinking about the problem statement, how you might go about solving it, and why some
approaches work and others don’t. Another important part, which is often forgotten, is how the problem fits into math. Is this
a cookbook problem with made up numbers and functions to test whether or not you’ve mastered the basic material, or does it
have important applications throughout math and industry? Below I’ll try and provide some comments to place the problems
and their solutions in context.
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1. CHAPTER 10: INFINITE SERIES

1.1. 10.1: Sequences – Problems. #1: Exercise 10.1.24: Determine the limit of an = n√
n3+1

. #2: Exercise 10.1.62.
Find the limit of bn = n!/πn. #3: Exercise 10.1.68. Use L’Hopital’s Rule to find the limit of bn =

√
n ln

(
1 + 1

n

)
.

1.2. 10.2: Summing an Infinite Series – Problems. #1: Exercise 10.2.15: Find the sum of 1
1·3 + 1

3·5 + 1
5·7 + · · ·

.#2: Exercise 10.2.18: Use the nth Term Divergence Test to prove that
∑∞

n=1
n√

n2+1
diverges. #3: Exercise 10.2.27:

Evaluate
∑∞

n=3

(
3
11

)−n
. #4: Exercise 10.2.37: Evaluate 7

8 − 49
64 + 343

512 − 2401
4096 + · · · .

1.3. 10.3: Convergence of Series with Positive Terms – Problems. #1: Exercise 10.3.10: Use the Integral Test to
determine whether

∑∞
n=1 ne

−n2

is a convergent infinite series. #2: Exercise 10.3.25. Use the Direct Comparison Test
to determine whether

∑∞
n=1

2
3n+3−n is a convergent infinite series. #3: Exercise 10.3.57: Determine convergence or

divergence for
∑∞

k=1 4
1/k. #4: Exercise 10.3.68: Determine convergence or divergence for

∑∞
n=1

sin(1/n)√
n

.

1.4. 10.4: Absolute and Conditional Convergence – Problems. #1: Exercise 10.4.7: Determine whether the series
converges absolutely, conditionally, or not at all:

∑∞
n=1 (−1)

n
e−n/n2. #2: Exercise 10.4.26: Determine whether the

series converges absolutely, conditionally, or not at all:
∑∞

n=1
(−1)n+1

(2n+1)! . #3: Exercise 10.4.36: Determine whether the
following series converges conditionally: 1− 1

3 + 1
2 − 1

5 + 1
3 − 1

7 + 1
4 − 1

9 + 1
5 − 1

11 + · · · .

1.5. 10.5: The Ratio and Root Tests and Strategies for Choosing Tests – Problems. #1: Exercise 10.5.18: Use
the Ratio Test to evaluate

∑∞
n=1

(n!)3

(3n)! . #2: Exercise 10.5.25: Show that
∑∞

n=1
rn

n converges if |r| < 1. #3: Exercise

10.5.40: Use the Root Test to evaluate
∑∞

n=1

(
2 + 1

n

)−n
. #4: Exercise 10.5.60: Evaluate

∑∞
n=1 (−1)

n
cos( 1n ).

1.6. 10.6: Power Series – Problems. #1: Exercise 10.6.14: Find the interval of convergence:
∑∞

n=8 n
7xn. #2:

Exercise 10.6.29: Find the interval of convergence:
∑∞

n=1
2n

3n (x+ 3)
n. #3: Exercise 10.6.59: Find all values of x such

that
∑∞

n=1
xn2

n! converges.

1.7. 10.7: Taylor Polynomials – Problems. #1: Exercise 10.7.9: Calculate the Taylor polynomials T2 and T3 for
f(x) = tan(x) centered at x = 0. #2: Exercise 10.7.29: Find Tn for all n for f(x) = cosx centered at x = π

4 .
#3: Exercise 10.7.33: Find T2 and use a calculator to compute the error |f(x)− T2(x)| for a = 1, x = 1.2, and
f(x) = x−2/3.

1.8. 10.8: Taylor Series – Problems. #1: Exercise 10.8.13: Find the Maclaurin series and find the interval on which
the expansion is valid for f(x) = ex−2. #2: Exercise 10.8.15: Find the Maclaurin series and find the interval on
which the expansion is valid for f(x) = ln(1 − 5x). #3: Exercise 10.8.37: Find the Taylor series centered at c = 4
and the interval on which the expansion is valid for f(x) = 1/x2. #4: Exercise 10.8.70: Find the function with
f(x) = x4 − x12

3 + x20

5 − x28

7 + · · · as its Maclaurin series. #5: Exercise 10.8.90: Use Euler’s Formula to demonstrate
cos z =

(
eiz + e−iz

)
/2.
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2. CHAPTER 11: PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

2.1. 11.1: Parametric Equations – Problems.
10. Express the following parametric equation in the form y = f(x):

x =
1

1 + t
, y = tet.

22. Find an interval of t-values such that c(t) = (2t+ 1, 4t− 5) parametrizes the segment from (0,−7) to (7, 7).
28. Find a parametric equation for the curve(x

5

)2
+
( y

12

)2
= 1.

53. Given (x(t), y(t)) = (t−1 − 3t, t3), find dy
dx at t = −1.

68. Given c(t) = (t2 − 9, t2 − 8t), find the equation of the tangent line at t = 4.

2.2. 11.2: Arc Length and Speed – Problems.
5. Find the length of the path over the given interval:

(3t2, 4t3), 1 ≤ t ≤ 4.

19. Find the speed ds
dt of (t2, et) at t = 0.

33. Find the surface area of the surface generated by revolving the curve c(t) = (t2, t) around the x-axis for
0 ≤ t ≤ 1.

2.3. 11.3: Polar Coordinates – Problems.
The key identities to remember are:

x = r cos θ, y = r sin θ, x2 + y2 = r2.

9. Find an equation in polar coordinates of the line through the origin with slope 1√
3

.
19. Convert the equation x2 + y2 = 5 into polar coordinates.
21. Convert the equation y = x2 into polar coordinates.
41. Show that r = a cos θ+ b sin θ is the equation of a circle passing through the origin, and write the equation for

the circle in rectangular (x-y) coordinates.

2.4. 11.4: Area and Arc Length in Polar Coordinates – Problems.
3. Calculate the area of the circle r = 4 sin θ using polar integration.

11. Find the area of the intersection of the circles r = 2 sin θ and r = 2 cos θ.
27. Find the arc length of the curve r = θ2 for 0 ≤ θ ≤ π.

2.5. 11.5: Conic Sections – Problems.
A lot of this material is kind of niche so I’m not sure if its necessary to learn (ask Miller).
11. Find the equation of the ellipse with vertices at (±3, 0) and (0,±5).
15. Find the equation of the hyperbola with vertices (±3, 0) and foci (±5, 0).
21. Find the equation of the parabola with vertex (0, 0) and focus ( 1

12 , 0)

29. Find the vertices, foci and center of the ellipse x2 + 4y2 = 16.
55. Identify the type (ellipse, hyperbola, parabola) and eccentricity of the conic defined by

r =
8

1 + 4 cos θ
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3. CHAPTER 12: VECTOR GEOMETRY

3.1. 12.1: Vectors in the Plane – Problems. #1: Exercise 12.1.44: Determine the unit vector ew, where w = ⟨24, 7⟩.
#2: Exercise 12.1.49: Determine the unit vector that makes an angle of 4π/7 with the x-axis. #3: Exercise 12.1.52:
Determine the unit vector that points in the direction from (−3, 4) to the origin.

3.2. 12.2: Three-Dimensional Space: Surfaces, Vectors, and Curves – Problems. #1: Exercise 12.2.34: Describe
the surface given by the equation x2 + y2 + z2 = 9, with x, y, z ≥ 0. #2: Exercise 12.2.38: Give an equation for the
sphere centered at the origin passing through (1, 2,−3). #3: Exercise 12.2.50: Find a vector parametrization for the
line passing through (1, 1, 1) which is parallel to the line passing through (2, 0,−1) and (4, 1, 3).

3.3. 12.3: Dot Product and the Angle Between Two Vectors – Problems. #0: Exercise 12.3.13: Determine whether
⟨1, 1, 1⟩ and ⟨1,−2,−2⟩ are orthogonal, and, if not, whether the angle between them is acute or obtuse. #1: Exercise
12.3.25: Find the angle between ⟨1, 1, 1⟩ and ⟨1, 0, 1⟩ . #2: Exercise 12.3.57: Find the projection of u = ⟨−1, 2, 0⟩
along v = ⟨2, 0, 1⟩ . #3: Exercise 12.3.64: Compute the component of u = ⟨3, 0, 9⟩ along v = ⟨1, 2, 2⟩.

3.4. 12.4: The Cross Product – Problems. #0: Preliminary Question 12.4.6: When is the cross product v × w equal
to zero? #1: Exercise 12.4.16: Calculate (j − k) × (j + k). #2: Exercise 12.4.30: What are the possible angles θ
between two unit vectors e and f if ||e× f || = 1/2?

