
MATH 209: IMPORTANT FORMULAS

INSTRUCTOR: STEVEN MILLER

Abstract. These notes give a brief summary of the major techniques of the class, and an
example for each. The descriptions are kept short so that this can be a useful, quick reference.

1. Executive Summary

We record below the types of equations we can solve. In the next sections we give more
details, including conditions on the functions and, if possible, explicit solutions. This section
is meant to be a quick list.

• Linear, constant coefficient difference equations: an+1 = c1an+c2an−1+c3an−2+
· · ·+ ckan−k+1; for example, an+1 = 3an + 4an−1 − 2an−2. See §2.

• Integrating factors: dy/dt+ p(t)y(t) = g(t). See §3.1.

• Separable equations: M(x) +N(y)dy/dx = 0. See §3.2.

• Exact equations: M(x, y) +N(x, y)dy/dx = 0 with ∂M/∂y = ∂N/∂x. See §3.3.

• Second order linear constant coefficient homogenous equations: d2y/dt2 +
ady/dt+ by = 0. See §4.1.

• Method of Undermined Coefficients: ay′′ + by′ + cy = g(t) with g(t) = eαtPn(t)
(with Pn(t) a polynomial of degree n in t) or g(t) = eαt cos(βt) or g(t) = eαt sin(βt).
See §4.2.

• Variation of Parameters: Let p, q, g continuous functions and consider y′′(t) +
p(t)y′(t) + q(t)y = g(t) with known solutions to the homogenous equation. See §4.3.

• Series expansions: p(x)y′′(x)+q(x)y′(x)+r(x)y(x) = 0 with p(x0) 6= 0 and guessing
y(x) =

∑∞
n=0 an(X − x0)

n. See §5.

• Linear systems: −→x ′(t) = A−→x (t) +−→g (t) with −→x (0) = −→x 0. See §6.
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2 INSTRUCTOR: STEVEN MILLER

2. Difference Equations

2.1. Linear, constant coefficient difference equations.

Statement: Let k be a fixed integer and c1, . . . , ck given real numbers. Then the general
solution of the difference equation

an+1 = c1an + c2an−1 + c3an−2 + · · ·+ ckan−k+1

is

an = γ1r
n
1 + · · ·+ γkr

n
k

if the characteristic polynomial

rk − c1rk−1 − c2rk−2 − · · · − ck = 0

has k distinct roots. Here the γ1, . . . , γk are any k real numbers; if initial conditions are given,
these conditions determine these γi’s.

Example: Consider the equation an+1 = 5an − 6an−1. In this case k = 2 and we find the
characteristic polynomial is r2 − 5r + 6 = (r − 2)(r − 3), which clearly has roots r1 = 2 and
r2 = 3. Thus the general solution is an = γ12

n + γ23
n. If we are given a0 = 1 and a1 = 2, this

leads to the system of equations 1 = γ1 + γ2 and 2 = γ1 · 2 + γ2 · 3, which has the solution
γ1 = 1 and γ2 = 0.

Applications: Population growth (such as the Fibonacci equation), why double-plus-one
is a bad strategy in roulette.

3. First Order Differential Equations

3.1. Integrating factors.

Statement: For a differential equation of the form y′(t) + p(t)y(t) = g(t), the general
solution is

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt+ C

]
,

where

µ(t) = exp

(∫
p(t)dt

)
and C is a free constant (if an initial condition is given, then C can be determined uniquely).

Example: Consider the equation y′(t)− 2ty(t) = exp (t2 + t). Then

µ(t) = exp

(∫
−2tdt

)
= exp(−t2),
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and

y(t) =
1

exp(−t2)

[∫
exp(−t2) exp(t2 + t)dt+ C

]
=

1

exp(−t2)
(exp(t) + C) .

If we have the initial condition y(0) = 2 then we find 2 = 1 + C, or C = 1.

Applications: To be added.

3.2. Separable equations.

Statement: For a differential equation of the form M(x) + N(y)dy/dx = 0 the general
solution is ∫ x

x0

M(s)ds+

∫ y

y0

N(s)ds = 0,

where we are using the shorthand notation y0 = y(x0) and y = y(x). We could also write the
solution as ∫

M(x)dx+

∫
N(y)dy = C,

and then determine C from the initial conditions. NOTE: if we can write the differential
equation as y′ = F (v) for v = y/x, then we can convert this to a separable equation: y = vx
so v + xv′ = F (v) or − 1

x
+ v′

F (v)−v = 0.

