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Plan for the day: Lecture 31: May 2, 2022:

Topics: Difference Equations

* Bode’s Law

* Spherical Integration

* Fibonacci Numbers

e Generating Function for Fibonacci Numbers

* Application: Double plus one: Roulette and Fibonaccis



https://en.wikipedia.org/wiki/Titius%E2%80%93Bode law

Titius—Bode law

From Wikipedia, the free encyclopedia

The Titius—Bode law (sometimes termed just Bode's law) is a formulaic prediction of spacing between planets in any given solar system. The formula suggests that, extending outward,

each planet should be approximately twice as far from the Sun as the one before. The hypothesis correctly anticipated the orbits of Ceres (in the asteroid belt) and Uranus, but failed as a
predictor of Neptune's orbit. It is named after Johann Daniel Titius and Johann Elert Bode.

Later work by Blagg and Richardson significantly corrected the original formula, and made predictions that were subsequently validated by new discoveries and observations. It is these
re-formulations that offer "the best phenomenological representations of distances with which to investigate the theoretical significance of Titius-Bode type Laws".["]

Formulation [edit)
The law relates the semi-major axis a,, of each planet outward from the Sun in units such that the Earth's semi-major axis is equal to 10:
a=4+x

where & = 0,3,6,12,24,48,96,192, 384, 768 ... such that, with the exception of the first step, each value is twice the previous value. There is another representation of the
formula:

a=4+3x2"
where n = —00,0,1,2,... . The resulting values can be divided by 10 to convert them into astronomical units (au), resulting in the expression:

a=0.4+03x2".

For the far outer planets, beyond Saturn, each planet is predicted to be roughly twice as far from the Sun as the previous object. Whereas the Titius-Bode law predicts Saturn, Uranus,
Neptune, and Pluto at about 10, 20, 39, and 77 au, the actual values are closer to 10, 19, 30, 40 au @]

This form of the law offered a good first guess; the re-formulations by Blagg and Richardson should be considered canonical.
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Recall the coordinate conversions. Coordinate conversions exist from Cartesian to
spherical and from cylindrical to spherical. Below is a list of conversions from
Cartesian to spherical. Above is a diagram with point P described in spherical coordinates.
xr = psin ¢ cosf
1y = psin ¢ sin @
zZ= pcosg
p2 = z? + yz + 22


https://www.wikihow.com/Integrate-in-Spherical-Coordinates#:%7E:text=Integration%20in%20spherical%20coordinates%20is%20typically%20done%20when,which%20allows%20for%20easy%20factoring%20in%20most%20cases

Set up the coordinate-independent integral. We are dealing with volume integrals
in three dimensions, so we will use a volume differential dV and integrate over a
volume V.

-/dV
Vv

« Most of the time, you will have an expression in the integrand. If so, make sure that
it is in spherical coordinates.

Set up the volume element.
3 p 01 - /06(0(4( ¥ /a(-e
« dV = p? sin ¢dpdpdd /
« Those familiar with polar coordinates will understand that the area element
dA = rdrd@. This extra r stems from the fact that the side of the differential polar
rectangle facing the angle has a side length of 7dé to scale to units of distance. A
similar thing is occurring here in spherical coordinates.

4 Set up the boundaries. Choose a coordinate system that allows for the easiest
integration.

- Notice that ¢ has a range of [0, 7], not [0, 2x]. This is because @ already has a
range of [D, Qﬂ], so the range of ¢ ensures that we don't integrate over a volume
twice.

5 Integrate. Once everything is set up in spherical coordinates, simply integrate using
any means possible and evaluate. 6
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Problem 18.3: A solid is described in spherical coordinates by the AphecicalBlaloDI2 sinphil, (theta, 9, 2FL), sphi. B, Fif]

inequality p < 2sin(¢). Find its volume.

SphericalPlot3D[r, 6, ¢] generates a 3D plot with a spherical

radius r as a function of spherical coordinates 8 and ¢.
SphericalPlot3D[r, {8, 8, Omaxh (&, Omin, Gmar}] generates a 3D

spherical plot over the specified ranges of spherical coordinates.

SphericalPlot3D[{ry, 72, ...}, {6, Gmin Omaxh (& Gmin, Gmax}]

generates a 3D spherical plot with multiple surfaces.