3.5. 12.5: Planes in 3-Space – Problems. #1: Exercise 12.5.13: Find a vector normal to the plane specified by
9x − 4y − 11z = 2. #2: Exercise 12.5.18: Find the equation of the plane that passes through (4, 1, 9) and is parallel
to x + y + z = 3. #3: Exercise 12.5.48: Find the trace of the plane specified by 3x + 4z = −2 in the xz coordinate
plane. #4: Exercise 12.5.63: Find an equation of a plane making an angle of π/2 with the plane 3x+ y − 4z = 2.

3.6. 12.6: A Survey of Quadric Surfaces – Problems. #1: Exercise 12.6.30: Sketch (x/4)
2
+(y/8)

2
+(z/12)

2
= 1.

#2: Exercise 12.6.33: Sketch z2 = (x/4)
2
+ (y/8)

2. #3: Exercise 12.6.39: Sketch x = 1 + y2 + z2. #4: Exercise
12.6.42: Sketch y2 − 4x2 − z2 = 4.

3.7. 12.7: Cylindrical and Spherical Coordinates – Problems. #1: Exercise 12.7.12: Describe x2 + y2 + z2 ≤ 10
in cylindrical coordinates. #2: Exercise 12.7.15: Describe x2 + y2 ≤ 9, with x ≥ y, in cylindrical coordinates. #3:
Exercise 12.7.50: Describe x2 + y2 + z2 = 1, with z ≥ 0, in spherical coordinates. #4: Exercise 12.7.54: Describe
x2 + y2 = 3z2 in spherical coordinates.
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4. CHAPTER 13: CALCULUS OF VECTOR-VALUED FUNCTIONS

4.1. 13.1: Vector-Valued Functions – Problems.
5. Find a vector parametization of the line through P = (3,−5, 7) in the direction v = ⟨3, 0, 1⟩.

19. The function r(t) = (9 cos t)i+ (9 sin t)j traces a circle. Determine the radius and center of the circle.
29. Parametrize the intersection of the surfaces

y2 − z2 = x− 2, y2 + z2 = 9

where z ≥ 0. Use t = y as the parameter.
37. Determine whether the two curves

r1(t) = ⟨t2 + 3, t+ 1, 6t−1⟩, r2(t) = ⟨4t, 2t− 2, t2 − 7⟩.

4.2. 13.2: Calculus of Vector-Valued Functions – Problems.
7. Find the derivative of r(t) = ⟨t, t2, t3⟩.

25. Find the derivative of r(g(t)), where r(t) = ⟨t2, 1− t⟩ and g(t) = et (use the chain rule).
31. Find a parameterization of the tangent line to r(t) = ⟨t2, t4⟩ at t = −2.
43. Evaluate the integral ∫ 2

−2

(u3i+ u5j)du.

4.3. 13.3: Arc Length and Speed – Problems.
3. Compute the arc length of the curve

r(t) = ⟨2t, ln t, t2⟩ , 1 ≤ t ≤ 4.

5. Compute the arc length of the curve

r(t) = ⟨t, 4t3/2, 2t3/2⟩ , 0 ≤ t ≤ 3.

17. Find the speed of

r(t) = ⟨sin 3t, cos 4t, cos 5t⟩ at t =
π

2
.

4.4. 13.4: Curvature – Problems.
3. Calculate r′(t) and T(t) for the curve r(t) = ⟨3 + 4t, 3− 5t, 9t⟩.

17. Find the curvature of the curve y = t4 at t = 2.
37. Find the normal vector N(t) to r(t) = ⟨4, sin 2t, cos 2t⟩.

4.5. 13.5: Motion in 3-Space – Problems.
3. Find the velocity, acceleration, and speed of r(t) = ⟨t3, 1− t, 4t2⟩ at t = 1.

11. Take some curve r(t) such that the acceleration vector is a(t) = ⟨t, 4⟩ and the initial velocity is v(0) =
⟨ 13 ,−2⟩. What is the velocity vector v(t)?

37. Given that r(t) = ⟨ 13 t
3, 1 − 3t⟩, find the decomposition of the acceleration a(t) into tangential and non-

tangential components at t = −1.
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5. CHAPTER 14: DIFFERENTIATION IN SEVERAL VARIABLES

5.1. 14.1: Functions of Two or More Variables – Problems. #1: Exercise 14.1.18: Describe the domain and range
of g(r, s) = cos−1(rs). #2: Exercise 14.1.21: Matching functions with their graphs, see book. #3: Exercise 14.1.22:
Matching functions with their contour maps, see book.

5.2. 14.2: Limits and Continuity in Several Variables – Problems. #1: Exercise 14.2.5: Using continuity, evaluate
lim(x,y)→(π/4,0) tanx cos y. #2: Exercise 14.2.32: Evaluate lim(x,y)→(0,0) xy/(

√
x2 + y2). #3: Exercise 14.2.40:

Evaluate lim(x,y)→(0,0)(x+ y + 2)e−1/(x2+y2).

5.3. 14.3: Partial Derivatives – Problems. #1: Exercise 14.3.20: Compute the first-order partial derivatives of z =
x/(x−y). #2: Exercise 14.3.23: Compute the first-order partial derivatives of z = (sinx)(cos y). #3: Exercise 14.3.35:
Compute the first-order partial derivatives of U = e−rt/r. #4: Exercise 14.3.58: Compute the derivative gxy(−3, 2) of
g(x, y) = xe−xy . #5: Exercise 14.3.69: Find a function such that ∂f/∂x = 2xy and ∂f/∂y = x2.

5.4. 14.4: Differentiability, Tangent Planes, and Linear Approximation – Problems. #1: Exercise 14.4.5: Find an
equation of the tangent plane at (4, 1) of f(x, y) = x2 + y−2. #2: Exercise 14.4.14: Find the points on the graph of
f(x, y) = (x+1)y2 at which the tangent plane is horizontal. #3: Exercise 14.4.23: Estimate f(2.1, 3.8) assuming that
f(2, 4) = 5, fx(2, 4) = 0.3, and fy(2, 4) = −0.2.

5.5. 14.5: The Gradient and Directional Derivatives – Problems. #1: Exercise 14.5.24: Calculate the directional
derivative of sin(x−y) at P = (π/2, π/6) in the direction of v = ⟨1, 1⟩. #2: Exercise 14.5.35: Determine the direction
in which f(x, y, z) = xy/z has maximum rate of increase from P = (1,−1, 3), and give the rate of change in that
direction. #3: Exercise 14.5.41: Find a vector normal to the surface x2 + y2 − z2 = 6 at P = (3, 1, 2). #4: Exercise
14.5.55: Find a function f(x, y, z) such that ∇f = ⟨z, 2y, x⟩.

5.6. 14.6: Multivariable Calculus Chain Rules – Problems. #1: Exercise 14.6.8: Use the Chain Rule to calculate
∂f/∂u for f(x, y) = x2 + y2, x = eu+v , y = u + v. #2: Exercise 14.6.12: Use the Chain Rule to evaluate ∂f/∂s
at (r, s) = (1, 0), where f(x, y) = ln(xy), x = 3r + 2s, and y = 5r + 3s. #3: Exercise 14.6.31: Use implicit
differentiation to calculate ∂z/∂y for exy + sin(xz) + y = 0.

5.7. 14.7: Optimization in Several Variables – Problems. #1: Exercise 14.7.12: Find the critical points of f(x, y) =
x3 + y4 − 6x− 2y2, then apply the Second Derivative Test. #2: Exercise 14.7.17: Find the critical points of f(x, y) =
sin(x+ y)− cosx, then apply the Second Derivative Test. #3: Exercise 14.7.24: Show that f(x, y) = x2 has infinitely
many critical points (as a function of two variables) and that the Second Derivative Test fails for all of them. What is
the minimum value of f? Does f(x, y) have an local maxima?

5.8. 14.8: Lagrange Multipliers: Optimizing with a Constraint – Problems. #1: Exercise 14.8.10: Find the mini-
mum and maximum vales of f(x, y) = x2y4, subject to the constraint x2 + 2y2 = 6. #2: Exercise 14.8.15: Find the
minimum and maximum vales of f(x, y) = xy+ xz, subject to the constraint x2 + y2 + z2 = 4. #3: Exercise 14.8.18:
Find the rectangular box of maximum volume if the sum of the lengths of the edges is 300 cm.

6. CHAPTER 15: MULTIPLE INTEGRATION

6.1. 15.1: Integration in Two Variables – Problems.
15. Evaluate the integral ∫ ∫

R
x3dA,

where R = [−4, 4]× [0, 5].
27. Evaluate ∫ 1

0

∫ 2

0

x+ 4y3dxdy.

31. Evaluate ∫ 2

1

∫ 4

2

e3x−ydydx.

41. Evaluate ∫ ∫
R
ex sin ydA,

where R = [0, 2]× [0, π
4 ].
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6.2. 15.2: Double Integrals over More General Regions – Problems.
13. Calculate the double integral of f(x, y) = x+ y over the domain D = {(x, y) : x2 + y2 ≤ 4, y ≥ 0} (this

is a semicircle of radius 2).
17. Calculate the double integral of f(x, y) = x3y over the domain D = {(x, y) : 0 ≤ x ≤ 5, x ≤ y ≤ 2x+3}.
45. Find the volume of the region bounded by z = 40− 10y, z = 0, y = 0, y = 4− x2.

6.3. 15.3: Triple Integrals – Problems.
1. Integrate f(x, y, z) = xz + yz2 over the region

0 ≤ x ≤ 2, 2 ≤ y ≤ 4, 0 ≤ z ≤ 4.

