
Math 238: Solutions to Homework

Steven Miller (sjm1@williams.edu)
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Abstract

Below are solutions / sketches of solutions to the homework problems from Math 238: Number
Theory (Smith College, Fall 2011, Professor Steven J. Miller, sjm1@williams.edu). The course home-
page is

http://www.williams.edu/Mathematics/
sjmiller/public html/238.

Note to students: it’s nice to include the statement of the problems, but I leave that up to you. I am only
skimming the solutions. I will occasionally add some comments or mention alternate solutions.
If you find an error in these notes, let me know for extra credit.
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1 HW #1: Due Thursday, September 15, 2011
Problem: #37.1 (a) Find a pattern involving Fm, Fn, Fmn. (b) Prove pattern true. (c) If gcd(m,n) = 1
find a stronger pattern. (e) Prove pattern from (c) true.

Solution: (a) Lots of ways to try this. One possibility is Binet’s formula, but then you have to prove a
tricky expression is an integer. Another possibility is to try to use induction, but on what? On n? On m?
Another is to try and use the recurrence relation. This might be promising, as it is THE fundamental piece
of info. Of course, the first part is trying to figure out the pattern. A little experimentation shows Fm|Fmn

and Fn|Fmn, but FmFn does not necessarily divide Fmn.

For (b), once you have the pattern, try the following:

Fv = Fv−1 + Fv−2

= Fv−2 + Fv−3 + Fv−2

= 2Fv−2 + 1Fv−3

= 2(Fv−3 + Fv−4) + Fv−3

= 3Fv−3 + 2Fv−4

= 3(Fv−4 + Fv−5) + 2Fv−4

= 5Fv−4 + 3Fv−5.

As F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, ..., arguing as above we find we can write the above as

Fv = F5Fv−4 + F4Fv−5.

Note the sum of the subscripts of the first product is v + 1, of the second is v − 1. In general, you can
show

Fv = Fk+1Fv−k + FkFv−k−1.

Taking v = mn and k = m gives

Fmn = Fm+1Fm(n−1) + FmFmn−n−1.

We’re almost done. The rest is an induction on n. We want to show, for any n, Fm|Fmn. Triv-
ially true when n = 1. Assume true for n − 1 and must show true for n. Using the above relation,
we have Fmn = Fm+1Fm(n−1) + FmFmn−n−1. By the inductive assumption, Fm|Fm(n−1), and since
Fm|FmFmn−n−1, we see that Fm|Fmn, completing the induction.

For (c), the stronger pattern is FmFn|Fmn if (m,n) = 1 (this is how we write m,n relatively prime.
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For (e) there are several approaches. A nice one is to note that the claim follows immediately if m,n
relatively prime implies Fm and Fn are relatively prime. Why? If this is the case, then since Fm|Fmn and
Fn|Fmn, then FmFn|Fmn as there are no common factors. We’re just reduced to showing m,n relatively
prime implies that Fm, Fn are relatively prime.

One way to see this is to use the fact that if two numbers are relatively prime, then by the Euclidean
algorithm there are a, b such that am + bn = 1, with one of a, b positive and one negative. For definite-
ness, assume a > 0 and b < 0 so am = cn + 1 (with c = −b). Let’s assume d > 0 divides Fm and Fn.
Then from part (b) we know d|Fam = Fcn+1 (this is because d|Fm and Fm|Fan); however, we also have
d|Fcn (this is because d|Fn and Fn|Fcn). We now have Fcn and Fcn+1 both divisible by d. As two adja-
cent Fibonacci numbers are divisible by d, so are all Fibonacci numbers from this point forward, due to
the recurrence relation; moreover, running the recurrence relation backwards gives all previous Fibonacci
numbers are divisible by d. As F1 = 1, the only possibility is d = 1. Thus, Fm and Fn are relatively prime.

Problem: #37.3 (a) Make a list of Fibonacci numbers that are prime. (b) conjecture: if Fn is prime
then what? (c) Does the conjecture work in reverse: if n is what then Fn is prime? (d) Prove conjecture
in (b) is correct.

Solution: (a) F3, F4, F5, F7, F11, F13, F17, F23, . . . .

(b) If Fn is prime then n is prime.

(c) Conjecture fails the other way: F19 = 37 · 113.

(d) Assume the conjecture fails, and there is an Fn that is prime but n = ab is composite. Then Fa|Fn

and Fb|Fn. Assume a, b > 2, then Fa, Fb ≥ 2 and hence 1 < Fa, Fb < Fn. In this case, we’ve just found
a non-trivial factor of Fn and it cannot be prime. The only possibility left is if a = b = 2, in which case
since F2 = 1 neither Fa nor Fb is a non-trivial factor. Thus F4 might be prime (it is, as it equals 3).

Problem: #37.5 (a) Find the first five terms of An = 3An−1 + 10An−2 given A1 = 1, A2 = 3.