Example: Consider the equation 3x2 + cos(y)y′ = 0. Then M(x) = 3x2, N(y) = cos(y),
so the solution is ∫

3x2dx+

∫
cos(y)dy = C,

or

x3 + sin(y(x)) = C.

If we are told y(1) = π, then C = π3.

Applications: Solow growth model in economics, population growth.

3.3. Exact equations.

Statement: Consider M(x, y) +N(x, y)dy/dx = 0 with ∂M/∂y = ∂N/∂x. Then there is
a function ψ(x, y) such that the solution to the differential equation is given by ψ(x, y) = C,
with C determined by the initial conditions. One way to find ψ is as follows. Our problem
implies that ∂ψ/∂x = M and ∂ψ/∂y = N . Thus

ψ(x, y) =

∫
M(x, y)dx+ g(y)

ψ(x, y) =

∫
N(x, y)dy + h(x),
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and then determine g(y) and h(x) so that the two expressions are equal. NOTE: sometimes
it is possible to multiply a differential equation by an integrating factor and convert it to an
exact equation; unfortunately in practice it is hard to find an integrating factor which works.

Example: Consider

(3x2 − 2xy + 2) + (6y2 − x2 + 3)dy/dx = 0.

Thus M(x, y) = 3x2 − 2xy + 2, N(x, y) = 6y2 − x2 + 3 and ∂M/∂y = ∂N/∂x = −2x. Thus
the differential equation is exact, and we have

ψ(x, y) =

∫ (
3x2 − 2xy + 2

)
dx+ g(y) = x3 − x2y + 2x+ g(y)

ψ(x, y) =

∫ (
6y2 − x2 + 3

)
dy + h(x) = 2y3 − x2y + 3y + h(x).

Therefore we need

x3 − x2y + 2x+ g(y) = 2y3 − x2y + 3y + h(x),

which is possible if we let h(x) = x3 + 2x and g(y) = 2y3 + 3y. In other words,

ψ(x, y) = x3 − x2y + 2x+ 2y3 − 3y

solves the original equation.

Applications:

4. Second Order Differential Equations

4.1. Linear, constant coefficient homogenous equations.

Statement: Consider d2y/dt2 + ady/dt+ by = 0. Guessing solutions of the form ert leads
to studying the characteristic polynomial r2 + ar + b; let r1 and r2 be the two roots. If the
roots are distinct, all solutions are of the form y(t) = c1e

r1t + c2e
r2t, where c1 and c2 are

determined by two initial conditions (often y(0) and y′(0), though we could have y at two
times). If r1 = r2 = r, the general solution is instead of the form y(t) = c1e

rt + c2te
rt.

Example: Consider y′′ + 5y′ + 6 = 0 with y(0) = 0 and y′(0) = 1. The characteristic
polynomial is r2 + 5r + 6 = (r + 2)(r + 3). Thus the roots are r1 = −2 and r2 = −3, and
we find the general solution is y(t) = c1e

−2t + c2e
−3t. This leads to 0 = c1 · 1 + c2 · 1 and

1 = c1 · (−2) + c2 · (−3). This is two equations in two unknowns; using linear algebra or
solving for c2 in terms of c1 leads to c1 = 1 and c2 = −1, or y(t) = e−2t − e−3t.

Applications: Physics and engineering problems include motion with friction proportional
to velocity, masses on springs, circuit theory.
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4.2. Method of Undetermined Coefficients for linear, constant coefficient non-
homogenous equations.

Statement: Consider ay′′ + by′ + cy = g(t). Let y1(t) and y2(t) be any fundamen-
tal set of solutions to the homogenous equation ay′′ + by′ + cy = 0 and Y1(t) any solu-
tion to the non-homogenous equation ay′′ + by′ + cy = g(t). Then the general solution is
y(t) = c1y1(t) + c2y2(t) + Y1(t) (i.e., every solution is of this form). In general it is hard to
find Y1(t), but for special choices of g(t) this can be done. In particular, the following guesses
will work:

g(t) Guess Comment
eαt Aeαt A is a free parameter

Pn(t) Qn(t) Pn(t) = a0 + a1t+ · · ·+ ant
n is the given

polynomial, and Qn(t) = b0 + · · ·+ bnt
n,

with the bi’s free parameters.

sin(βt) or
cos(βt) A sin(βt) +B cos(βt) A, B free parameters

By linearity, if we have products of the above we basically take combinations of multiples of
our guesses. For example, if g(t) = eαtPn(t) we guess AeαtQn(t); actually it suffices to guess
eαtQn(t) as the free parameter A can be incorporated into the coefficients of the polynomial.
Note it is very important that we have a polynomial Pn(t); if we had 1/t then it is not at all
clear what the answer is (it involves the exponential integral function).