11. Integrate f(x, y, z) = xyz over the region

0 ≤ z ≤ 1, 0 ≤ y ≤
√

1− x2, 0 ≤ x ≤ 1.

33. Let W be the region bounded by z = 1 − y2, y = x2 and the plane z = 0. Calculate the volume of W as a
triple integral.

6.4. 15.4: Integration in Polar, Cylindrical, and Spherical Coordinates – Problems.
7. Calculate the following integral by changing to polar coordinates:∫ 2

−2

∫ √
4−x2

0

x2 + y2dydx.

27. Integrate f(x, y, z) = x2 + y2 over the region x2 + y2 ≤ 9, 0 ≤ z ≤ 5 by changing to cylindrical coordinates.
45. Integrate f(x, y, z) = y over the region x2 + y2 + z2 ≤ 1, x, y, z ≤ 0 by changing to spherical coordinates.

6.5. 15.6: Change of Variables – Problems.
7. Let G(u, v) = (2u+ v, 5u+ 3v) be a map from the uv-plane to the xy-plane. Describe the image of the line

v = 4u under G.
13. Calculate the Jacobian of G(u, v) = (3u+ 4v, u− 2v).
17. Calculate the Jacobian of G(r, θ) = (r cos θ, r sin θ).
35. Calculate ∫ ∫

D
e9x

2+4y2

dxdy,

where D is the interior of the ellipse (x
2

)2
+
(y
3

)2
≤ 1.
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Homework Solution Key

7. CHAPTER 10: INFINITE SERIES

7.1. 10.1: Sequences – Problems. #1: Exercise 10.1.24: Determine the limit of an = n√
n3+1

. #2: Exercise 10.1.62.
Find the limit of bn = n!/πn. #3: Exercise 10.1.68. Use L’Hopital’s Rule to find the limit of bn =

√
n ln

(
1 + 1

n

)
.

7.2. Solutions. #1: The limit is zero, as we may consider the denominator as n3/2, such that the denominator will
dominate as n → ∞.

#2: This limit diverges to infinity, as the factorial in the numerator will dominate the exponential in the denominator.
#3: The sequences converges to zero. Rewrite the term as ln(1 + 1/n)/(n−1/2) so as to apply L’Hopital’s Rule. By

taking the derivatives of the numerator and denominator we obtain:
−1

n2+n

−n−3/2

2

=
2n3/2

n2 + n
.

Thus, the squared term forces the denominator to dominate the expression as n → ∞.

7.3. 10.2: Summing an Infinite Series – Problems. #1: Exercise 10.2.15: Find the sum of 1
1·3 + 1

3·5 + 1
5·7 + · · ·

.#2: Exercise 10.2.18: Use the nth Term Divergence Test to prove that
∑∞

n=1
n√

n2+1
diverges. #3: Exercise 10.2.27:

Evaluate
∑∞

n=3

(
3
11

)−n
. #4: Exercise 10.2.37: Evaluate 7

8 − 49
64 + 343

512 − 2401
4096 + · · · .

7.4. Solutions. #1: 1/2. We can utilize the fact that the two numbers in the denominators differ by 2 by writing:

1

1 · 3
+

1

3 · 5
+

1

5 · 7
+ · · · = 1

2

(
1

1
− 1

3

)
+

1

2

(
1

3
− 1

5

)
+

1

2

(
1

5
− 1

7

)
+ · · ·

By pulling out the 1/2, the series of partial sums telescopes to:

1

2

(
1− 1

2n+ 1

)
→ 1

2
, as n → ∞.

#2: The limit of the term is 1 as n → ∞, so the sum diverges.
#3: The sum diverges, as we may rewrite it as a geometric series with 11/3, which is greater than 1.
#4: 7/15. This is a geometric series with c = 7/8 and r = −7/8. Thus,

7
8

1−
(
− 7

8

) =
7

15
.

7.5. 10.3: Convergence of Series with Positive Terms – Problems. #1: Exercise 10.3.10: Use the Integral Test to
determine whether

∑∞
n=1 ne

−n2

is a convergent infinite series. #2: Exercise 10.3.25. Use the Direct Comparison Test
to determine whether

∑∞
n=1

2
3n+3−n is a convergent infinite series. #3: Exercise 10.3.57: Determine convergence or

divergence for
∑∞

k=1 4
1/k. #4: Exercise 10.3.68: Determine convergence or divergence for

∑∞
n=1

sin(1/n)√
n

.

7.6. Solutions. #1: Let f(x) = xe−x2

. This function is positive, decreasing and continuous for x ≥ 1, so the integral
test applies. Furthermore we have∫ ∞

1

xe−x2

dx = −1

2
e−x2

∣∣∣∞
1

= 0−
(

1

2e

)
=

−1

2e
.

The integral converges, so the series must also converge.
#2: Note that 3−n > 0,∀n. This implies that

2

3n + 3−n
≤ 2

3n
= 2 · 1

3

n

.

Then the series
∑∞

1 2 · 1
3

n is a geometric series with r = 1
3 , so it converges. Thus, by the direct comparison test, we

may also conclude that the given series converges.
#3: Note that as k → ∞, we have 41/k → 1. Thus the series diverges since the terms do not converge to zero.
#4: We can apply the integral test, and the integral converges, so the series converges. To estimate the integral,

consider ∫ ∞

1

sin(1/n)√
n

= 2
√
n sin(1/n) + constant
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and as n → ∞, we have
√
n sin(1/n) → 0.

7.7. 10.4: Absolute and Conditional Convergence – Problems. #1: Exercise 10.4.7: Determine whether the series
converges absolutely, conditionally, or not at all:

∑∞
n=1 (−1)

n
e−n/n2. #2: Exercise 10.4.26: Determine whether the

series converges absolutely, conditionally, or not at all:
∑∞

n=1
(−1)n+1

(2n+1)! . #3: Exercise 10.4.36: Determine whether the
following series converges conditionally: 1− 1

3 + 1
2 − 1

5 + 1
3 − 1

7 + 1
4 − 1

9 + 1
5 − 1

11 + · · · .

7.8. Solutions. #1: Note that ∣∣∣∣ (−1)ne−n

n2

∣∣∣∣ = e−n

n2
<

1

n2
.

Thus, the given series is bounded above by the convergent series
∑∞

1
1
n2 and thus converges absolutely.

#2: This series converges absolutely because, for example,∣∣∣∣ (−1)n

(2n+ 1)!

∣∣∣∣ = (−1)n

(2n+ 1)!
<

1

n2

.
#3: This series diverges. We can write it as

∞∑
n=1

[
1

n
− 1

2n+ 1

]
=

∞∑
n=1

[
n+ 1

n(2n+ 1)

]
.

We can use the integral test to see that this diverges.

7.9. 10.5: The Ratio and Root Tests and Strategies for Choosing Tests – Problems. #1: Exercise 10.5.18: Use
the Ratio Test to evaluate

∑∞
n=1

(n!)3

(3n)! . #2: Exercise 10.5.25: Show that
∑∞

n=1
rn

n converges if |r| < 1. #3: Exercise

10.5.40: Use the Root Test to evaluate
∑∞

n=1

(
2 + 1

n

)−n
. #4: Exercise 10.5.60: Evaluate

∑∞
n=1 (−1)

n
cos( 1n ).

7.10. Solutions. #1: The series converges absolutely. We have

((n+ 1)!)3

(3n+ 3)!

(3n)!

(n!)3
=

(n+ 1)3

(3n+ 3)(3n+ 2)(3n+ 1)
< 1.

#2: The series does converge since∣∣∣∣an+1

an

∣∣∣∣ = |r|n+1

n+ 1
· n

|r|n
= |r| · n

n+ 1
< 1 as n → ∞ , since |r| < 1

#3: The series converges since using the root test we have√
(2 + 1/n)−n =

n

2n+ 1
< 1.

#4: The series diverges as cos(1/n) → cos 1 > 0 as n → ∞.

7.11. 10.6: Power Series – Problems. #1: Exercise 10.6.14: Find the interval of convergence:
∑∞

n=8 n
7xn. #2:

Exercise 10.6.29: Find the interval of convergence:
∑∞

n=1
2n

3n (x+ 3)
n. #3: Exercise 10.6.59: Find all values of x such

that
∑∞

n=1
xn2

n! converges.

7.12. Solutions. #1: The radius of convergence is |x| < 1 as we use the ratio test to see that∣∣∣∣ (n+ 1)7xn+1

n7xn

∣∣∣∣ =
∣∣∣∣∣
(
n+ 1

n

)7

· x

∣∣∣∣∣→ |x| as n → ∞.

#2: We have

lim
n→∞

∣∣∣∣2n+1(x+ 3)n+1

3(n+ 1)
· 3n

2n(x+ 3)n

∣∣∣∣ = |x+ 3| lim
n→∞

∣∣∣∣ 6n

3n+ 3

∣∣∣∣ = 2|x+ 3|.

Thus the series converges absolutely on the interval −7/2 < x < −5/2. For the endpoint −5/2, the series becomes∑∞
1 1/3n, which is divergent as it is a multiple of the harmonic series. However, for the endpoint −7/2, the series

becomes
∑∞

1 (−1)n/3n, which converges by the Alternating Series Test. Thus the radius of convergence is
−7

2
≤ x <

−5

2
.

