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STEVEN J MILLER, SJM1@WILLIAMS.EDU

Abstract. In studying second order linear constant coefficient homogenous
differential or difference equations, we saw that our ‘divine inspiration’ guess
only generates one solution if the characteristic polynomial has a repeated root.
We discuss below how one is led to guessing the other solution.

1. Statement of problem

For second order linear constant coefficient homogenous difference equations,
say

xn+2 − axn+1 − bxn = 0, (1.1)

we saw that guessing xn = rn often leads to a complete solution. Specifically,
trying this leads to the characteristic polynomial

r2 − ar − b = 0, (1.2)

and if the roots are distinct, say r1 and r2, then the general solution to the differ-
ence equation is

xn = c1r
n
1 + c2r

n
2 , (1.3)

where c1, c2 are chosen to satisfy the two initial conditions. Similarly if we have
the differential equation

y′′(t)− ay′(t)− by(t) = 0 (1.4)

we guess y(t) = ert. This leads to the same characteristic polynomial for r, and if
the roots are distinct the general solution is then

y(t) = c1e
r1t + c2e

r2t. (1.5)

Unfortunately, this method breaks down if the two roots are equal. In that
case, we only find one solution, either xn = rn or y(t) = ert. We need to find
another solution. While direct inspection shows xn = nrn and y(t) = tert work,
the goal of this note is to explain how one is led to making such a guess. This is
not to say that it not important to know how to solve these problems when there
are repeated roots; this is a very important part of the subject. Rather, we want
to emphasize how one can search for additional solutions to a problem when we
know some solutions. This is a very general technique, and can be used fruitfully
in many situations.

2. Combinations of Solutions

Before explaining the logic behind the guess which finds the other solutions, it
is worthwhile to consider some specific differential equations and various linear
combinations of solutions. The standard one to study is

y′′(t) + y(t) = 0. (2.1)
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If we guess y(t) = ert, we find r2 + 1 = 0, so r = ±i so the solutions are eit and
e−it. Thus the general solution is c1e

it + c2e
−it.

A little thought and inspection, however, turns up two other solutions. We
are looking for a function whose second derivative is the negative of the original
function; thus we see cos(t) and sin(t) also solve the original equation, and hence
the general solution should be b1 cos(t) + b2 sin(t).

What is going on here? There should only be two free parameters, not four.
Thus, somehow give a choice of b1 and b2 there should be a choice of c1 and c2 so
that b1 cos(t) + b2 sin(t) = eit + c2e

−it (and similarly the other way around).
We can see this by recalling Euler’s formula: eiθ = cos(θ) + i sin(θ), so e−iθ =

cos(θ)− i sin(θ). Simple algebra yields

1

2
eit +

1

2
e−it = cos(t)

1

2i
eit − 1

2i
e−it = sin(t). (2.2)

Thus if we are given b1 and b2, we can re-express b1 cos(t) + b2 sin(t) in terms of
eit and e−it; specifically, we have

b1 cos(t) + b2 sin(t) = b1

(
1

2
eit +

1

2
e−it

)
+ b2

(
1

2i
eit − 1

2i
e−it

)

=

(
b1

2
+

b2

2i

)
eit +

(
b1

2
− b2

2i

)
e−it

=
b1 − ib2

2
eit +

b1 + ib2

2i
e−it. (2.3)

In other words, given b1 and b2 we take c1 = (b1 − ib2)/2 and c2 = (b1 + ib2)/2i.
The point of all this is that we can use either cos(t) and sin(t) as our fundamental

set of solutions, or eit and e−it, whichever is more convenient for us. We shall
see an appropriate combination of solutions of related difference and differential
equations ‘suggest’ our guess.

3. Heuristic for our guess

We now describe the heuristic which suggests the guess for second order linear
constant coefficient difference equations when the characteristic polynomial has a
repeated root; a similar analysis works for differential equations.

For a general difference equation xn+2 − axn+1 − bxn, the characteristic poly-
nomial r2 − ar − b has two distinct roots and there are no difficulties in writing
down all solutions; all solutions are linear combinations of rn

1 and rn
2 .

A little algebra shows we can also write all solutions as linear combinations of
rn
2 + rn

1 and rn
2 − rn

1 . To see this, we try and solve

b1(r
n
2 + rn

1 ) + b2(r
n
2 − rn

1 ) = c1r
n
1 + c2r

n
2 . (3.1)

If we are given b1 and b2, then clearly we just take c1 = b1 − b2 and c2 = b1 + b2.
Conversely, if we are given c1 and c2 we see we may take b1 = (c1 + c2)/2 and
b2 = (c2− c1)/2. Thus rn

2 + rn
1 and rn

2 − rn
1 are also a fundamental set of solutions.

If we multiply a solution by a constant, we still have a solution. Thus, we are
led to the following pair of solutions (which still generate all solutions):

rn
2 + rn

1

r2 + r1

,
rn
2 − rn

1

r2 − r1

, (3.2)

as r2 + r1 and r2 − r1 are independent of n and thus constant.
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We now explore what happens as we deform the difference equation so that the
two roots collapse into a common value, say r. Let us write r1 = r and r2 = r +h,
so h → 0. Note (rn

2 + rn
1 )/(r2 + r1) becomes 2rn/2r or rn−1; as we can multiply a

solution by a constant, we see that this is the same as our original guess of rn.
What happens to the second solution, (rn

2 − rn
1 )/(r2 − r1)? This becomes

lim
h→0

(r + h)n − rn

h
; (3.3)

this is the definition of the derivative of the function g(r) = rn with respect to r.
As g′(r) = nrn−1, we see that this solution becomes nrn−1 = nrn/r; again as r is
a constant we see that this is the same as guessing nrn. A similar analysis for the
differential equation gives the second guess is tert.

We would like to use some kind of continuity argument to claim that the limit
of the second guess is also a solution. In class, we substituted these guesses into
the original equations to show that they worked; if (rn

2 − rn
1 )/(r2− r1) is a solution

of the difference equation xn+2 − axn+1 − bxn whenever there are distinct roots,
as we vary a and b so that the roots collapse must the limit of (rn

2 − rn
1 )/(r2 − r1)

also be a solution? One must sadly be careful about claims such as these. Linear
algebra is replete with examples where something holds almost all the time but
can suddenly fail. Examples range from varying an N × N matrix A and going
from there is a unique solution to Ax = b to suddenly there are none or infinitely
many (as A becomes singular, i.e., non-invertible) to whether or not the matrix
A is diagonalizable. Thus we should check our second guess and see that it does
solve the original difference or differential equation.

We are thus left with the question of why we considered these combinations,
specifically (rn

2 + rn
1 )/(r2 + r1) and (rn

2 − rn
1 )/(r2− r1). The best answer I can give

is that we can see one of the solutions collapsing to zero, but the division by r2−r1

means we get 0/0, and thus there is the hope that something useful will remain in
the limit. Another reason is that we saw combinations like this were useful when
looking at eit, e−it and cos(t), sin(t).


