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ABSTRACT

Lexicographic codes, or lexicodes, are defined by various versions of the greedy

algorithm. The theory of these codes is closely related to the theory of certain impartial

games, which leads to a number of surprising properties. For example, lexicodes over an

alphabet of size B = 2a are closed under addition, while if B = 22a

the lexicodes are

closed under multiplication by scalars, where addition and multiplication are in the nim

sense explained in the text. Hamming codes and the binary Golay codes are lexicodes.

Remarkably simple constructions are given for the Steiner systems S(5, 6, 12) and S(5, 8,

24). Several record-breaking constant weight codes are also constructed.

_ ______________

* Appeared in ‘‘IEEE Trans. Information Theory’’, 32 (1986), pp. 337–348.



I. Introduction

This paper is concerned with various classes of lexicographic codes, that is, codes

that are defined by a greedy algorithm: each successive codeword is selected as the first

word not prohibitively near (in some prescribed sense) to earlier codewords.

For example, the very simplest class of lexicographic codes is defined as follows. We

specify a base B, and a desired minimal Hamming distance d. The first codeword

accepted is the zero word. Then we consider all base-B vectors in turn, and accept a

vector as a codeword if it is at Hamming distance at least d from all previously accepted

codewords. (An example with B = 3 and d = 3 can be seen in Table XI.)

One of our goals is to point out the essential identity between this kind of

lexicographic coding theory and the theory of certain impartial games (see Section II).

Then the Sprague-Grundy theory of games has a number of interesting and surprising

consequences for lexicographic codes (or lexicodes):

(1) Unrestricted binary lexicodes are linear (Theorems 1,3);

(2) For base B = 2a , unrestricted lexicodes are closed under nim-addition (Theorem

4);

(3) For base B = 22a

, unrestricted lexicodes are closed under nim-multiplication,

which is an operation that converts the digits {0 , 1 , 2 , 3 , . . . , 22a

− 1} into a field

(Theorem 5);

(4) The constant weight binary lexicodes with minimal distance 4 have a rather subtle

complete solution in terms of Welter’s game (Section (4.3)).
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Two other results worth mentioning here are the following.

(5) Several well-known codes unexpectedly turn out to be lexicographic codes,

including Hamming codes and the binary Golay codes of length 23 and 24 (Section

(3.2)).

(6) The constant weight binary lexicode of length 24, distance 8 and weight 8 is the

Steiner system S(5, 8, 24) (Theorem 12). By imposing an additional constraint on a

constant weight lexicode (see (4.5)), Ryba obtained an almost equally simple

construction for the Steiner system S(5, 6, 12) (Theorem 13). The corresponding game,

called Mathematical Blackjack (or Mathieu’s Vingt-et-un) is described at the end of

Section (4.5).

(7) A number of constant weight codes with minimal distance 10 and containing a

record number of codewords are given in Table XIII.

Some of the game-theoretic aspects of this work are described in [1] and [2]. The

relations between the theories of games and of lexicographic codes, and in particular the

multiplicative theorem, underly some of the results in [1]. However, most of the results

are published here for the first time. This work may be regarded as a coding-theoretic

analog of the laminated lattices described in [5], [6].

The paper is arranged as follows. The connections with game theory are discussed in

Section II, unrestricted lexicodes are treated in Section III, and Section IV deals with

constant weight and constrained lexicodes. Tables IV-VII and XII give the parameters of

a number of lexicodes.
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II. The connections with game theory

(2.1) Grundy’s game.

We begin by describing Grundy’s game [1, p. 96], [9, p. 8], which is a characteristic

example of the class of games to be considered. In Grundy’s game the typical position

P a + P b + P c + . . . (1)

consists of a number of heaps containing

a , b , c , . . .

objects respectively. There are two players, who move alternately. A legal move is to

split any heap into two strictly smaller heaps of distinct sizes, that is, to replace any term

P h in (1) by P i + P j , where 0 < i < h, 0 < j < h, i ≠ j and i + j = h. The first

player who is unable to move loses.