#3: We have
|x|(n+1)2

(n+ 1)!
· n!

|x|n2 =
|x|2n+1

n+ 1
.
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Clearly limn→∞
|x|2n+1

n+1 = 0 is satisfied when |x| ≤ 1.

7.13. 10.7: Taylor Polynomials – Problems. #1: Exercise 10.7.9: Calculate the Taylor polynomials T2 and T3 for
f(x) = tan(x) centered at x = 0. #2: Exercise 10.7.29: Find Tn for all n for f(x) = cosx centered at x = π

4 .
#3: Exercise 10.7.33: Find T2 and use a calculator to compute the error |f(x)− T2(x)| for a = 1, x = 1.2, and
f(x) = x−2/3.

7.14. Solutions. #1: By calculating the first three derivatives of f we can piece together the following Taylor polyno-
mials: T2(x) = x and T3(x) = x+ 1/3x3.

#2: By taking repeated derivatives of cosx, we find the pattern that

f (n)(π/4) =

{
(−1)(n+1)/2 1√

2
, if n odd

(−1)n/2 1√
2
, n even

from this, it follows that

Tn(x) =
1√
2
− 1√

2

(
x− π

4

)
− 1

2
√
2

(
x− π

4

)2
+

1

6
√
2

(
x− π

4

)3
where in general the coefficient of (x− π/4)n is ± 1

(
√
2)n!

, with the pattern of the sign being +,−,−,+,+,−,−, . . ..

#3: We calculate the various derivatives to obtain T2(x) = 1− 2/3(x− 1)+5/9(x− 1)2. Thus, we have T2(1.2) =
8/9 ≈ 0.88889. A calculator tells us that f(1.2) = (1.2)−2.3 ≈ 0.88555. Hence we have |T2(1.2)−f(1.2)| ≈ 0.00334.

7.15. 10.8: Taylor Series – Problems. #1: Exercise 10.8.13: Find the Maclaurin series and find the interval on which
the expansion is valid for f(x) = ex−2. #2: Exercise 10.8.15: Find the Maclaurin series and find the interval on
which the expansion is valid for f(x) = ln(1 − 5x). #3: Exercise 10.8.37: Find the Taylor series centered at c = 4
and the interval on which the expansion is valid for f(x) = 1/x2. #4: Exercise 10.8.70: Find the function with
f(x) = x4 − x12

3 + x20

5 − x28

7 + · · · as its Maclaurin series. #5: Exercise 10.8.90: Use Euler’s Formula to demonstrate
cos z =

(
eiz + e−iz

)
/2.

7.16. Solutions. #1; The Maclaurin series is
∞∑

n=0

xn

e2n!
.

It is valid for all x.
#2: The Maclaurin series is

−
∞∑

n=1

5nxn

n

. It is valid for |x| < 1/5, and for x = −1/5.
#3: We can obtain the Taylor series for 1/x2 by using the Taylor series for 1/x and then differentiating this term-

by-term. From this we obtain the answer to be
∞∑

n=0

(−1)n(n+ 1)
(x− 4)n

4n+2
.

This series is valid for |x− 4| < 4.
#4: The function that satisfies is tan−1(x4).
#5: (

eiz + e−iz
)
/2 = [cos z + i sin z + cos(−z) + i sin(−z)] /2

= [cos z + i sin z + cos(−z)− i sin(−z)] /2

= 2 cos z/2

= cos z
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8. CHAPTER 12: VECTOR GEOMETRY

8.1. 12.1: Vectors in the Plane – Problems. #1: Exercise 12.1.44: Determine the unit vector ew, where w = ⟨24, 7⟩.
#2: Exercise 12.1.49: Determine the unit vector that makes an angle of 4π/7 with the x-axis. #3: Exercise 12.1.52:
Determine the unit vector that points in the direction from (−3, 4) to the origin.

8.2. Solutions. #1: The length of w is
√
242 + 72 = 25. Thus we have

ew =

〈
24

25
,
7

25

〉
.

#2: We have

e =

〈
cos

4π

7
, sin

4π

7

〉
= ⟨−0.22, 0.97⟩

.
#3: First we compute ⟨0, 0⟩ − ⟨−3, 4⟩ = ⟨3,−4⟩ . Thus we obtain:

1√
32 + (−4)2

⟨3,−4⟩ =
〈

3√
5
,
−4√
5

〉
.

8.3. 12.2: Three-Dimensional Space: Surfaces, Vectors, and Curves – Problems. #1: Exercise 12.2.34: Describe
the surface given by the equation x2 + y2 + z2 = 9, with x, y, z ≥ 0. #2: Exercise 12.2.38: Give an equation for the
sphere centered at the origin passing through (1, 2,−3). #3: Exercise 12.2.50: Find a vector parametrization for the
line passing through (1, 1, 1) which is parallel to the line passing through (2, 0,−1) and (4, 1, 3).

8.4. Solutions. #1: This is a sphere of radius 3 centered at the origin, except since we have the restriction that x, y, z
must all be nonnegative, this cuts it down to just one-eighth of the sphere.

#2: The solution is simply x2 + y2 + z2 = 14.
#3: The direction can be found by

⟨4, 1, 3⟩ − ⟨2, 0,−1⟩ = ⟨2, 1, 4⟩
Hence we obtain the parametrization

r(t) = ⟨1, 1, 1⟩+ t ⟨2, 1, 4⟩ = ⟨1 + 2t, 1 + t, 1 + 4t⟩ .

8.5. 12.3: Dot Product and the Angle Between Two Vectors – Problems. #0: Exercise 12.3.13: Determine whether
⟨1, 1, 1⟩ and ⟨1,−2,−2⟩ are orthogonal, and, if not, whether the angle between them is acute or obtuse. #1: Exercise
12.3.25: Find the angle between ⟨1, 1, 1⟩ and ⟨1, 0, 1⟩ . #2: Exercise 12.3.57: Find the projection of u = ⟨−1, 2, 0⟩
along v = ⟨2, 0, 1⟩ . #3: Exercise 12.3.64: Compute the component of u = ⟨3, 0, 9⟩ along v = ⟨1, 2, 2⟩.
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8.6. Solutions. #0: We compute the dot product ⟨1, 1, 1⟩ · ⟨1,−2,−2⟩ = −3 which being negative tells us that the two
vectors are not orthogonal, but rather that the angle between them is obtuse.

#1: Using the formula we obtain the solution as cos−1(
√
6/3) ≈ 0.615.

#2: We compute
u · v
v · v

= −2/5

and thus the solution is ⟨−4/5, 0,−2/5⟩ .
#3: First compute the following dot products

u · v = ⟨3, 0, 9⟩ · ⟨1, 2, 2⟩ = 21

v · v = ||v||2 = 9

Then we compute ∣∣∣∣∣∣(u · v
v · v

)
v
∣∣∣∣∣∣ = 21

9
||v|| = 7.

8.7. 12.4: The Cross Product – Problems. #0: Preliminary Question 12.4.6: When is the cross product v × w equal
to zero? #1: Exercise 12.4.16: Calculate (j − k) × (j + k). #2: Exercise 12.4.30: What are the possible angles θ
between two unit vectors e and f if ||e× f || = 1/2?

8.8. Solutions. #0: The cross product v×w is equal to zero if one of the vectors v or w (or both) is the zero vector, or
if v and w are parallel vectors. #1: 2i

(j − k)× j + (j − k)× k = j × j − k × j + j × k − k × k = 2(j × k) = 2i

#2: On pg. 707 a consequence of the final proof is that ||v × w|| = ||v|| ||w|| sin θ. Thus, since e and f are unit
vectors we know that 1/2 = sin θ. Thus θ = π/6 or 5π/6.

8.9. 12.5: Planes in 3-Space – Problems. #1: Exercise 12.5.13: Find a vector normal to the plane specified by
9x − 4y − 11z = 2. #2: Exercise 12.5.18: Find the equation of the plane that passes through (4, 1, 9) and is parallel
to x + y + z = 3. #3: Exercise 12.5.48: Find the trace of the plane specified by 3x + 4z = −2 in the xz coordinate
plane. #4: Exercise 12.5.63: Find an equation of a plane making an angle of π/2 with the plane 3x+ y − 4z = 2.

8.10. Solutions. #1: Using the scalar form of the equation of the plane, a vector normal to the plane is the coefficients
vector n = ⟨9,−4,−11⟩.

#2: The vector form of the plane x+ y + z = 3 is

⟨1, 1, 1⟩ · ⟨x, y, z⟩ = 3.

Hence, we can use the normal vector n = ⟨1, 1, 1⟩ to obtain

⟨1, 1, 1⟩ · ⟨x, y, z⟩ = ⟨1, 1, 1⟩ · ⟨4, 1, 9⟩ = 14 =⇒ x+ y + z = 14.