Exercise 1.1 (Recurrence Relations). Lef v, . . ., a1 be fixed integers and consider the recurrence
relation of order k
Tn+k = O 1Tptk—1 T Ok2Tptk—2 T - T Q1 Ty T Qply. (1.1)
Show once k values of x,,, are specified, all values of x,, are determined. Let
f(r) = r* —apr*t — - —ag; (1.2)
we call this the characteristic polynomial of the recurrence relation. Show if f(p) = 0 then x, =

cp™ satisfies the recurrence relation for any c € C.

Exercise 1.2. Notation as in the previous problem, if f(r) has k distinct roots ry, . . ., 1}, show that
any solution of the recurrence equation can be represented as

Tn = Cir] + -+ cpry (1.3)
for some c; € C. The Initial Value Problem is when k values of x,, are specified; using linear

algebra, this determines the values of c.....c,. Investigate the cases where the characteristic
polynomial has repeated roots. For more on recursive relations, see |GKP], §7.3.

Exercise 1.3. Solve the Fibonacci recurrence relation F, o = F,.1 + Fy, given Foy = Fy = 1.

Show Iy, grows exponentially, i.e., F, is of size v" for some r > 1. What is r? Let r, = .
T

Show that the even terms roy, are increasing and the odd terms ro,, 1 are decreasing. Investigate

limy, .o 1y, for the Fibonacci numbers. Show r,, converges to the golden mean, 1+2_\/E See [PS2] for
a continued fraction involving Fibonacci numbers.



Exercise 1.4 (Binet’s Formula). For F,, as in the previous exercise, prove

L [(1+v5\" [1-V5
/5 2 2

This formula should be surprising at first: F,, is an integer, but the expression on the right involves
irrational numbers and division by 2.

T

Frno1 =

(1.4)

Exercise 1.5. Notation as in the previous problem, more generally for which positive integers m is

SCERCY)

an integer for any positive integer n?

10



Exercise™ 1.6 (Zeckendorf’s Theorem). Consider the set of distinct Fibonacci numbers: {1, 2. 3,

5,8, 13,... }. Show every positive integer can be written uniquely as a sum of distinct Fibonacci
numbers where we do not allow two consecutive Fibonacci numbers to occur in the decomposition.
Equivalently, for any n there are choices of ¢;(n) € {0, 1} such that

£(n)
n = Z €i(n)F;, €(n)eq(n)=0forie{2,....0(n)— 1}. (1.6)
i=2

Does a similar result hold for all recurrence relations? If not, can you find another recurrence
relation where such a result holds?

Exercise™ 1.7. Assume all the roots of the characteristic polynomial are distinct, and let \; be

the largest root in absolute value. Show for almost all initial conditions that the coefficient of A is
Non-zero.

Exercise™ 1.8. Consider 100 tosses of a fair coin. What is the probability that at least three
consecutive tosses are heads? What about at least five consecutive tosses? More generally, for a

fixed & what can you say about the probability of getting at least & consecutive heads in /N tosses
as N — ox?

11



Fibonacci Numbers: Fp,. 1 = Fpn + Fn_q;
F1 :1,F2:21F3:3’F4:5?__._

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm -- Theorems!: http://youtu.be/5e6HsfxqVSE
https://web.williams.edu/Mathematics/similler/public html/math/talks/CookiesToCLTtoGaps Yale2014.pdf
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http://youtu.be/5e6HsfxqVSE
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lower = 0;
upper = 1;
max = 10000000;
Timing[For[n = 2, n <= max, n++,
{
new = lower + upper;
lower = upper;
upper = new;
1]
Print[upper];
{356.063,Null}

Log[10.,Fibonacci[1000000]]
Log[10.,Fibonacci[500000]]
208987.

104493.

Estimate on how many digit operations base 10 to get to the
millionth Fibonacci number. The 500,000t has 104,493 digits, so have
at least

100000 * 500000 = 50,000,000,000.

How many seconds in a year?
3600*24*365.25*4 = 1.2623*108 or approximately 100,000,000.

So if do 100 digits a second get to 10,000,000,000.

We're off by AT LEAST a factor of 5, and this is doing 100 digits a
second!



Binet’s Formula

Fie et - () (252))

/5 7
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@ Recurrence relation: F,.1 = F, + Fp_+
@ Generating function: g(x) = »_,_, FnX".



Binet’s Formula
Fi=Fo=1, Fo= 2 [(155)" - (2%5)].

@ Recurrence relation: F,.1 = F,+ Fp_+ (1)
@ Generating function: g(x) = > ., FnXx".