(2.2) Heap games in general

Grundy’s game is an example of a heap game. The general game of this type may be

taken to have certain atomic positions P i and general position

P a + P b + P c + . . . . (2)

The rules are specified by giving an arbitrary family of turning sets, a typical turning set

being written

{ h , i , j , . . . } with h > i > j > . . . .

The legal move is to replace any term P h in (2) by P i + P j + . . . , provided that

{ h , i , j , . . . } is a turning set. For Grundy’s game the turning sets are {3 , 2 , 1},
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{4 , 3 , 1}, {5 , 4 , 1}, {5 , 3 , 2}, {6 , 5 , 1} ,....

There is a well-known theory of heap games, due to Sprague and Grundy [1], [2], [9],

[19]. There is a function G(P) (the nim-value, Grundy number, or G-value) assigning

integer values to positions P, with the following properties:

(0) A player wins by consistently moving to positions of G-value 0.

(1) G(P) = mex { G(Q) , G(R) , . . . }, taken over all positions Q , R , . . .

obtained from P by a single move, where ‘‘mex’’ (or minimal excluded value) means

‘‘the smallest number (from 0,1,2,3,...) not among’’.

(2) The G-value of a general position P a + P b + . . . is given by

G(P a + P b + ... ) = G(P a ) ⊕ G(P b ) ⊕ . . . ,

where ⊕ is nim-addition. (The nim-sum of numbers i , j , k , . . . is obtained by writing

them in binary and adding without carries, or in other words by forming the exclusive-or

of their binary representations [2, p. 51]. See Table II below.)

The G-values of the atomic positions in Grundy’s game are given by the following

table (G(n) is the G-value of a single heap of size n).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

G(n) 0 0 1 0 2 1 0 2 1 0 2 1 3 2 1 . . .

The reader will easily verify for example that a single heap of size 4, or two heaps of size

3 and 6, are winning positions.( 1 )
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(2.3) The winning code.

Alternatively, the general position
i = 0
Σ n i P i in such a game may be represented by

the integral vector

( . . . n 3 n 2 n 1 ) ,

(or by the vector

( . . . n 3 n 2 n 1 n 0 ) ,

if the zero heaps play a significant role). However, since x ⊕ x = 0 for all x, the

outcome of such a position depends only on the parities of the n i . The winning strategy

is therefore encapsulated in a certain binary code, consisting of all vectors

( . . . ζ 3 ζ 2 ζ 1 ) , where ζ i = 0 or 1 ,

for which the nim-sum

Σ ζ i G(P i ) = 0 . (3)

We call this the winning code for the game.

For example, in Grundy’s game the first few codewords and the corresponding

winning positions are shown in Table I. A vector . . . ζ 3 ζ 2 ζ 1 , where ζ i = 0 or 1, is

in the code if and only if

ζ 1 G( 1 ) ⊕ ζ 2 G( 2 ) ⊕ ζ 3 G( 3 ) ⊕ . . . = 0 ,

_ ______________

(1) The footnotes are on page 38.
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i.e.

ζ 3 ⊕ 2ζ 5 ⊕ ζ 6 ⊕ 2ζ 8 ⊕ . . . = 0 .

Since the code is defined by the linear condition (3), we deduce the following

surprising result.

Theorem 1.

The winning code for a heap game is a linear code over GF( 2 ).

The codewords as just defined have infinitely many coordinates. However, for any n,

we may obtain a code of length n by restricting attention to words that vanish outside the

last n coordinates.

(2.4) Generalization to base B; lexicodes.

We now define analogs of these games (and codes) in which the number 2 is replaced

by a general base B. Theorem 1 generalizes satisfactorily if B is a power of 2, but the

codes seem to have little structure for other values of B.