#3: The trace of the plane 3x + 4z = −2 in the xz coordinate plane is the set of all points that satisfy the equation
of the plane and the equation y = 0 of the xz plane. That is, the set of all points (x, 0, z) such that

3x+ 4z = −2 → z = −3

4
x− 1

2

which is a line in the xz plane.
#4: The angle between two planes is defined as the angle between their normal vectors. We have the vector n1 =

⟨3, 1,−4⟩ as normal to the given plane.
Now, let n · ⟨x, y, z⟩ = d denote the equation of a plane making an angle of π/2 with the given plane, with

n = ⟨a, b, c⟩. Since the two planes are perpendicular, the dot product of their normal vectors is zero. Thus,

n · n1 = ⟨a, b, c⟩ · ⟨3, 1,−4⟩ = 3a+ b− 4c = 0 =⇒ b = −3a+ 4c.

Now we now that n = ⟨a,−3a+ 4c, c⟩, which implies an equation of the form ax+ (4c− 3a)y + cz = d. We can set
a, c, d to whatever we like. So we could set a = c = d = 1 to obtain the answer

x+ y + z = 1.

8.11. 12.6: A Survey of Quadric Surfaces – Problems. #1: Exercise 12.6.30: Sketch (x/4)
2
+(y/8)

2
+(z/12)

2
= 1.

#2: Exercise 12.6.33: Sketch z2 = (x/4)
2
+ (y/8)

2. #3: Exercise 12.6.39: Sketch x = 1 + y2 + z2. #4: Exercise
12.6.42: Sketch y2 − 4x2 − z2 = 4.
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8.12. Solutions. #1: This function is an ellipsoid.
#2: This is an elliptic cone centered at the origin, opening along the z-axis, and having lengths of 8 in the y direction,

4 in the x direction, and 1 in the z direction.
#3: This is the equation of an elliptic paraboloid oriented along the x-axis, and encircling the y-axis.
#4: This is a two-sheeted hyperboloid encircling the y-axis (i.e. the two sheets are opening in the y direction).

8.13. 12.7: Cylindrical and Spherical Coordinates – Problems. #1: Exercise 12.7.12: Describe x2 + y2 + z2 ≤ 10
in cylindrical coordinates. #2: Exercise 12.7.15: Describe x2 + y2 ≤ 9, with x ≥ y, in cylindrical coordinates. #3:
Exercise 12.7.50: Describe x2 + y2 + z2 = 1, with z ≥ 0, in spherical coordinates. #4: Exercise 12.7.54: Describe
x2 + y2 = 3z2 in spherical coordinates.

8.14. Solutions. #1: This is a sphere and we can rewrite in cylindrical coordinates as r2 + z2 ≤ 10.
#2: The equation x2 + y2 ≤ 9 in cylindrical coordinates becomes r2 ≤ 9, which is just r ≤ 3. However, since

x ≥ y, the projection of the set onto the xy plane must be below and to the right of the line y = x. Thus, θ must be
restricted to −3π/4 ≤ θ ≤ π/4.

#3: This is the unit ball, so we simply substitute in ρ to get ρ = 1.
#4: By adding z2 to both sides, we can substitute in ρ2 to obtain ρ2 = 4z2 =⇒ ρ = 2z. We then can substitute in

z = ρ cosϕ and simplify to obtain cosϕ = 1/2.

=⇒ ϕ = π/3.

Intuitively, we can see that this is correct because the rectangular coordinate equation is a cone.
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9. CHAPTER 13: CALCULUS OF VECTOR-VALUED FUNCTIONS

9.1. 13.1: Vector-Valued Functions – Problems.
5. Find a vector parametization of the line through P = (3,−5, 7) in the direction v = ⟨3, 0, 1⟩.

19. The function r(t) = (9 cos t)i+ (9 sin t)j traces a circle. Determine the radius and center of the circle.
29. Parametrize the intersection of the surfaces

y2 − z2 = x− 2, y2 + z2 = 9

where z ≥ 0. Use t = y as the parameter.
37. Determine whether the two curves

r1(t) = ⟨t2 + 3, t+ 1, 6t−1⟩, r2(t) = ⟨4t, 2t− 2, t2 − 7⟩.

9.2. Solutions.
5. The line is parameterized as r(t) = ⟨3,−5, 7⟩+ t⟨3, 0, 1⟩ = ⟨3 + 3t,−5, 7 + t⟩. We can also write

r(t)(3 + 3t)i− 5j+ (7 + t)k

19. We use that x(t) = 9 cos t and y(t) = 9 sin t, so x2 + y2 = 81. This is a circle centered at the origin with
radius 9

29. We need to solve for z and x in terms of y. Adding the two equations gives 2y2 = x+7, so x = 2y2−7. Solving
for z using the second equation gives z =

√
9− y2, so the parameterization becomes ⟨2t2 − 7, t,

√
9− t2.

Since z ≥ 0, we have that −3 ≤ t ≤ 3.
37. If the curves intersect, then there exists some t for which the three equations are the same. This means that

t + 1 = 2t − 2, so t = 3. Plugging in t = 3 to the other coordinates, we see that the curves intersect at
(12, 4, 2).

9.3. 13.2: Calculus of Vector-Valued Functions – Problems.
7. Find the derivative of r(t) = ⟨t, t2, t3⟩.

25. Find the derivative of r(g(t)), where r(t) = ⟨t2, 1− t⟩ and g(t) = et (use the chain rule).
31. Find a parameterization of the tangent line to r(t) = ⟨t2, t4⟩ at t = −2.
43. Evaluate the integral ∫ 2

−2

(u3i+ u5j)du.

9.4. Solutions.
7. Differentiating each component gives

r′(t) = ⟨1, 2t, 3t2⟩.

25. We first differentiate each function:
r′(t) = ⟨2t,−1⟩.

g′(t) = et.

Now, using the chain rule gives

(r(g(t)))′ = g′(t)r′(g(t)) = et⟨2et,−1⟩ = ⟨2e2t,−et⟩.

31. First we calculate
r′(t) = ⟨2t, 4t3⟩.

The tangent line has the parameterization

ℓ(t) = r(−2) + tr′(−2),

and plugging in our equations gives

ℓ(t) = ⟨4, 16⟩+ t⟨−4,−32⟩ = ⟨4− 4t, 16− 32t⟩.
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43. We integrate each component individually:

∫ 2

−2

(u3i+ u5j)du =

∫ 2

−2

u3dui+

∫ 2

−2

u5jdu.

We have ∫ 2

−2

u3du = 0,

∫ 2

−2

u5du = 0,

so the answer is 0i+ 0j.

9.5. 13.3: Arc Length and Speed – Problems.
3. Compute the arc length of the curve

r(t) = ⟨2t, ln t, t2⟩ , 1 ≤ t ≤ 4.

5. Compute the arc length of the curve

r(t) = ⟨t, 4t3/2, 2t3/2⟩ , 0 ≤ t ≤ 3.

17. Find the speed of

r(t) = ⟨sin 3t, cos 4t, cos 5t⟩ at t =
π

2
.

9.6. Solutions.
3. We have that

r′(t) = ⟨2, 1
t
, 2t⟩.

Using the arc length formula gives

L =

∫ 4

1

||r′(t)||dt

=

∫ 4

1

√
22 +

(
1

t

)2

(2t)2dt

=

∫ 4

1

√
4t2 + 4 +

1

t2
dt

=

∫ 4

1

√(
2t+

1

t

)2

dt

=

∫ 4

1

2t+
1

t
dt

This is an ordinary integral which we can evaluate directly to find that L = 15 + ln 4.
5. We have that

r′(t) = ⟨1, 6t1/2, 3t1/2⟩.
Using the arc length formula gives

L =

∫ 4

1

||r′(t)||dt

=

∫ 3

0

√
12
(
6t1/2

)2
,
(
3t1/2

)2
dt

=

∫ 3

0

√
1 + 45tdt

=
2

135
(1 + 45t)3/2

∣∣3
0

+
2

135

(
1363/2 − 1

)
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17. The derivative (velocity) is

r′(t) = ⟨3 cos 3t,−4 sin 4t,−5 sin 5t⟩.

At t = π
2 we have

r′(
π

2
) = ⟨0, 0,−5⟩.

The norm of this vector is
√
02 + 02 + 52 = 5, so the speed at t = π/2 is 5 units/second.

9.7. 13.4: Curvature – Problems.
3. Calculate r′(t) and T(t) for the curve r(t) = ⟨3 + 4t, 3− 5t, 9t⟩.

17. Find the curvature of the curve y = t4 at t = 2.
37. Find the normal vector N(t) to r(t) = ⟨4, sin 2t, cos 2t⟩.

9.8. Solutions.
3. We have that r′(t) = ⟨4,−5, 9⟩ so its norm is

||r′(t)|| =
√

42 + (−5)2 + 92 =
√
122.

We then calculate the unit tangent vector using the formula:

T(t) =
r′(t)

||r′(t)||
=

1√
122

⟨4,−5, 9⟩.

17. We use the formula for curvature of a graph in the plane:

κ(t) =
|f ′′(t)|

(1 + f ′(t)2)3/2
.

We have f(t) = t4, so f ′(t) = 4t3 and f ′′(t) = 12t2. So

κ(t) =
12t2

(1 + (4t3)2)3/2
=

12t2

(1 + 16t6)3/2
.

When t = 2 we have

κ(2) =
12 · 22

(1 + 16 · 26)3/2
=

48

10253/2
≈ 0.0015.