Solution: (a) 1, 3, 19, 87, 451, 2223, 11179. You should know how to write Mathematica code or
excel code to do something like this. Mathematica would be

temp = {1, 3};
For[n = 1, n <= 5, n++,

temp = AppendTo[temp, 10 temp[[n]] + 3 temp[[n + 1]]]];
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Print[temp]

If you want to find the analogue of Binet’s formula, you guess An = rn, which leads to the equation
r2 − 3r − 10r = 0, which is (r − 5)(r + 2) = 0, so the roots are 5,−2, and An = c15

n + c2(−2)n. To
have A1 = 1, A2 = 3 need to do some algebra to find c1, c2.

Problem: #37.9. The pattern has to repeat modulo m by the Pigeon hole principle. Imagine we get
two 0s (modulo m) next to each other. Then using Fn+1 = Fn + Fn−1, we see all future terms are 0 mod
m, as are all previous. This contradicts F1 = 1, so we cannot have two 0s next to each other modulo m.

Solution: As there are only finitely many patterns for pairs of numbers modulo m (there are at most
m2 patterns), at some point we must repeat. In other words, there are two consecutive pairs of Fibonacci
numbers with the same values modulo m. By the recurrence relation, this gives us a cycle that repeats
forwards and backwards. As we have F1 = 1, F2 = 1, the cycle must have 1, 1 in it, and thus going
forward must have 1, 1 in it.
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2 Second HW Assignment: Due Tuesday, September 20
Problem: #36.3. What is

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
?

Solution: Computing the answer for a few choices of n, we’re led to believe it equals 2n. Recalling
that the binomial coefficients show up in Pascal’s triangle, we’re led to the Binomial Theorem, which
states

(x+ y)n =
n∑

k=0

(n
k

)
xkyn−k.

If we take x = y = 1, then we get

(1 + 1)n =
n∑

k=0

(n
k

)
,

proving the sum of the binomial coefficients is 2n. Similarly, one can show the alternating sums has a
very nice value too.

Problem: #36.6a. If p is prime then
(
p
k

)
is divisible by p if 1 ≤ k ≤ p − 1. Find a k and an n such

that 1 ≤ k ≤ n− 1 but
(
n
k

)
is not divisible by n.

Solution: A brief search already turns one up with n = 4 and k = 2. There are three when n = 6
(corresponding to k = 2, 3 or 4). Here is some Mathematica code to find all exceptions for n up to 10.

For[n = 2, n <= 10, n++,
For[k = 1, k <= n - 1, k++,
If[Mod[Binomial[n, k], n] != 0,

Print["(n,k) = (", n, ",", k, ") and (n choose k) = ",
Binomial[n, k], "."]];

]];

Problem: Prove by direct computation that
(

n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
.
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Solution: Using
(
n
k

)
= n!

k!(n−k)! , with m! = m(m− 1) · · · 2 · 1, we have(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

(k − 1)!(n− k)!

[
1

k
+

1

n− k + 1

]
=

n!

(k − 1)!(n− k)!

[
n− k + 1 + k

k(n− k + 1)

]
=

n!

(k − 1)!(n− k)!
n+ 1

k(n− k + 1)

=
(n+ 1)!

k!(n− k + 1)!
=

(
n+ 1

k

)
.

Problem: #41.9ab Let L1 = 1, L2 = 3 and Ln = Ln−1 + Ln−2. (a) Find the first 10 terms. (b) Find a
simple formula for the generating function.

Solution: (a) Working backwards (it will be needed later), we see L0 = 2, and find the first few terms
are 1, 3, 4, 7, 11, 18, 29, 47, 76, 123. Here’s the Mathematica code to generate.

lucas = {1, 3};
For[n = 3, n <= 10, n++,

lucas = AppendTo[lucas, lucas[[n - 1]] + lucas[[n - 2]]]];
Print[lucas]

For (b), the argument is very similar to class, except now the initial term is 2 instead of 0. Let
L(x) =

∑∞
n=0 Lnx

n. Then

Ln(x) = 2 + 1x+
∞∑
n=2

Lnx
n

= 2 + x+
∞∑
n=2

(Ln−1 + Ln−2)x
n

= 2 + x+ x

∞∑
m=1

Lmx
m + x2

∞∑
m=0

Lmx
m

= 2 + x+ x(L(x)− 2) + x2L(x)

(1− x− x2)L(x) = 2− x

L(x) =
2− x

1− x− x2
.

6



3 HW #3: Due Tuesday, September 27
Problem: #1.1: EXTRA CREDIT: Find the 3rd and 4th triangular numbers that are also square, and if
possible the fifth. Can you find an efficient way to search? Do you think there are infinitely many?

Solution: Here is some code:

For[n = 1, n <= 10000, n++,
If[IntegerQ[Sqrt[n (n + 1)/2]] == True,
Print["n = ", n, " and T_n = ", n (n + 1)/2, " and square-root is ",
Sqrt[n (n + 1)/2], "."]]]

It finds T1 = 1, T8 = 36, T49 = 1225 = 352, T288 = 41616 = 2042, T1681 = 1413721 = 11892, and
T9800 = 48024900 = 69302.