In view of Eq. (3), we can regard the heap game described in Section (2.2) as played

with binary numbers N = Σ ζ i 2i , where ζ i = 0 or 1 (or with the corresponding

binary vectors ( . . . ζ 3 ζ 2 ζ 1 )), and the legal move is to replace N by

N ′ = Σ ζ ′ i 2i provided

(i) N ′ < N (this is the lexicographic condition) and

(ii) the collection of i such that ζ ′ i ≠ ζ i is a turning set.



- 7 -

More generally, we may consider a game defined by giving a base B and a family of

finite turning sets of the form

{ h , i , j , . . . } , h > i > j > . . . .

A position is described by a number

N = Σ ζ i B i , ζ i = 0 , 1 , . . . , B − 1 ,

written in the base B, or equivalently by a vector

N = ( . . . ζ 3 ζ 2 ζ 1 ) , where ζ i = 0 , 1 , . . . , B − 1 .

Again the legal move is to replace N by N ′ = Σ ζ ′ i B i provided conditions (i) and

(ii) are satisfied. Thus the turning sets only specify where two successive positions must

differ, not by how much. The Sprague-Grundy theory also applies to these games, and

we may define the corresponding winning code as in Section (2.3).

For each family of turning sets and each base B we may also define another code

called an (unrestricted) lexicographic code, or lexicode. This code is defined by the

following greedy algorithm. The possible words ( . . . ζ 3 ζ 2 ζ 1 ), 0 ≤ ζ i < B, are

considered in the lexicographic order determined by the corresponding number

N = Σ ζ i B i .

A word is rejected if there is some earlier word N ′ = ( . . . ζ ′ 3 ζ ′ 2 ζ ′ 1 ) for

which the set of i with ζ ′ i ≠ ζ i is a turning set, and is otherwise accepted, i.e. placed in

the code. The set of coordinates i defined by (4) will be denoted by ∆(N ,N ′ ).

It turns out that this code is the same as the winning code.
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Theorem 2.

For any turning set and any base, the winning moves in the game are to move to

positions corresponding to the codewords in the lexicode.

Proof. The proof is by induction on N (the position). There are two things to be

checked. If N is not in the lexicode, this must be because there is a smaller number N ′ in

the lexicode for which ∆(N ,N ′ ) is a turning set. Therefore, by the induction hypothesis,

the move from N to N ′ is a winning move, and N is not a winning position. On the other

hand, if N is in the lexicode, and N to N ′ is any legal move, then N ′ < N and ∆(N ,N ′ )

is a turning set. Since we accept N we must have rejected each such N ′ , and so the move

from N to N ′ cannot be a winning move. Therefore N is a winning position. This

completes the proof.

(2.5) Example.

We take B = 8 and let the turning sets be all sets of size 1 or 2. Thus distinct

codewords must differ in at least 3 places. Applying the greedy algorithm, we find that

the lexicode contains the words

. . .
1103

1012

0777

. . .
0555

. . .
0222

0111

0000
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Theorem 4 below shows that this code is closed under componentwise nim-addition of

vectors. E.g. 0555 ⊕ 1103 = 1456 will again be in the code. (Table II below contains a

nim-addition table.)

(2.6) Example.

More generally, for any base B, if the turning sets consist of all sets of cardinality

1 , 2 , 3 , . . . , d − 1, the corresponding lexicode is that with minimal Hamming distance d.

(2.7) Example.

For B = d = 4, the lexicode begins

. . .
012301

011032

010123

003333

002222

001111

000000

As in Example (2.5), this code is closed under nim-addition. But now Theorem 5 below

shows that it is also closed under nim-multiplication by 0, 1, 2, 3, nim-multiplication

being defined by

_ ___________________
⊗ 0 1 2 3

_ ___________________

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2_ ___________________ 
























Thus 3 ⊗ ( 010123 ) = ( 030312 ) will also be in the code. (Nim-multiplication of
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numbers greater than 3 is more subtle and is described in Section (2.9).)

In fact if we stop at length 6 this code is the hexacode, the [6,3,4] extended ‘‘Golay’’

code over GF( 4 ) = {0 , 1 , ω, ω
_ _

= ω2 = ω +1}, where we identify ω with 2 and ω
_ _

with 3 ([4, Eq. (7)], [7]).