37. First we need to find the unit tangent vector. We have r′(t) = ⟨0, 2 cos 2t,−2 sin 2t⟩ so

T(t) =
r′(t)

||r′(t)||

=
⟨0, 2 cos 2t,−2 sin 2t⟩√

02 + (2 cos 2t)2 + (−2 sin 2t)2

=
⟨0, 2 cos 2t,−2 sin 2t⟩√
4(cos2 2t+ sin2 2t)

=
⟨0, 2 cos 2t,−2 sin 2t⟩√

4

= ⟨0, cos 2t,− sin 2t⟩

The normal vector is then

N(t) =
T′(t)

||T′(t)||
.

We have that T′(t) = ⟨0,−2 sin 2t,−2 cos 2t. Note that this looks very similar to r′(t). Calculating the normal
vector similarly to above, we have

N(t) = ⟨0,− sin 2t,− cos 2t⟩.
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9.9. 13.5: Motion in 3-Space – Problems.
3. Find the velocity, acceleration, and speed of r(t) = ⟨t3, 1− t, 4t2⟩ at t = 1.

11. Take some curve r(t) such that the acceleration vector is a(t) = ⟨t, 4⟩ and the initial velocity is v(0) =
⟨ 13 ,−2⟩. What is the velocity vector v(t)?

37. Given that r(t) = ⟨ 13 t
3, 1 − 3t⟩, find the decomposition of the acceleration a(t) into tangential and non-

tangential components at t = −1.

9.10. Solutions.
3. We have that

v(t) = r′(t) = ⟨3t2,−1, 8t⟩
a(t) = r′′(t) = ⟨6t, 0, 8⟩.

11. We find v(t) by integrating a(t):

v(t) = v(0) +

∫ t

0

a(u)du

= ⟨1
3
,−2⟩+

∫ t

0

⟨u, 4⟩du

= ⟨1
3
,−2⟩+ ⟨1

2
u2, 4u⟩

∣∣t
0

= ⟨1
3
,−2⟩+ ⟨1

2
t2, 4t⟩

= ⟨1
3
+

1

2
t2, 4t− 2⟩.

37. We have v(t) = r′(t) = ⟨t2,−3⟩ and a(t) = r′′(t) = ⟨2t, 0⟩, so the velocity and acceleration at t = −1 are

v = ⟨1,−3⟩, a = ⟨−2, 0⟩.
Therefor we can calculate the normal tangent vector:

T =
v

||v||
=

1√
10

⟨1,−3⟩.

We have that the acceleration along the path is given by

aT = a ·T = − 2√
10

.

The acceleration in the normal direction is given by

aNN = a− atT = ⟨−9

5
,−3

5
⟩.

Since N has norm 1, the length of this vector will be aN :

aN = ||aNN|| = 3
√
10

5
Thus we have the decomposition

a = ⟨−2, 0⟩ = − 2√
10

T+
3
√
10

5
N
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10. CHAPTER 14: DIFFERENTIATION IN SEVERAL VARIABLES

10.1. 14.1: Functions of Two or More Variables – Problems. #1: Exercise 14.1.18: Describe the domain and range
of g(r, s) = cos−1(rs). #2: Exercise 14.1.21: Matching functions with their graphs, see book. #3: Exercise 14.1.22:
Matching functions with their contour maps, see book.

10.2. Solutions. #1: The domain is where |rs| ≤ 1. The range would be between 0 and π (inclusive).
#2: a.) → D

b.) → C
c.) → E
d.) → B
e.) → A
f.) → F.

#3: a.) → B
b.) → A
c.) → C
d.) → D

10.3. 14.2: Limits and Continuity in Several Variables – Problems. #1: Exercise 14.2.5: Using continuity, evaluate
lim(x,y)→(π/4,0) tanx cos y. #2: Exercise 14.2.32: Evaluate lim(x,y)→(0,0) xy/(

√
x2 + y2). #3: Exercise 14.2.40:

Evaluate lim(x,y)→(0,0)(x+ y + 2)e−1/(x2+y2).

10.4. Solutions. #1: We use the continuity of tanx cos y at the point (π/4, 0) to evaluate the limit by substitution:

lim
(x,y)→(π/4,0)

tanx cos y = tan
π

4
cos 0 = 1 · 1 = 1.

#2: Since we cannot simply use substitution, try converting to polar coordinates:∣∣∣xy/(√x2 + y2)
∣∣∣ = ∣∣∣∣r cos θ · r sin θr

∣∣∣∣ = r cos θ sin θ ≤ r.

Thus, since as (x, y) → (0, 0), r → 0, the squeeze theorem ensures that the given limit is zero.
#3: Consider that as x and y get very small, the fraction −1/(x2 + y2) → −∞. This will force e−1/(x2+y2) → 0.

Thus:
lim

(x,y)→(0,0)
(x+ y + 2)e−1/(x2+y2) = 0

10.5. 14.3: Partial Derivatives – Problems. #1: Exercise 14.3.20: Compute the first-order partial derivatives of
z = x/(x − y). #2: Exercise 14.3.23: Compute the first-order partial derivatives of z = (sinx)(cos y). #3: Exercise
14.3.35: Compute the first-order partial derivatives of U = e−rt/r. #4: Exercise 14.3.58: Compute the derivative
gxy(−3, 2) of g(x, y) = xe−xy . #5: Exercise 14.3.69: Find a function such that ∂f/∂x = 2xy and ∂f/∂y = x2.

10.6. Solutions. #1:
∂

∂x

(
x

x− y

)
=

−y

(x− y)2
,

∂

∂y

(
x

x− y

)
=

x

(x− y)2

#2:
∂

∂x
(sinx cos y) = (cosx)(cos y),

∂

∂y
(sinx cos y) = −(sinx)(sin y)

#3:
∂U

∂r
=

−(1 + rt)e−rt

r2
,
∂U

∂t
= −e−rt

#4:
∂

∂y

[
∂

∂x

(
xe−xy

)]
=

∂

∂y

[
(1− xy)e−xy

]
= xe−xy(xy − 2)

#5: The function f(x, y) = x2y works.

10.7. 14.4: Differentiability, Tangent Planes, and Linear Approximation – Problems. #1: Exercise 14.4.5: Find
an equation of the tangent plane at (4, 1) of f(x, y) = x2 + y−2. #2: Exercise 14.4.14: Find the points on the graph of
f(x, y) = (x+1)y2 at which the tangent plane is horizontal. #3: Exercise 14.4.23: Estimate f(2.1, 3.8) assuming that
f(2, 4) = 5, fx(2, 4) = 0.3, and fy(2, 4) = −0.2.
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10.8. Solutions. #1: Using the formula for tangent plane and calculating the first-order partial derivatives at (4, 1), we
obtain the equation

z = 8x− 2y − 13.

#2: We calculate
∂

∂x

(
(x+ 1)y2

)
= y2,

∂

∂y

(
(x+ 1)y2

)
= 2(x+ 1)y.

The system y2 = 0 and 2(x+ 1)y = 0 is satisfied when y = 0.

#3: Use the linear approximation of f at the point (2, 4), which is

f(2 + h, 4 + k) ≈ f(2, 4) + fx(2, 4)h+ fy(2, 4)k.

Substituting the given values and h = .1, k = −.2 we obtain the following approximation:

f(2.1, 3.8) ≈ 5 + 0.3 · 0.1 + 0.2 · 0.2 = 5.07.

10.9. 14.5: The Gradient and Directional Derivatives – Problems. #1: Exercise 14.5.24: Calculate the directional
derivative of sin(x−y) at P = (π/2, π/6) in the direction of v = ⟨1, 1⟩. #2: Exercise 14.5.35: Determine the direction
in which f(x, y, z) = xy/z has maximum rate of increase from P = (1,−1, 3), and give the rate of change in that
direction. #3: Exercise 14.5.41: Find a vector normal to the surface x2 + y2 − z2 = 6 at P = (3, 1, 2). #4: Exercise
14.5.55: Find a function f(x, y, z) such that ∇f = ⟨z, 2y, x⟩.

10.10. Solutions. #1: We normalize v to obtain a unit vector u in the direction of v:

u =
v

||v||
=

1√
2
⟨1, 1⟩ =

〈
1√
2
,
1√
2

〉
.

Next, we compute the gradient of f at the point P :

∇f =

〈
∂f

∂x
,
∂f

∂y

〉
= ⟨cos(x− y),− cos(x− y)⟩ =⇒ ∇f(π

2 ,π6 )
=
〈
cos
(π
2
− π

6

)
,− cos

(π
2
− π

6

)〉
=

〈
1

2
,−1

2

〉
.

Thus, the directional derivative in the direction of v is

Duf
(π
2
,
π

6

)
= ∇f(π

2 ,π6 )
· u =

〈
1√
2
,
1√
2

〉
·
〈
1

2
,−1

2

〉
= 0.

#2: The gradient points in the direction of maximum rate increase, so we compute the gradient at P :

∇f =
〈y
z
,
x

z
,−xy

z2

〉
, ∇f(1,−1,3) =

〈
−1

3
,
1

3
,
1

9

〉
.

Then the rate of change in this direction is

∣∣∣∣∇f(1,−1,3)

∣∣∣∣ =
√(

−1

3

)2

+

(
1

3

)2

+

(
1

9

)2

=

√
19

9
.