Example: y′′ + 3y′ + 2y = t sin(t). The homogenous equation yields the characteristic
polynomial r2 + 3r + 2 = 0, or r = −1,−2. Thus the general solution to the homogeneous
equation is c1e

−t + c2e
−2t. As g(t) = t sin(t), we guess

Y1(t) = (b0 + b1t) sin t+ (c0 + c1t) cos t).

Note we are not guessing something of the form (b0 + b1t)(A sin t + B cos t); this gives us a
little more flexibility (and sadly the simpler guess doesn’t work). Doing lots of algebra leads
to the solution is

Y1(t) =

(
6

50
+

5t

50

)
sin t+

(
17

50
− 15t

50

)
cos t.

Application: See the passages in the book about spring motion with external driving
forces.

4.3. Variation of Parameters. Statement: Let p, q, g continuous functions and consider
y′′(t) + p(t)y′(t) + q(t)y = g(t) with known solutions y1(t) and y2(t) to the homogenous
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equation. Then a particular solution to the non-homogenous equation is

Y (t) = −y1(t)

∫ t

t0

y2(s)g(s)ds

W (y1, y2)(s)
+ y2(t)

∫ t

t0

y1(s)g(s)ds

W (y1, y2)(s)
,

where the Wronksian is

W (y1, y2)(s) = y1(s)y
′
2(s)− y′1(s)y2(s),

and the general solution is

y(t) = c1y1(t) + c2y2(t) + Y (t).

Example: Consider y′′(t) + 4y′(t) + 4y(t) = cosh t, where the hyperbolic cosine is given
by cosh t = (et + e−t)/2 (and sinh t = (et − e−t)/2). The two solutions to the homogenous
differential equation are y1(t) = e2t and y2(t) = te−2t (as there is a repeated root in the
characteristic polynomial). The Wronskian is W (y1, y2)(s) = e−4t 6= 0, so the solutions are
linearly independent (and we can divide by the Wronskian for all s) and are now found by
performing the specified integrals.

Application:

5. Series Solution

Statement: Consider p(x)y′′(x) + q(x)y′(x) + r(x)y(x) = 0 with p(x0) 6= 0. One can
guess y(x) =

∑∞
n=0 an(x− x0)

n and attempt to determine a series expansion for the solution.
Doing so involves finding recurrence relations for the an’s (we’ll have sums of infinite series
expansions equalling zero, and this can only happen if the coefficient of xm vanishes for all
m). Typically there will be two free parameters, and one checks to see if the Wronskian is
non-zero to see if the solutions are linearly independent (ie, if they generate a fundamental
set of solutions). To do so does not require us to know all the coefficients an of each solution,
but only the constant and linear terms. One must investigate the convergence properties of
the expansion, which is not surprisingly related to properties of p(x), q(x) and r(x). For a
review of Taylor series, you can see my notes at
http://www.williams.edu/go/math/sjmiller/public html/

103/MVT TaylorSeries.pdf.

Example: (1− x)y′′(x) + y(x) = 0 about x = 0. Note the coefficient of y′′(x) is non-zero
at x = 0. Guessing y(x) =

∑∞
n=0 anx

n leads to

y′(x) =
∞∑
n=1

nanx
n−1

y′′(x) =
∞∑
n=2

n(n− 1)anx
n−2.

Unfortunately the 1 − x factor complicates things a bit, as we don’t want to combine 1 − x
and xn. The solution to this is to expand things out, rewriting the differential equation as
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y′′(x)− xy′′(x) + y(x) = 0. We now have

xy′′(x) =
∞∑
n=2

n(n− 1)anx
n−1.

This leads to
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=0

anx
n = 0.