(2.8) The additive theorem.

By combining Theorems 1 and 2 we immediately obtain the following result.

Theorem 3.

If B = 2 the lexicode defined by any family of turning sets is a binary linear code.

This may be generalized.

Theorem 4. The additive theorem.

If B is a power of 2 the lexicode defined by any family of turning sets is closed under

componentwise nim-addition.

Proof. It will suffice to consider the case B = 8, the general case being exactly similar.

We convert octal vectors into binary vectors by replacing each octal digit ζ i by three

binary digits δ3i + 2 , δ3i + 1 , δ3i in the usual way:

_ _________________________
ζ i δ3i + 2 δ3i + 1 δ3i_ _________________________

0 0 0 0
1 0 0 1
2 0 1 0

. . .

7 1 1 1_ _________________________ 
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In this way the original octal game becomes a binary game in which T is a turning set just

if





î



 3

i_ _




: i ∈ T







was a turning set in the octal game (where [x] denotes the integer part of x). The desired

result now follows by applying Theorem 3 to the new binary game.

Conversely, if B is not a power of 2 then in general the lexicode is not closed under

any reasonable definition of addition. For example, if B = 3 and the turning sets are all

the sets of cardinality 1 (i.e. the code has minimal distance 2) then the lexicode begins

. . . .

0202

0110

0101

0022

0011

0000

But the sum of the third and fourth words is not in the code.

(2.9) Nim-multiplication.

In any additive group the rule for addition must have the property that if

a ≠ a ′ and b ≠ b ′

then

a + b ≠ a ′ + b or a + b ′ .
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Nim-addition can be defined by setting the sum of a and b equal to the lexicographically

earliest value permitted by this property. More precisely, the nim-sum a ⊕ b (defined in

Section (2.2)) can also be defined recursively by

a ⊕ b =
a ′ < a , b ′ < b

mex { a ′ ⊕ b , a ⊕ b ′ } . (5)

There is an operation ⊗ called nim-multiplication which together with ⊕ converts the

integers into a field [2, Chap. 6]. In any field if a ≠ a ′ , b ≠ b ′ then

(a − a ′ ) (b − b ′ ) ≠ 0

and so

ab ≠ a ′ b + ab ′ − a ′ b ′ ,

or in a field of characteristic 2

ab ≠ a ′ b + ab ′ + a ′ b ′ .

The nim-product of a and b is the lexicographically earliest value permitted by this

property. More precisely, a ⊗ b is defined recursively by

a ⊗ b =
a ′ < a , b ′ < b

mex { a ′ ⊗ b ⊕ a ⊗ b ′ ⊕ a ′ ⊗ b ′ } (6)

(where nim-multiplication takes precedence over nim-addition). It is a remarkable fact

that ⊕ and ⊗ as defined by the greedy algorithms (5) and (6) convert the numbers

0 , 1 , 2 , 3 ,... into a field [2, p. 55]. The characteristic of this field is 2. Also, for all a, the

numbers less than 22a

form a subfield isomorphic to the Galois field GF( 22a

) [2,

Theorem 49]. We have already seen an illustration of this in the case B = 4 = 221

in

Example (2.7).
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The nim-addition and nim-multiplication tables for numbers less than 16 = 222

are

given in Tables II and III [2, pp. 51,52]. In view of the previous remark, these numbers

form the field GF( 16 ).

Nim-sums and products can be easily computed using the field laws and the facts

that:

for N of the form 2a we have

N ⊕ n = N + n for n < N , (7)

N ⊕ N = 0 ; (8)

for N of the form 22a

we have

N ⊗ n = Nn for n < N , (9)

N ⊗ N =
2
3_ _ N . (10)

The standard reference for nim-multiplication is Chapter 6 of [2]. See also [1, Chap.

14], [14] and [15].

(2.10) The multiplicative theorem.