(1) - :E:‘=”+1Xn+1 :E:‘cnxﬂ+4‘+_ZE:J:”—1XH+1

n>2 9 n>2 n>2
Vo k_/‘-ﬂ)'*) ( 2
2 A
j(X)’FX—' Fe X X *X X %

Y
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Binet’s Formula
Fi=F,=1; F, == [(” 5)n _ (M)n] .

V5

@ Recurrence relation: Fp 1 = F, + Fph_1 (1)
@ Generating function: g(x) = > _,_, FnX".

(1) = an+1xn+1 _ Zann+1 n ZFn—1X”+1

n=2 n>2 n>2

= Zann = ZFan+1 + ZFan+2

n:_}.?) n22 n21




Binet’s Formula
Fieramt Fo= (55 (449

V5

@ Recurrence relation: F,.1 = F, + Fp_1 (1)
@ Generating function: g(x) = ., FnXx".

(1) = ZF”HXHH:Zann+1+ZFn—1X"+1

n>2 n>2 n>2
:\/" E ann — Z ann+1 + Z ann+2
n>3 n>2 n>1

— Zan” — xZan” + X2 Zan”

n>3 n>2 n>1

18



Binet’s Formula
oot Foe (59~ (259))

V5

@ Recurrence relation: F,.1 = F, + Fp_1 (1)
@ Generating function: g(x) = > ., FnXx".

(1) — :E:‘:n+1xn+1::::E:‘:nxn+4'+'ZE:‘:n—1xn+1

n>2 n>2 n>2

= Y Fox" =) Fx" 4 Fpx"t?
n>3 n>2 n>1

= E F.x" = x Zan” + x? Zan”
n>3 n>2 n>1

= g(x) — Fix — Fox? = x(g(x) — F1x) + x*g(x)

19



Binet’s Formula
Fi=Fo=1 Fo= 2 [(55) - (2%£)].

V5

@ Recurrence relation: F,.1 = F, + Fp_1 (1)
@ Generating function: g(x) = > ., Fnx".

(1) — Z Fn_|_1X”+1 _ Z ann+1 4 Z Fn_1X”+1

= Y Fox"=) Fx"" 4+ F,x"?
n:_:"S n:_:"2 ng-"

= » Fox"=x)Y Fpx"+x*) Fux"
nES nzz n:21

g(x) — Fix — Fax® = x(g(x) — F1x) + x°g(x)
g(x) =x/(1 —x —x?).

4 J
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@ Generatin '
g function: g(x) = >_
. — F n
/-h

>< —_

X [( ¢ é<+y1) < (w4+xy + 6<+:c?)?é~\7

/—«/‘

Cm—

= x| Lt > =
[ é(%x) —~+( X ~(—z,><?{—)<y) +(><9+’g><‘(f_,-.>{:7
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@ Generating function: g(x) = ) _,.o FnX" =

@ Partial fraction expansion:

X
1—x—x2°

22



@ Generating function: g(x) = > .o FnX" = +——.

@ Partial fraction expansion:

x4 (B sy
j?g(x)_1—x—x2_ﬁ 145, |

Coefficient of x" (power series expansion):

Fn=—% [(1+2‘/§)n - (%‘E)n] - Binet's Formulal!

(using geometric series: == =1+r+r2+r3+...).

23
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We consider the following simplified model for the number of pairs of whales alive at a given moment
in time. We make the following simplifying assumptions:
(1) Time moves in discrete steps of 1 year.
(2) The number of whale pairs that are 0, I, 2 and 3 years old in year n are denoted by a,,. b,,. ¢,, and
d, respectively: all whales die when they turn 4.
(3) If a whale pair is 1 year old it gives birth to two new pairs of whales, if a whale pair is 2 years old
it gives birth to one new pair of whales, and no other pair of whales give birth.

i = O Ga+Tba & G <o

L

OQM = |- G~ € O- by “« O-Ca = 0-dn

4
WoCMd/ = ()'C(,\ — to é,) — QO -Cn + g g,

-Ch £ 0‘7(/'
g = (5K~ kO bn |

25



Letting Jr= AYa-y

tn so pa+lT Hvo
vy, = bn . ZAA'UA/f(l)
Cp, | _
d, ~ 4 - Un-(
we see that
’In—l—l — At"'n (2)
where
0 2 1 0
1 0 0 0
A=10100 (3)
0 0 1 0
Thus
Vi1 = A"y, (4)

where vy 1s the initial populations at time 0. As discussed before, it is one thing to write down a solution
and another to have be able to numerically work with it. This matrix is fortunately easily diagonalizable.

26
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