We want all sums to be of xm, so we must shift the indices of summation. The last term
is the easiest – we simply let m = n. For the other two, it is easiest to do the shift of
summation slowly. For the first term, let m = n − 2 (we choose this as xn−2 will become
xm). Thus n = m + 2 and as n ran from 2 to ∞, m runs from 0 to ∞. Thus this sum
becomes

∑∞
m=0(m + 2)(m + 1)am+2x

m. A similar analysis shows the second term becomes∑∞
m=1(m+ 1)mam+1x

m. We thus find

∞∑
m=0

(m+ 2)(m+ 1)am+2x
m −

∞∑
m=1

(m+ 1)mam+1x
m +

∞∑
m=0

amx
m = 0.

We combine the terms. Note that two sums start at m = 0 while one starts at m = 1. We
thus group the two m = 0 terms together and then combine the three sums from m = 1 to
∞ and find

(2 · 1a2 + a0) +
∞∑
m=1

[(m+ 2)(m+ 1)am+2 − (m+ 1)mam+1 + am]xm = 0.

Thus a2 = −a0/2 and

am+2 =
(m+ 1)mam+1 − am

(m+ 2)(m+ 1)
.

Note that a0 and a1 are free, and once specified then all the remaining ai are uniquely
determined (as am+2 is determined by its two predecessors, once we know the first two terms
of the sequence we know all the terms). We can compute the first few values of an by hand:
a0, a1, a2 = −a0/2, a3 = −a0/6− a1/6, . . . . This leads to

y(x) = a0

(
1− 1

2
x2 − 1

6
x3 + · · ·

)
+ a1

(
x− 1

6
x3 + · · ·

)
.

We have thus found two solutions,

y1(x) = 1− 1

2
x2 − 1

6
x3 + · · ·

y2(x) = x− 1

6
x3 + · · · .

Are the two solutions linearly independent (ie, do they generate all solutions)? We must
calculate the Wronskian at x = 0, which is

W (y1, y2)(0) =

∣∣∣∣ y1(0) y2(0)
y′1(0) y′2(0)

∣∣∣∣ =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 6= 0.
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Note we are able to show y1(x) and y2(x) are linearly independent without having computed
all terms in the expansion! Finally, it is worth noting that we can show the two series
expansions converge for all |x| < 1. To see this, note

|am+2| ≤
(m+ 1)m|am+1|+ |am|

(m+ 2)(m+ 1)

≤ m2 +m+ 1

m2 + 2m+ 1
max (|am+1|, |am|) < max (|am+1|, |am|) .

Thus for m ≥ 3, |am| ≤ max (|a0|, |a1|) and by the comparison test
∑∞

m=0 amx
m will converge

for |x| < 1. It is not surprising that our analysis for convergence breaks down at x = 1
(to be fair, the above analysis just doesn’t provide any information about what happens at
x = 1; to have the series converge for |x| ≥ 1 we would need the |am| to decay rapidly, and
a more involved analysis shows that this is not the case). Note that the coefficient of y′′(x)
is 1 − x, and thus when x = 1 this coefficient is zero. This means that at x = 1 we do not
have an ordinary point, and there is a marked change in the nature of the differential equation.

Example: Consider xy′′(x) + y′(x) + xy(x) = 0 about x = 1. Note x = 1 is an ordinary
point, and we guess a solution y(x) =

∑∞
n=0 an(x− 1)n. Unfortunately this does not combine

well when we substitute, as we get terms such as (x − 1)m and x(x − 1)n. The easiest way
to proceed is to add zero, one of the most important techniques in mathematics. We note
x = (x− 1) + 1, and thus our differential equation is the same as

(x− 1)y′′(x) + y′′(x) + y′(x) + (x− 1)y(x) + y(x) = 0,

expanded about x = 1. Now the (x−1) factors will combine nicely with the series expansion.

Application:

6. Systems of Linear Differential Equations

Statement: Consider −→x ′(t) = A−→x (t) + −→g (t) with −→x (0) = −→x 0. If −→g (t) =
−→
0 then the

solution is just −→x (t) = exp(At)−→x 0, where exp(At) = I +At+A2t2/2! + · · · =
∑∞

n=0A
ntn/n!.