To find these efficiently, we know n and n + 1 are relatively prime. Thus each is either a square or
after division by 2 is a square. We can increase the search by breaking into the case n is even or odd. If
n is odd then it must be a square, while if n is even then n/2 is a square. This greatly cuts down on the
number of n to check. As the pattern seems to continue, I would guess there are infinitely many. One can
try to solve Tn = m2, use the quadratic formula....

Problem: #1.2. Find a pattern and prove it for the sum of the first n odd integers.
Solution: The sum of the first n odd numbers is n2. Arrange them as a square. Start with a 1 × 1

square with just one dot. Then add the next odd number, 3, which gives a 2 × 2 square. Adding the next
odd prime, 5, gives a 3 × 3 square.... Can also use induction. Base step is true. Inductive step: assume
1 + 3 + · · ·+ (2n− 1) = n2. Then

1 + 3 + · · ·+ (2n− 1) + (2n+ 1) = n2 + (2n+ 1) = (n+ 1)2,

as desired.

Problem: #1.3. Can there be three consecutive odd primes other than 3, 5, 7?
Solution: No. At least one of the three numbers must be divisible by 3, and hence composite as all

numbers exceed 3 (we are looking for a triple other than the 3, 5, 7 one). To see this, there are three possi-
bilities for our first number: it has remainder 0, 1 or 2 upon dividing by 3. If 0, then we’ve already shown
one of the three consecutive odd numbers is composite. If the remainder is 1, then the second number
in our sequence has remainder 0 when dividing by 3, while if the remainder of our initial number is 2
then the remainder of the last of our triples is 0 upon dividing by 3. Again we see the power of modular
arithmetic.

Problem: #1.4. Say things about whether or not there are infinitely many primes of the form N2 − a
for various a.
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Solution: (a) Clearly not infinitely many of the formN2−1 as it factors as (N−1)(N+1); forN > 4
clearly our number N2 − 1 is composite. For (b), no obvious obstructions appear and seems reasonable
to have infinitely many primes. A lot show up....

For[n = 2, n <= 100, n++,
If[PrimeQ[n^2 - 2] == True, Print[n, ", ", n^2 - 2]]]

(c) Similarly no obvious obstructions forN2−3 and expect infinitely many, butN2 = 4 = (N−2)(N+2)
and thus not infinitely many. (d) If a is not a square, seems likely that there are infinitely many primes of
the form N2 − a.

Problem: #2.1a. Show if a2 + b2 = c2 is a primitive Pythagorean triple than either 3|a or 3|b.
Solution: Note that x2 ≡ 0 mod 3 if x ≡ 0 mod 3, and x2 ≡ 1 mod 3 if x is either 1 or 2 modulo 3.

Thus the sum of two squares modulo 3 is either 0+ 0 ≡ 0 mod 3, 1+ 0 ≡ 1 mod 3, or 1+ 1 ≡ 2 mod 3.
The last possibility cannot happen if we want the sum of the two squares to be a square, and thus either
one or both of a and b must be divisible by 3.

Problem: #2.5a. Find a Pythagorean triple with b = 4T5.
Solution: We have T5 = 5·6

2
= 15, thus from Theorem 2.1, page 17 we need b = 60 = s2−t2

2
, with

s > t ≥ 1 odd, relatively prime integers. First thought is need s2 − t2 = 120, so look at 120 + t2 for
various choices of t. We find t = 1, s = 11 works, as does t = 7, s = 13 among others. Here is some
code.

For[t = 1, t <= 100, t++,
If[IntegerQ[Sqrt[120 + t^2]] == True,
Print[t, " ", Sqrt[120 + t^2]]]]

Problem: If ax2 + bx+ c has integer coefficients and one of the roots is rational then prove the other
root is rational.

Solution: We have a(x2 + b
a
x + c

a
) = a(x − r1)(x − r2) = a(x2 − (r1 + r2)x + r1r2). Therefore

r1+r2 = b/a and r1r2 = c/a. As a, b are integers and assuming r1 is rational, then r2 = b
a
−r1 is rational,

as the rational numbers are closed under division and subtraction.
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4 HW #4: Due October 4
Problem: #3.2. (a) Using lines through (1, 1), find all rational solutions to x2 + y2 = 2. (b) What goes
wrong if we have x2 + y2 = 3.

Solution: (a) Equation of the line is y − 1 = m(x − 1) for m some rational number (note that (1, 1)
is on this line). Solving gives y = m(x − 1) + 1, so x2 + (m(x − 1) + 1)2 = 2. Expanding gives
1−2m+m2+2mx−2m2x+x2+m2x2−2. We know x−1 is a factor. Doing long division, we find the
other factor is (1+2m−m2+x+m2x) (you could also get this with patience and the quadratic formula).
This gives the other point on the line, with slope m, has coordinates x = (−1− 2m+m2)/(1 +m2) and
thus y = −(−1 + 2m+m2)/(1 +m2).