#3: The gradient ∇fP is normal to the level curve f(x, y, z) = x2 + y2 + z2 = 6 at P . We compute this vector:
fx(x, y, z) = 2x, fy(x, y, z) = 2y, fz(x, y, z) = −2z =⇒ ∇fP = ⟨6, 2,−4⟩ .

#4: For example, f(x, y, z) = xz + y2.

10.11. 14.6: Multivariable Calculus Chain Rules – Problems. #1: Exercise 14.6.8: Use the Chain Rule to calculate
∂f/∂u for f(x, y) = x2 + y2, x = eu+v , y = u + v. #2: Exercise 14.6.12: Use the Chain Rule to evaluate ∂f/∂s
at (r, s) = (1, 0), where f(x, y) = ln(xy), x = 3r + 2s, and y = 5r + 3s. #3: Exercise 14.6.31: Use implicit
differentiation to calculate ∂z/∂y for exy + sin(xz) + y = 0.
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10.12. Solutions. #1: 2(x2 + y) = 2(e2(u+v) + u+ v).
#2:

∂f

∂s
[ln(xy)] =

∂f

∂s
[ln((3r + 2s)(5r + 3s))]

=
∂f

∂s
[ln(3r + 2s) + ln(5r + 3s)]

=
∂f

∂s
[ln(3r + 2s)] +

∂f

∂s
[ln(5r + 3s)]

=
2

3r + 2s
+

3

5r + 3s

=
19r + 12s

(3r + 2s)(5r + 3s)

=⇒ 19

15
at (r, s) = (1, 0).

#3: We use the following relation:
∂z

∂y
= −Fy

Fz
.

Thus we calculate
Fy = xexy + 1, Fz = x cos(xz).

=⇒ ∂z

∂y
= − xexy + 1

x cos(xz)
.

10.13. 14.7: Optimization in Several Variables – Problems. #1: Exercise 14.7.12: Find the critical points of
f(x, y) = x3 + y4 − 6x− 2y2, then apply the Second Derivative Test. #2: Exercise 14.7.17: Find the critical points of
f(x, y) = sin(x+y)−cosx, then apply the Second Derivative Test. #3: Exercise 14.7.24: Show that f(x, y) = x2 has
infinitely many critical points (as a function of two variables) and that the Second Derivative Test fails for all of them.
What is the minimum value of f? Does f(x, y) have an local maxima?

10.14. Solutions. #1: By calculating the first-order derivatives and setting them equal to zero, then solve the system
of equations to obtain the following 5 critical points:(

−
√
2,±1

)
,
(
±
√
2, 0
)
,
(√

2,−1
)
.

Next compute the discriminant:

D(x, y) = fxxfyy − f2
xy = (6x) · (12y2 − 4)− 0 = 6x(12y2 − 4).

Finally, we apply the second-derivative test:

D(−
√
2, 1) < 0 =⇒ Saddle Point

D(−
√
2,−1) < 0 =⇒ Saddle Point

D(−
√
2, 0) > 0, fxx(−

√
2, 0) < 0 =⇒ Local Maximum

D(
√
2, 0) < 0 =⇒ Saddle Point

D(
√
2,−1) > 0, fxx(

√
2,−1) > 0 =⇒ Local Minimum.

#2: We calculate
fx(x, y) = cos(x+ y) + sinx, fy(x, y) = cos(x+ y).

The equation cos(x+ y) = 0 is satisfied when

x+ y =
(2k + 1)π

2
→ y =

(2k + 1)π

2
− x, k is an integer.

By setting the two equations equal to one another we get sinx = 0 which is satisfied at the values

x = 0,±π,±2π, · · · = ±kπ, where k is an integer

Thus, for integers n and k, the critical points are found at the points where x = kπ and y = (2n+1)π
2 .

Next we compute the discriminant:

fxx(x, y) = − sin(x+ y) + cosx, fyy(x, y) = fxy(x, y) = − sin(x+ y)
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=⇒ D(x, y) = (− sin(x+ y) + cosx)(− sin(x+ y))− sin2(x+ y) = − cosx sin(x+ y).

Finally, we apply the second-derivative test. We have:

D =

{
+1, if y = 4n+3

2 π

−1, if y = 4n+1
2 π.

Thus, the points
(
kπ, 4n+1

2 π
)

are saddle points, the points
(
kπ, 4n+3

2 π
)

are local minima if k is even, or they are local
maxima if k is odd.

#3: The critical points of f are all points where x = 0, so obviously there are infinitely many of them. Then for the
discriminant we have:

D(x, y) = fxx · fyy − f2
xy = 2 · 0− 0 = 0.

Thus, since D = 0, the second-derivative test fails. Furthermore, the minimum value of f is 0, which of course occurs
whenever x = 0. Also f does not have any local maxima as the shape of it is a parabolic cylinder opening upwards in
the positive z-direction.

10.15. 14.8: Lagrange Multipliers: Optimizing with a Constraint – Problems. #1: Exercise 14.8.10: Find the
minimum and maximum vales of f(x, y) = x2y4, subject to the constraint x2 + 2y2 = 6. #2: Exercise 14.8.15: Find
the minimum and maximum vales of f(x, y) = xy + xz, subject to the constraint x2 + y2 + z2 = 4. #3: Exercise
14.8.18: Find the rectangular box of maximum volume if the sum of the lengths of the edges is 300 cm.

10.16. Solutions. #1: Rewrite the constraint as g(x, y) = x2 +2y2 − 6 = 0. Then we have ∇f =
〈
2xy4, 4x2y3

〉
and

∇g = ⟨2x, 4y⟩ . Hence the Lagrange condition ∇f = λ∇g gives〈
2xy4, 4x2y3

〉
= λ ⟨2x, 4y⟩

=⇒ λ = y4, λ = x2y2.

Thus, solving for x and y we obtain y = x. Substituting back into the constraint we find the 4 critical points
(±

√
2,±

√
2). These are all maximum values as they give f a value of 8. Furthermore, we must note that we need

to include the cases where x = 0 or y = 0 under the constraint, and get the additional 4 critical points (0,±
√
3) and

(±
√
6, 0). These are all minimum values as they give f a value of 0.

#2: Rewrite the constraint as g(x, y) = x2 + y2 + z2 − 4 = 0. Then we have ∇f = ⟨y + z, x, x⟩ and ∇g =
⟨2x, 2y, 2z⟩ . Hence the Lagrange condition ∇f = λ∇g gives

⟨y + z, x, x⟩ = λ ⟨2x, 2y, 2z⟩

=⇒ λ =
y + z

2x
, λ =

x

2y
, λ =

x

2z
.

Thus, solving for x, y, and z we obtain x =
√
2y =

√
2z. By substituting x/(

√
2) for y and z into the constraint we

find the 4 critical points (±
√
2, 1, 1) and (±

√
2,−1,−1). Evaluating f at these points we find that

f(
√
2, 1, 1) = f(−

√
2,−1,−1) = 2

√
2

f(
√
2,−1,−1) = f(−

√
2, 1, 1) = −2

√
2

#3: We may set this up as a Lagrange Multiplier problem with f(x, y, z) = xyz under the constraint 4x+4y+4z =
300. Let’s just simplify the constraint to be x+ y + z = 75.

Rewrite the constraint as g(x, y) = x + y + z − 75 = 0. Then we have ∇f = ⟨yz, xz, xy⟩ and ∇g = ⟨1, 1, 1⟩ .
Hence the Lagrange condition ∇f = λ∇g gives

⟨yz, xz, xy⟩ = λ ⟨1, 1, 1⟩
=⇒ λ = yz, λ = xz, λ = xy.

Thus, solving for x, y, and z we obtain x = y = z. By substituting into the constraint we find the critical point
(25, 25, 25). Evaluating f at this point gives a maximal volume of 15625 for the cube with edge-lengths of 25.
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11. CHAPTER 15: MULTIPLE INTEGRATION

11.1. 15.1: Integration in Two Variables – Problems.
15. Evaluate the integral ∫ ∫

R
x3dA,

where R = [−4, 4]× [0, 5].
27. Evaluate ∫ 1

0

∫ 2

0

x+ 4y3dxdy.

31. Evaluate ∫ 2

1

∫ 4

2

e3x−ydydx.

41. Evaluate ∫ ∫
R
ex sin ydA,

where R = [0, 2]× [0, π
4 ].

11.2. Solutions.
15. The integrand is anti-symmetric around the y-axis, because (−x)3 = −x3. Thus the answer is just 0.
27. We use additivity to write∫ 1

0

∫ 2

0

x+ 4y3dxdy =

∫ 1

0

∫ 2

0

xdxdy +

∫ 1

0

∫ 2

0

4y3dxdy.

Then, we evaluate each integral by factoring∫ 1

0

∫ 2

0

xdxdy =

∫ 2

0

xdx

∫ 1

0

1dy = 2∫ 1

0

∫ 2

0

4y3dxdy =

∫ 2

0

1dx

∫ 1

0

4y3dy = 2

so the answer is 2 + 2 = 4.
31. We evaluate the inner integral first:∫ 4

0

1

x+ y
dy = ln(x+ y)

∣∣4
y=0

= ln(x+ 4)− lnx.