For computational purposes, it is often convenient to diagonalize the matrix. While it is not
the case that every matrix is diagonalizable, most will be. This is always the case for n× n
matrices with n distinct eigenvalues (or n linearly independent eigenvectors); recall that a
non-zero vector −→v is an eigenvector of A with eigenvalue λ if A−→v = λ−→v (the eigenvalues are

found by solving det(A − λI) = 0, and then one solves (A − λ)−→v =
−→
0 ). In many cases we

can explicitly write down a diagonalizing matrix. Let −→v 1, . . . ,
−→v n be n linearly independent

eigenvectors for the n×n matrix A (such vectors always exist if A has n distinct eigenvalues).
Let S be the matrix where the ith column is −→v i, and let Λ be the diagonal matrix with λi (the
eigenvalue of −→v i) in the ith place on the main diagonal. Then A = SΛS−1 or Λ = S−1AS.
This is of great use as

exp(At) = exp(SΛS−1t) = S exp(Λt)S−1 = SΛ̃tS
−1,

where Λ̃t is the n× n diagonal matrix with entries eλit.

Thus for −→x ′(t) = A−→x (t) the solution is −→x (t) = SΛ̃tS
−1
−→
( x)0 if A is diagonalizable with

the matrix S of eigenvectors and Λ̃t is the diagonal matrix with entries eλit.
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The situation is only slightly more involved if −→g (t) is not zero (ie, the non-homogenous
case), provided that A is diagonalizable. If A = SΛS−1 (with S as above), then we can solve
uncouple this system and reduce to n first order differential equations which can be solved
by integrating factors. In particular, let −→x (t) = S−→y (t) or −→y (t) = S−1−→x (t) (we can do this
change of variables as S is invertible). As −→x ′(t) = S−→y ′(t), we find

−→x ′(t) = A−→x (t) +−→g (t)

S−→y ′(t) = AS−→y (t) +−→g (t)
−→y ′(t) = S−1AS−→y (t) + S−1−→g (t)

−→y ′(t) = Λ−→y (t) +
−→
h (t),

where
−→
h (t) = S−1−→g (t). This leads to n uncoupled first order linear differential equations

y′i(t) = λiyi(t) + hi(t),

which can be solved by integrating factors: if µi(t) = exp(−λit) then

yi(t) =
1

µi(t)

[∫
µi(t)hi(t)dt+ C

]
= eλit

[∫
e−λithi(t)dt+ C

]
.

It is worth noting that if we have −→x ′(t) = A−→x (t) with A an n × n matrix with linearly
independent eigenvectors −→v i with eigenvalues λi (which will always be the case if A has n
distinct eigenvalues or if A is a real symmetric matrix, which means A = AT ), then the
solution can be written as

−→x (t) = c1e
λ1t−→v 1 + · · ·+ cne

λnt−→v n,

where the ci are chosen so that −→x (0) = −→x 0.

Example: Let

A =

(
1 2
2 1

)
and consider the system of differential equations −→x ′(t) = A−→x (t) with −→x (0) =

(
1
0

)
. The

solution is −→x (t) = exp(At)

(
1
0

)
. To compute exp(At), note the eigenvalues are found by

solving det(A − λI) = 0 or (1 − λ)2 − 4 = 0, which after some algebra yields λ = 3 or −1.

Solving the linear algebra equation gives the corresponding eigenvectors are

(
1
1

)
for λ1 = 3

and

(
1
−1

)
for λ2 = −1. This yields

S =

(
1 1
1 −1

)
, S−1 =

(
1/2 1/2
1/2 −1/2

)
,

so

exp(At) = S exp(Λt)S−1 = S

(
e3 0
0 e−1

)
S−1 =

(
e−t

2
+ e3t

2
− e−t

2
+ e3t

2

− e−t

2
+ e3t

2
e−t

2
+ e3t

2

)
.
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Thus the solution is

−→x (t) =

(
e−t

2
+ e3t

2
− e−t

2
+ e3t

2

− e−t

2
+ e3t

2
e−t

2
+ e3t

2

)(
1
0

)
=

(
e−t

2
+ e3t

2

− e−t

2
+ e3t

2

)
.

We could also solve this system of differential equations by finding c1, c2 such that

−→x (t) = c1e
3t

(
1
1

)
+ c2e

−t
(

1
−1

)
satisfies the initial condition, as this clearly solves the differential equation. Algebra yields
c1 = c2 = 1/2, and we recover the solution as before.

Application:
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