For (b), the problem is we cannot find a rational point on the circle! We need such a point to find
others, but unable to find even one makes us realize how hard these problems can be.

Problem: #3.3. Find all rational points on the hyperbola x2 − y2 = 1.
Solution: Similar to earlier problems. This time there are clearly points, such as (−1, 0). Now the

sloper-intercept form of the line with slope m going through this point is y = m(x + 1). Substituting
into the hyperbola gives x2 − m2(x + 1)2 = 1. We factor again, either knowing that x + 1 has to be a
root, or using the quadratic formula. We find the other factor is (1 +m2 − x+m2x) and the other root is
x = m2−1

m2+1
, y = 2

m2−1 .

Problem: #5.1a Find gcd(12345, 67890).
Solution: Note b67890/12345c = 5, so first step is 67890− 5 · 12345 = 6165. So gcd(12345, 67890)

= gcd(6165, 12345). Now b12345/6165c = 2, so next step is 12345 − 2 · 6165 = 15, and thus
gcd(12345, 67890) = gcd(15, 6165). As 6165/15 = 411, we see 15 divides 6165. Thus gcd(15, 6165) =
15, and hence the original gcd is 15. While Mathematica has its own greatest common divisor function
built in, it’s easy (and somewhat fun!) to write one:

gcdfunction[xx_, yy_] := Module[{},
x = Min[xx, yy]; y = Max[xx, yy];
While[x > 0,
{
While[y >= x, y = y - x];
r = y; (* store current y value in r *)
y = x; (* make current x value new y *)
x = r; (* make the old y value the new x value *)
}];

Print[y]; (* this is the gcd *)
];
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Problem: #5.3. Show that every two iterations of the Euclidean algorithm decrease the remainder by
at least 1/2.

Solution: See Chapter 1 of my book, Section 1.2.
http://press.princeton.edu/chapters/s8220.pdf. A better solution, suggested by the
class, is to note ri > ri+1 > ri+2, ri = qi+1ri+1 + ri+2, and since qi+1 > 0, ri > ri+1 + ri+2 ≥ 2ri+2, as
desired.

Problem: #5.4abce. (a) Find some least common multiples, (b) compute in terms of components and
greatest common divisor, (c) give argument that the found relationship is correct, (e) consider gcd(m,n) =
18 and lcm(m,n) = 720, does this uniquely determine m and n?

Solution: (a) lcm(8, 12) = 24, lcm(20, 30) = 60, lcm(51, 68) = 204, lcm(23, 18) = 414.
(b) We see in each case that lcm(m,n) gcd(m,n) = mn.
(c) By fundamental theorem of arithmetic every integer can be written uniquely as a product of prime

powers. Say pk divides mn. If p only divides one of m,n then pk doesn’t divide the gcd but is the highest
power of p dividing the lcm, and thus all is good. If p divides bothm,n, say pi|m and pj|n (with i+j = k).
Without loss of generality, assume i < j. Then the power of p dividing the gcd is i and the power of p
dividing the lcm is j, and we get both sides are divisible by pi+j (but no higher power of p).

(e) By (c), we know lcm(m,n) gcd(m,n) = mn; by the givens of the problem, lcm(m,n) gcd(m,n) =
18·720 = 12960 = 25345. So any grouping of the factors of 12960 intom and n is valid. Form, there are 6
choices as to the power of 2 (including having no power of 2), 5 choices for the power of 3, and 2 choices
for the power of 5 (if we choose no powers at all, then m is just 1). Thus there are 6 · 5 · 2 = 60 pairs. The
are all numbers of the form (m,n) = (2a3b5c, 25−a34−b51−c), with 0 ≤ a ≤ 5, 0 ≤ b ≤ 4 and 0 ≤ c ≤ 1.
We need to do a little more work, though. As the greatest common divisor is 18, no number can be lower
than 18 and must be divisible by 18. Further, the least common multiple is 720, so neither number can be
larger than 720. So let’s pull 18 = 2·32 out from each. Thus (m,n) = 18(2a5c, 23−a51−c), with 0 ≤ a ≤ 3
and 0 ≤ c ≤ 1. Can’t have a = 3, c = 1 or a = 0, c = 0 as then exceeds least common multiple. Possibil-
ities are thus 18(1, 40), 18(5, 8), 18(2, 20), 18(4, 10); however, only the first two pairs are relatively prime
(and thus the others have a larger greatest common divisor). Thus the answer is 18(1, 40) = (18, 720)
and 18(5, 8) = (90, 144) (and of course (720, 18) and (144, 90)). One could also write a compute code to
investigate. Here’s my Mathematica code, using that xy = gcd(x, y)lcm(x, y) = 12960.