Plugging this into the main integral gives∫ 2

1

∫ 4

0

1

x+ y
dydx =

∫ 2

1

ln(x+ 4)− lnxdx.

We then calculate this integral:∫ 2

1

ln(x+ 4)− lnxdx = [(x+ 4)(ln(x+ 4)− 1)− x(lnx− 1)]
2
1 = 6(ln 6− 1)− 2(ln 2− 1)− 5(ln 5− 1) + (ln 1− 1)

= 6 ln 6− 2 ln 2− 5 ln 5 ≈ 13.1

41. We factor the integral as∫ ∫
R
ex sin ydA =

(∫ 2

0

exdx

)(∫ π/4

0

sin ydy

)

=
(
ex
∣∣2
0

)(
− cos y

∣∣π/4
0

)
=
(
e2 − 1

)(
1−

√
2

2

)
≈ 1.87.

11.3. 15.2: Double Integrals over More General Regions – Problems.
13. Calculate the double integral of f(x, y) = x+ y over the domain D = {(x, y) : x2 + y2 ≤ 4, y ≥ 0} (this

is a semicircle of radius 2).
17. Calculate the double integral of f(x, y) = x3y over the domain D = {(x, y) : 0 ≤ x ≤ 5, x ≤ y ≤ 2x+3}.
45. Find the volume of the region bounded by z = 40− 10y, z = 0, y = 0, y = 4− x2.
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11.4. Solutions.

13. The semicircle can be described as the region

−2 ≤ x ≤ 2, 0 ≤ y ≤
√

4− x2.

We can evaluate this as follows:∫ ∫
D
(x+ y)dA =

∫ 2

−2

∫ √
4−x2

0

(x+ y)dydx

=

∫ 2

−2

xy +
1

2
y2
∣∣√4−x2

dx

=

∫ 2

−2

(
x
√

4− x2 +
1

2
(4− x2)

)
dx

=

∫ 2

−2

(
x
√

4− x2
)
dx+

∫ 2

−2

(
1

2
(4− x2)

)
dx.

The first integral is zero because it is the integral of an odd function over a symmetric region, the second
integral can be calculated as ∫ 2

−2

2− 1

2
x2dx = 2x− x3

6

∣∣2
−2

=
16

3
.

17. We calculate the double integral directly:∫ ∫
D
x3ydA =

∫ 5

0

∫ 2x+3

x

x3ydydx

=

∫ 5

0

1

2
x3y2

∣∣2x+3

x
dx

=
1

2

∫ 5

0

x3((2x+ 3)2 − x2)dx

=
1

2

∫ 5

0

3x5 + 12x4 + 9x3dx

=
1

2

[
1

2
x6 +

12

5
x5 +

9

4
x4

]5
0

=
66875

8
.

45. This is the same as integrating the function f(x, y) = 40− 10y over the region

−2 ≤ x ≤ 2, 0 ≤ y ≤ 4− x2.

Thus we have that ∫ ∫
D
(40− 10y)dA =

∫ 2

−2

∫ 4−x2

0

(40− 10y)dydx

=

∫ 2

−2

(40y − 5y2)
∣∣4−x2

0
dx

=

∫ 2

−2

(
40(4− x2)− 5(4− x2)2

)
dx

=

∫ 2

−2

(−5x4 + 80)dx

=
[
−x5 + 80x

]2
−2

= 256.
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11.5. 15.3: Triple Integrals – Problems.
1. Integrate f(x, y, z) = xz + yz2 over the region

0 ≤ x ≤ 2, 2 ≤ y ≤ 4, 0 ≤ z ≤ 4.

11. Integrate f(x, y, z) = xyz over the region

0 ≤ z ≤ 1, 0 ≤ y ≤
√

1− x2, 0 ≤ x ≤ 1.

33. Let W be the region bounded by z = 1 − y2, y = x2 and the plane z = 0. Calculate the volume of W as a
triple integral.

11.6. Solutions.
1. We integrate directly:∫ 4

0

∫ 4

2

∫ 2

0

(xz + yz2)dxdydz =

∫ 4

0

∫ 4

2

[
1

2
x2z + xyz2

]2
0

dydz

=

∫ 4

0

∫ 4

2

(2z + 2yz2)dydz

=

∫ 4

0

[
2yz + y2z2

]4
2
dz

=

∫ 4

0

(4z + 12z2)dz

=
[
2z2 + 4z3

]4
0

= 288.

11. We do another messy triple integral:∫ ∫ ∫
W

xyzdV =

∫ 1

0

∫ √
1−x2

0

∫ 1

0

xyzdzdydx

=

∫ 1

0

∫ √
1−x2

0

xy

2
dydx

=

∫ 1

0

xy2

4

∣∣√1−x2

0
dx

=

∫ 1

0

x(1− x2)

4
dx

=

[
x2

8
− x4

16

]1
0

=
1

16
.

33. W can be described by the following inequalities:

−1 ≤ x ≤ 1, x2 ≤ y ≤ 1, 0 ≤ z ≤ 1− y2.

Thus we can integrate:

V =

∫ ∫ ∫
W

1dV

=

∫ 1

−1

∫ 1

x2

∫ 1−y2

0

1dzdydx

=

∫ 1

−1

∫ 1

x2

(1− y2)dydx

=

∫ 1

−1

x6

3
− x2 +

2

3
dx

=
16

21
.



MATH 150: HOMEWORK PROBLEMS 27

11.7. 15.4: Integration in Polar, Cylindrical, and Spherical Coordinates – Problems.
7. Calculate the following integral by changing to polar coordinates:∫ 2

−2

∫ √
4−x2

0

x2 + y2dydx.

27. Integrate f(x, y, z) = x2 + y2 over the region x2 + y2 ≤ 9, 0 ≤ z ≤ 5 by changing to cylindrical coordinates.
45. Integrate f(x, y, z) = y over the region x2 + y2 + z2 ≤ 1, x, y, z ≤ 0 by changing to spherical coordinates.

11.8. Solutions.
7. In polar coordinates the region is 0 ≤ θ ≤ π, 0 ≤ r ≤ 2 and the function is f(x, y) = r2. Using the change of

variables formula we thus have that

∫ 2

−2

∫ √
4−x2

0

x2 + y2dydx =

∫ π

0

∫ 2

0

r2 · rdrdθ

=

∫ π

0

4dθ = 4π.

27. In cylindrical coordinates we have that 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ 5, so the integral is (after the change
of variables formula)

∫ 2π

0

∫ 3

0

∫ 5

0

r2 · rdzdrdθ =

(∫ 2π

0

1dθ

)(∫ 3

0

r3dr

)(∫ 5

0

1dz

)
= 2π · 3

4

4
· 5

≈ 636.17

45. We can parameterize in spherical coordinates by π ≤ θ ≤ 3π/2, π/2 ≤ ϕ ≤ π, 0 ≤ ρ ≤ 1. The function is
equal to f(x, y, z) = y = ρ sin θ sinϕ in spherical coordinates, so after a change of variables the integral is∫ ∫ ∫

W
ydV =

∫ 3π/2

π

∫ π

π/2

∫ 1

0

(ρ sin θ sinϕ)ρ2 sinϕdρdϕdθ

=

(∫ 3π/2

π

sin θdθ

)(∫ π

π/2

sin2 ϕdϕ

)(∫ 1

0

ρ3dρ

)
.

We can calculate these three integrals separately to find that the answer is −π/16.

11.9. 15.6: Change of Variables – Problems.
7. Let G(u, v) = (2u+ v, 5u+ 3v) be a map from the uv-plane to the xy-plane. Describe the image of the line

v = 4u under G.
13. Calculate the Jacobian of G(u, v) = (3u+ 4v, u− 2v).
17. Calculate the Jacobian of G(r, θ) = (r cos θ, r sin θ).
35. Calculate ∫ ∫

D
e9x

2+4y2

dxdy,

where D is the interior of the ellipse (x
2

)2
+
(y
3

)2
≤ 1.

11.10. Solutions.
7. Take two points on the line v = 4u, for instance (1, 4), (0, 0). These are mapped to (6, 17), and (0, 0) by G,

so the image of G will be the line passing through these two points. We can calculate to find that this line is
y = 17

6 x.
13. This is a linear mapping so the Jacobian can be calculated as follows:

Jac(G) =

∣∣∣∣3 4
1 −2

∣∣∣∣ = 3 · (−2)− 1 · 4 = −10.
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17. We have that x = r cos θ and y = r sin θ, so

Jac(G) =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

35. We change variables by setting x = 2u, y = 3v. This mapping is linear and we can find that its Jacobian is 6.
The ellipse under this map is mapped to the unit circle (which we denote by B, so our integral becomes∫ ∫

D
e9x

2+4y2

dxdy =

∫ ∫
B
e36(x

2+y2) · 6dudv.

Now, we switch to polar coordinates by seting u = r cos θ, v = r sin θ, which after doing another change
of variables gives us ∫ ∫

B
e36(x

2+y2) · 6dudv =

∫ 2π

0

∫ 1

0

6e36r
2

· rdrdθ

= 6

(∫ 2π

0

1dθ

)(∫ 1

0

e36r
2

rdr

)
= 12π · 1

72
e36r

2 ∣∣1
0

=
12π(e36 − 1)

72
=

π(e36 − 1)

6
.
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