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4.1. Solow’s Economic Growth Model

(Draft version1.)

We consider a model from macroeconomics. Let K be the capital,2 L the
labor, and Q the production output of an economy. We are interested in a dynamic
problem, so K(t), L(t) and Q(t) are all functions of time, but we will suppress the t
argument. In elementary economics, one learns that a common assumption is that
Q can be expressed as function of K and L:

Q = f(K, L). (4.1)

We assume that f has, using economics terminology, constant returns to scale.
Mathematically, this means that multiplying K and L by the same amount results
in Q being multiplied by the same amount. That is, for any constant b,

f(bK, bL) = bf(K, L). (4.2)

For example, the Cobb-Douglas function f(K, L) = K1/3L2/3 satisfies this assump-
tion.

We make two more assumptions. We assume that a constant proportion of Q
is invested in capital. This means that the rate of change of K is proportional to
Q:

dK

dt
= sQ, (4.3)

where s > 0 is the proportionality constant. We also assume that the labor force
is growing according to the equation

dL

dt
= λL, (4.4)

where λ > 0 is the per capita growth rate. This is a first order equation for L which
we can solve to find L = L0e

λt.
If possible, we would like to combine (4.1), (4.3), and (4.4) into a single equation

that we may easily analyze. A natural first attempt is to substitute (4.1) into (4.3)
to obtain

dK

dt
= sf(K, L) (4.5)

Since L(t) is a known function, the only unknown function is K(t). Thus this is a
first order differential equation for K(t). It is, however, nonautonomous. L(t) =
L0e

λt, so the right side depends on t explicitly. We could still try to analyze this
equation, but it would be nice if we could find an autonomous first order differential
equation. It turns out we can derive an autonomous equation for the ratio K

L instead
of K.

First, because f has constant returns to scale, we may write

f(K, L) = f

(

L
K

L
, L

)

= Lf

(

K

L
, 1

)

. (4.6)

Then, after dividing by L, (4.5) becomes

1

L

dK

dt
= sf

(

K

L
, 1

)

(4.7)

1 c© 2006 Warren Weckesser
2Capital includes things that are owned to be used in production, such as buildings and

manufacturing equipment.
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Next, we consider the derivative of K
L given by the quotient rule, and we use (4.4):

d

dt

(

K

L

)

=
1

L

dK

dt
−

K

L2

dL

dt
=

1

L

dK

dt
− λ

K

L
. (4.8)

If we subtract λK
L from both sides of (4.7), the left side becomes d

dt

(

K
L

)

, so we
obtain

d

dt

(

K

L

)

= sf

(

K

L
, 1

)

− λ
K

L
(4.9)

We now have an equation in which the unknown function is K
L . Let us define

k =
K

L
(4.10)

and

g(k) = f(k, 1). (4.11)

Then (4.9) becomes
dk

dt
= sg(k) − λk (4.12)

This is the Solow Growth Model [8] which models the growth of the ratio of capital
to labor under the assumptions given earlier.

Summary

Assumptions

(1) Q = f(K, L) where f(K, L) is a function with constant returns to scale.

(2)
dK

dt
= sQ; a fraction of the production output is invested in capital.

(3)
dL

dt
= λL; labor grows according to this equation.

Definitions

• k =
K

L
; we analyze the ratio of capital to labor.

• g(k) = f(k, 1).

Result
dk

dt
= sg(k) − λk

Example 4.1.1. As an example, let’s take the production function to be

f(K, L) = K1/3L2/3. (4.13)

Then

g(k) = f(k, 1) = k1/3, (4.14)

and the differential equation for k is

dk

dt
= sk1/3

− λk. (4.15)

Figure 4.1 shows the graph of dk
dt versus k.

By solving

sk1/3
− λk = 0,
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Solow Model Growth Rate

k
( sλ )3/2

dk
dt

0

Figure 4.1. The graph of the right side of equation (4.15).

we find the equilibrium solutions to be k = 0 or k = (s/λ)3/2.
Changing λ or s will change the scale (and the numerical value of the non-zero

equilibrium), but the graph of dk/dt versus k will always have the same qualitative
shape as the graph shown above.

We see that if k > 0 is small, dk
dt > 0, so k will increase; the equilibrium k = 0

is unstable. The graph of k(t) will have an inflection point when k reaches
(

s
3λ

)3/2

(where right side of (4.15) has its maximum). k will then converge asymptotically
to the non-zero equilibrium.

The equilibrium k = (s/λ)3/2 is asymptotically stable: any solution that starts
near the equilibrium will converge to the equilibrium as t → ∞. In fact, all solutions
with k(0) > 0 will converge asymptotically to this equilibrium.

What does this mean in terms of the capital K and the labor L? Since
k(t) = K(t)/L(t), and L(t) = L0e

λt, if k(t) converges to an asymptotically sta-
ble equilibrium k1, then K(t) must behave asymptotically like k1L(t). This means
that, in the long term, K(t) must grow exponentially, with the same exponent as
L(t). This model predicts that in the long term, capital will grow exponentially
along with the labor. If, for example, the capital is too low, it will rapidly increase
until it becomes approximately proportional to the labor, and then it will settle
into a long term behavior in which capital remains proportional to the labor.

Exercises

4.1.1. Verify that the maximum value of the right side of (4.15) occurs at

k =
(

s
3λ

)3/2
.

4.1.2. Find an explicit solution for (4.15), assuming that the initial condition is

k(0) = k0 > 0. Use your solution to verify analytically that limt→∞ k(t) = (s/λ)
3/2

.

4.1.3. Suppose that labor grows according to a logistic equation

dL

dt
= λL

(

1 −

L

M

)

(4.16)
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where M is the carrying capacity for the labor population. Derive a new differential
equation for k(t). Is your new equation autonomous? If not, can you still determine
the asymptotic behavior of the solutions as t → ∞?

4.1.4. Suppose we include the fact that capital deteriorates over time. We
replace the assumption given in equation (4.3) with

dK

dt
= −rK + sQ (4.17)

where r > 0. (This says that, if Q = 0, then K will decay and approach zero
asymptotically.) Show that this leads to the differential equation

dk

dt
= sg(k) − (r + λ)k, (4.18)

where k and g(k) are defined in (4.10) and (4.11), respectively. Find the equilib-
rium solutions of this model, and describe the behavior of all possible solutions
(assumging k(0) > 0). Compare to the Solow model.