For[a = 0, a <= 5, a++,
For[b = 0, b <= 4, b++,
For[c = 0, c <= 1, c++,
{
x = 2^a 3^b 5^c;
y = 12960/x;
If[LCM[x, y] == 720 && GCD[x, y] == 18,
Print["x = ", x, " and y = ", y, "."]];
}]]];
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5 HW #5: Due Tuesday, October 11
Problem: Page 4 of my book, #1.1.1. There are approximately 1080 elementary objects in the universe
(photons, quarks, et cetera). Assume each such object is a powerful supercomputer capable of checking
1020 numbers a second. How many years would it take to check all numbers (or all primes) less than√
10400? What if each object in the universe was a universe in itself, with 1080 supercomputers: how

many years would it take now?
Solution: The number of seconds in a year is 60 · 60 · 24 · 365.25 ≈ 3.15576 · 107. If t is the number of

seconds needed, to check the 10200 numbers requires 10200/(1080 · 1020) = 10100, or 3 · 1092 years! Even
if every subatomic particle was an entire universe, we’d still need about 3 · 1012 years!

Problem: Page 9 of my book, #1.2.17: Give a non-constructive proof of the existence of ax + by =
gcd(x, y).

Solution: Step 1: As the non-negative integers have a smallest element, we can look at all choices of
a and b that lead to a positive value, and take a choice that gives the smallest positive value (note this set
is non-empty – take a = b = 1). We let d be the smallest value attained, and let α, β be values where it is
attained, so d = αx+ βy. It’s very important that we are looking at integers and not rational numbers, as
there is no smallest positive rational number. For each positive integer we can ask if it can be represented
as a linear combination. We know at least one positive integer can, so this set is not empty. Now we just
need to look and find the smallest, and fortunately the set will have a smallest element.

Step 2: Claim gcd(x, y)|d. As d is a linear combination of x and y, anything that divides both x and
y divides d, and the claim follows. Specifically, as α, β are integers, d|x means d|αx, and similarly d|y
implies d|βy. Thus d divides the sum, αx+ βy.

Step 3: Let e = Ax + By for any A,B. Claim d|e. If not, write e as a multiple of d plus a non-zero
remainder modulo d, say r ∈ {0, 1, . . . , d−1}. By subtracting, we findA′, B′ such that r = A′x+B′y > 0
and r < d. This contradicts the minimality of d, contradiction, so d|e.

Step 4: Taking (A,B) = (1, 0) and (0, 1) we see d|x and d|y, and so d is the greatest common divisor
of x and y. This shows us the power of taking special cases in a general formula.

Problem: Page 15 of my book: #1.3.9: Find rules for divisibility by 3, 9, 11 and 7.
Solution: As 10n ≡ 1 mod 3 (or modulo 9), we have

∑N
n=0 an10

n ≡
∑N

n=0 an mod 3 (or modulo 9),
and thus a number is divisible by 3 (or 9) if and only if the sum of its digits is divisible by 3 (or 9). For 11,
notice that 10n ≡ 1 mod 11 if n is even and −1 mod 11 if n is odd. Thus instead of a sum of the digits
we have an alternating sum of digits, and our number is divisible by 11 if and only if the alternating sum
is divisible by 11. For example, 451 is divisible by 11 (and 4-5+1 is 0 modulo 11), while 452 is not (here
4 - 5 + 2 is 1 modulo 1). For 7, the formula isn’t clean; we just look at the different remainders of powers
of 10 modulo 7 and get a weighted sum.

Problem: Page 15 of my book: #1.3.10 (don’t do the last part): Given m1,m2 relatively prime and
a1, a2 arbitrary integers, prove there is a unique x mod m1m2 such that x ≡ ai mod mi.
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Solution: Here is some code to investigate the problem and find answers:

chineseremainder[m1_, m2_, a1_, a2_] :=
If[GCD[m1, m2] > 1, (* checks to see if numbers relatively prime *)
Print["Why did you give me two moduli that aren’t relatively prime?"],
For[x = 0, x <= m1 m2 - 1, x++, (* here if numbers relatively prime *)
If[Mod[x - a1, m1] == 0 && Mod[x - a2, m2] == 0, Print[x]];
]; (* end of For statement *)

] (* end of If statement *)

Your first thought when you see problems like this and are given phrases such as ‘relatively prime’ is
the Euclidean algorithm, or more precisely the linear combination consequence. As m1,m2 are rela-
tively prime there are integers α, β such that αm1 + βm2 = 1. This means that αm1 ≡ 1 mod m2 and
βm2 ≡ 1 mod m1. Look at a2αm1 + a1βm2. Modulo m2, this is just a2, while modulo m1 it is a1. Thus
this number satisfies our requirements. The idea is to use the Euclidean algorithm and exploit it to get
expressions that are equivalent to 1. If we had two different x that worked, if we subtracted these from
each other we would get a non-zero number modulo m1m2 that is equivalent to 0 modulo m1 and m2. As
m1 and m2 are relatively prime, this cannot happen.

Problem: Look at all numbers of the form 3x + 5y, where x and y are non-negative integers. What
values occur as we vary x and y? Prove your conjecture.

Solution: Direct calculation gives us 3, 5, 6, 8, 9, 10, 11, 12, .... Once we have three numbers in a row,
we have all integers from that point onward, as we can just keep adding copies of 3 and marching down.

Problem: Let x, y, and z range over the positive integers. Describe all numbers of the form 6x+10y+
15z. In general, if a, b and c are given and x, y and z range over all positive integers, what numbers are
attainable as ax+ by + cz?

Solution: Let’s build some intuition by looking at attainable integers.

list = {6, 10, 15};
For[i = 0, i <= 5, i++,

For[j = 0, j <= 5, j++,
For[k = 0, k <= 5, k++,
{
x = 6 i + 10 j + 15 k;
If[MemberQ[list, x] == False, list = AppendTo[list, x]];
}]]];

list = Sort[list]

First, assume we could have zero for x, y, z and not have to take positive integers. This gives 6, 10,
12, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
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46, 47, 48, 49, 50, 51, 52, . . . . Once we have 6 consecutive elements, we’re done, and thus we see we get
everything from 24 onward. All the requirement of positivity does is shift everything a bit. We now get
6, 10, 15, 31, 37, 41, 43, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, . . . . We get everything from 61 onward, and notice that 61 is one more than twice the
least common multiple.

If a, b, c have a common factor dividing all, then that factor divides all attainable numbers. Let’s
therefore assume a, b, c are relatively prime. We can prove that there is some integer such that we attain all
integers from there onward. The reason is that it just suffices to get one element of each congruence class,
and then we can get everything from that point onward. The problem is much easier if we don’t require
x, y, z to be positive. We first choose y′, z′ such that 10y′+15z′ = gcd(10, 15) = 5. As gcd(6, 5) = 1, we
can choose x and x′ such that 6x+5x′ = 1, or 6x+10y+15z = 1, with y = y′x′ and z = z′x′. If we then
multiply by k, we see we can get any positive integer. This idea generalizes. Clearly if gcd(a, b, c) = d
then all numbers are multiples of d, and we can get any multiple. If d = 1 (as we are assuming as all are
relatively prime), then we can find x′, y′, z′ with ax′ + by′ + cz′ = 1. By looking at this modulo a, we
find positive integers y′′, z′′ with by′′+ cz′′ ≡ 1 mod a. Thus, by taking enough copies of this, we can get
remainders of 1, 2, 3, . . . , a modulo a, and hence get all numbers from some point onward. As to what’s
the smallest point from which we get everything, that’s more involved.
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Problem: Gather data and make some conjectures (prove if possible): let x and y be relatively prime
positive integers. Are there non-zero integers a and b such that a2x+b2y = 1? What about a3x+b3y = 1?
Maybe the answer is yes for some x and y and no for others....

Solution: There are no solutions to a2x+ b2y = 1 if x, y are relatively prime positive integers. This is
because a2x and b2y are each at least 1. It’s much more interesting if we deal with cubes, as then if a and
b are of opposite sign, we can have cancelation. Here’s a quick Mathematica program to investigate:

x = 3; y = 10; m = 2000;
count = 0;
For[a = 1, a <= m, a++,
For[b = 1, b <= m, b++,

{
If[a^3 x - b^3 y == 1 || -a^3 x + b y^3 == 1 ,

{
count = count + 1;
If[count == 1, Print["a = ", a, " and b = ", b]];
}];

}];
]

This finds the solution a = 3 and b = 2. If now we take x = 5, y = 7 and increase m up to 4,000,
no solutions are returned. So, maybe there are choices of x and y without solutions? In problems like
this, congruences are often useful. If p ≡ 1 mod 3, then a 7→ a3 mod p is not an isomorphism; we get
(p− 1)/3 + 1 distinct elements modulo p.

Here’s a program to investigate a specific choice of x and y (same as above) and using congruences
to attack it. The trick is to note that if we cube the numbers and look modulo p, if p ≡ 1 mod 3 then the
image isn’t all congruence classes, but basically just one-third. If we choose our prime to be one of our
numbers, then a3x+ b3y ≡ a3x mod y, and thus by the Pidgeon-hole principle we can find an x such that
this fails! In other words, so long as y ≡ 1 mod 3 is prime, there’ll always be an x such that there are
no solutions! The following code proves there are no solutions for x = 5, y = 7 (I included the power
feature so we could look at prime powers and not just primes for the modular arguments, while the degree
feature is to investigate more than just cubics).
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number = 7;
power = 1;
x = 5;
y = 7;
deg = 3;
list = {0};
For[n = 1, n <= number - 1, n++,

{
tempnum = Mod[n^deg, number^power];
If[MemberQ[list, tempnum] == False,
list = AppendTo[list, tempnum]];
}];

list = Sort[list]
For[a = 1, a <= Length[list], a++,

For[b = 1, b <= Length[list], b++,
If[Mod[Abs[list[[a]] x - list[[b]] y], number^power] == 1,

Print[list[[a]], " " , list[[b]]]];
]];

Here’s another way to look at it. Let’s take x and y to be two cubes, say x = x̃3 and y = ỹ3. Then
we’re trying to find cubes a and b so that a3x+b3y = 1, or (ax̃)3+(bỹ)3 = 1. There’s a beautiful theorem
that completely resolves this. It’s known as either Mihailescu’s theorem (as he proved it) or Catalan’s
conjecture, and states that the only adjacent non-trivial integer powers (non-trivial means the exponents
of each exceed 2) are (0, 1), (−1, 0) and (8, 9). In other words, if we want to solve xm− yn = 1 with x, y
integers and n,m ≥ 2 positive integers, these are the only pairs that work. Letting b̃ = −b, our equation
a3x + b3y = 1 becomes (ax̃)3 − (̃bỹ)3 = 1. By Mihailescu’s theorem, there are no two adjacent cubes,
and thus there are no solutions!
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6 HW #6: Due Tuesday, October 25
Problem: Chapter 12, Page 83: #12.2a. Show infinitely many primes congruent to 5 modulo 6.

Solution: Modify Euclid’s proof. Assume not, so p1, . . . , pN is a complete list. We have p1 = 5, p2 =
11, p3 = 17, p4 = 23, p5 = 29, p6 = 41 and so on (pretty amazing how many in a row we had). Then
xN = 6p2 · · · pN + 5 is congruent to 5 modulo 6; note we are NOT including the prime p1 = 5. If xN is
prime, we have found a new prime congruent to 5 modulo 6 that is not on our list. Assume then that xN is
composite; the proof is completed by showing it is divisible by a prime congruent to 5 modulo 6 that is not
in our list. Clearly xn is not divisible by 2 or 3 or 5. All primes may be written as either 2, 3, or of the form
6n+1 or 6m+5 for some n orm. As 2, 3 and 5 do not divide xN , all its prime factors are of the form 6n+1
or 6m+5. If all of the primes are congruent to 1 modulo 6, so too is their product, which contradicts xN is
5 modulo 6. Thus xN is divisible by a prime congruent to 5 modulo 6 not on our list, completing the proof.

Problem: Chapter 12, Page 83: #12.5abc.
Solution: (a) Highest power of 2 dividing 1! is 0, 2! and 3! is 1, 4! and 5! is 3, 6! and 7! is 4, 8! and

9! is 7, and 10! is 8. (b) What is the highest power of 2 dividing n!? Let bxc represent the floor function,
the largest integer at most x. The highest power of 2 is

∑log2 n
k=1 bn/2kc. To see this, keep track of how

many integers are divisible by 2, then by 4, then by 8, and so on. For example, a number divisible by 8
will be counted three times. If n = 100 we get 97, if n = 1000 we get 994. The Mathematica code is

Sum[Floor[n/2^k], {k, 1, Log[2, n]}]

(c) We already gave the proof; we count each number once if divisible by 2, again if divisible by 4, again
if divisible by 8, ....

Problem: Chapter 13, Page 89:#13.1b. Explain why ‘most numbers are not squares’ makes sense.
Solution: If S(x) is the number of squares at most x, we have

√
x − 1 ≤ S(x) ≤

√
x. Thus the

percentage of numbers that are square and at most x is in [x−1/2−x−1, x−1/2]. As x→∞, the percentage
tends to zero. Note S(x) ≈

√
x (and the error is at most 1).

Problem: Chapter 13, Page 89: #13.3. Show that n!+2, n!+3, . . . , n!+n are all composite. Conclude
there are arbitrarily large gaps.

Solution: Note 2 divides n! + 2, 3 divides n! + 3, and so on up till n divides n! + n. Thus these
n− 1 numbers are composite. By taking n sufficiently large, we can have as big of an interval as desired
without prime numbers. The problem with this method is the bound sucks (for example, this method tells
us we’ll have a gap of size at least 100 by 100! + 100 ≈ 9.33 · 10157; however, the first gap of size at
least 100 is between the primes 370,261 and 370,373. A better estimate is to use primorials, n!p, where
7!p = 7 · 5 · 3 · 2 and 11!p = 11 · 7!p.

Problem: Chapter 13, Page 89: #13.5. Justify the following.
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Solution: (a) By the Prime Number Theorem, there are about x/ log x primes at most x, so the density
of primes is about (x/ log x)/x or 1/ log x. Thus we have about a one in log x of choosing a number in
[1, x] and getting a prime. One issue with estimates like this is that the density is very different near the
extremes of the interval. Let’s look at the interval [x, 2x] which has approximately 2x

log 2x
− x

log x
≈ x

log x

primes. As the interval has length x, the density of primes here is about 1/ log x. (b) Assuming indepen-
dence (a big assumption), if each number at most x is prime with probability 1/ log x, the probability two
are prime would be 1/ log2 x. Okay, it’s really 1

log x
1

log(x+2)
, but for x large the error in replacing log(x+2)

with log x is very small. Using Taylor series, we have

log(x+ 2) = log x+ log

(
1 +

2

x

)
= log x+

2

x
− 2

x2
+

8

3x3
− · · · .

(c) Same as (b), except instead of two random integers it is two consecutive integers. Note that these
problems completely ignore some obvious congruence issues (for example, if n ≡ 1 mod 3 then there is
no way n and n + 2 can both be prime). In fact, continuing this argument you’d be led to the absurdity
that the probability n, n+ 2 and n+ 4 are all prime is about 1/ log3 n, which is clearly false. The point is
to get a rough heuristic, and then incorporate the true, relevant facts.

Problem: Prove
∑∞

n=1 1/n
2 converges, and find its value to within 1/2011.

Solution: This converges by the integral test (it is a p-series with p = 2. It’s a beautiful result that this
equals π2/6 (the exact value). If we sum the first N terms, the error is

∞∑
n=N+1

1

n2
≤
∫ ∞
N

dx

x2
=

1

N
.

Thus we’re safe if we take N = 2011, which gives approximately 1.644436925. The Mathematica code
and output is

1/2011.
SetAccuracy[Sum[1/n^2, {n, 1, 2011}], 10]
SetAccuracy[Pi^2/6, 10]

0.000497265

1.644436925

1.64493407
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7 HW #7: Due Tuesday, November 8
Problem: Chapter 35, Page 282: #35.1a If N is not a perfect square, prove

√
N is irrational.

Solution: We use the Fundamental Theorem of Arithmetic. We may write N as pr11 · · · p
rk
k , where the

primes are distinct and at least one power is odd (as otherwise N would be a perfect square). If
√
N were

rational, we could write it as
√
N = p/q, with p, q relatively prime. This would imply N = p2/q2, or

q2N = p2. Note the right hand side is a perfect square, but the left is not as N is not a perfect square
(and a perfect square times a perfect square, such as q2, is a perfect square). Contradiction. We could
rephrase the argument and take a prime that divides N exactly an odd number of times. Even if it divides
q, it would divide the left hand side an odd number of times. By the Fundamental Theorem of Arithmetic,
it would have to divide p2, and hence p, and thus divide the right hand side an even number of times, a
contradiction.

Problem: Chapter 35, Page 282: #35.3. Find degree 3 polynomials with integer coefficients with
various properties.

Solution: (a) Three distinct rational roots: x(x − 1)(x + 1). (b) One rational root and two irrational
roots: x(x2 − 2). (c) No rational roots: x3 − 2. (d) Can a polynomial of degree 3 have two rational roots
and one irrational root? Yes: x2(x+

√
2). If, however, our polynomial is to have integer coefficients, the

answer is no. Assume ax3 + bx2 + cx + d = a(x− r1)(x− r2)(x− r3). Note b = −a(r1 + r2 + r3). If
the first two roots are rational, then (assuming a 6= 0, which is reasonable as we’re assuming we have a
degree 3 polynomial), r3 = (b+ ar1 + ar2)/a and thus the third root is rational.
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8 HW #10: Due Tuesday, November 15
Problem: Chapter 5 of my book. Exercise 4.24 (just do the first part, for p/q to be a root).

Solution: We have f(x) = anx
n + · · · + a0, and assume f(p/q) = 0 for relatively prime p and q.

Then after some straightforward algebra we find (anp
n + an−1p

n−1q + · · · + a0q
n)/qn = 0, or anpn +

an−1p
n−1q+ · · ·+a0qn = 0. As p divides every term but a0qn, and p|0, we must have p|a0qn. As p cannot

divide q (they are relatively prime), p|a0. Similarly, we see q divides all the terms but the first, anpn. As q
cannot divide pn, q|an. Thus there are only finitely many candidates to check for a rational root!
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9 HW #11: Due Tuesday, November 22
Problem: Chapter 19: #19.3abc

Solution: We need to factorize 1105, 1235, and 2821. We get 1105 = 5 · 13 · 17, 1235 = 5 · 134 · 19,
and 2821 = 7 · 13 · 31 (to see this, we can use our tricks for divisibility by 2, 3, 5, 9, and 11, and then do
the rest by brute force). We see all are odd, none are divisible by a prime square, and thus half of Korselt’s
criteria are met. We must show for each number that p− 1|n− 1 for it to be a Carmichael number. Doing
the algebra, we see 1105 and 2821 are Carmichael numbers, but 1235 is not (1234 is not divisible by 6).

Problem: #19.4a (as well as find one number that works).
Solution: By assumption, n = (6k+1)(12k+1)(18k+1) is the product of three distinct odd primes

(or a unit if k = 0). Thus to see it is Carmichael we must show mk divides n− 1 for m ∈ {6, 12, 18}. We
have n− 1 = 36k + 396k2 + 1296k3, which factors as n− 1 = 36k(1 + 11k + 36k2). Thus 6k, 12k, 18k
all divide n− 1, and it is a Carmichael number.

Problem: State a result about Carmichael numbers that is not covered in Chapter 19 of the book, or
the three papers mentioned above.

Solution: See http://www.maths.lancs.ac.uk/∼jameson/carfind.pdf, page 2, Propo-
sition 4: Suppose that n is a Carmichael number and that p and q are prime factors of n. Then q is not
congruent to 1 mod p.
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