Theorem 5. The multiplicative theorem

If B is of the form 22a

then the lexicode defined by any family of turning sets is closed

under componentwise nim-multiplication by numbers α in the range 0 ≤ α < B. In

other words the lexicode is a linear code over the field GF( 22a

).

Before giving the proof, let us define f (ζ ,P) to be the G-value of the position with a

single ζ ( 0 ≤ ζ ≤ B − 1 ) in coordinate P:
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f (ζ ,P) = G( . . . 0 , 0 ,ζ , 0 , . . . , 0 ) , (11)

and let f (P) = f ( 1 ,P).

Proof. By Theorem 2 the lexicode consists of the positions with G-value zero. Therefore

by the additive theorem (Theorem 4), the desired conclusion will follow if we show that

f (ζ ,P) = ζ ⊗ f (P) (12)

for all ζ ,P. We show this by a double induction on α and P. From Rule (1) of Section

(2.2),

f (ζ ,P) =
( 13 )
mex { f (ζ ′ ,P) ⊕ Σ f (η i ,Q i ) }

where the mex is taken over these values:

0 < η i < B for all i .

{ P , Q 1 , Q 2 ,... } is a turning set ,

0 ≤ ζ ′ < ζ,

(13)

(Every coordinate of the turning set must be changed.) By the induction hypothesis,

f (ζ ,P) = mex { ζ ′ ⊗ f (P) ⊕ Σ η i ⊗ f (Q i ) } . (14)

On the other hand, from (6),

ζ ⊗ f (P) = mex { ζ ′ ⊗ f (P) ⊕ (ζ ⊕ ζ ′ ) ⊗ λ } (15)

where ζ ′ < ζ and λ < f (P). Now

f (P) =
( 13 )
mex { Σ η i ⊗ f (Q i ) } ,

so all λ < f (P) can be written in the form λ = Σ η i ⊗ f (Q i ). Therefore (15)

becomes
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ζ ⊗ f (P) =
( 13 )
mex {ζ ′ ⊗ f (P)

⊕ Σ (ζ ⊕ ζ ′ ) ⊗ η i ⊗ f (Q i ) } . (16)

The numbers less than B form a field, GF(B), and therefore (since α ⊕ α ′ is a nonzero

constant) the sum in (16) is equal to Σ η i ⊗ f (Q i ). Equations (14) and (16) now

agree, which establishes the desired result.

Conversely, if B is not of the form 22a

, then in general the lexicode is not closed

under any reasonable definition of multiplication. This may be seen for example in the

case B = 8 and d = 3; we omit the details.

III. Lexicodes

(3.1) Introduction.

In this section we discuss some particular families of lexicodes in more detail. We

specify the base B, the desired minimal Hamming distance d, and take the turning sets to

consist of all sets of cardinality 1 , 2 , . . . , d − 1. Then the lexicode is formed by starting

with the zero word, and repeatedly adjoining the lexicographically earliest word that is at

Hamming distance at least d from all previous words.

As we have seen, if B = 2a the lexicode is closed under addition (Theorem 4), and if

B = 22a

it is also closed under multiplication by scalars, i.e. is a linear code over GF(B)

(Theorem 5).

A code of length n is obtained by accepting only those codewords that vanish outside

the last n coordinates.
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The parameters of the lexicodes are summarized in Tables IV-VII. Tables IV, V and

VI give the number of codewords in the lexicodes with d = 3 , 4 and 6 respectively, for

various bases and lengths. Table VII gives the dimension k of the binary (B = 2 )

lexicodes for n ≤ 44 and d ≤ 10. (In view of Example (3.2b) below, it is enough to

consider even values of d.)

Table VIII shows the number of codewords in extended and/or shortened Hamming

codes for the range of lengths and bases covered by Tables IV and V. Comparison of

these tables shows that lexicodes are as good as Hamming codes for B = 22a

(as we

shall see in Theorem 6, lexicodes actually are Hamming codes in this case); they are

usually slightly inferior to Hamming codes when B = 2a (they are sometimes better, for

example when B = 8, n = 11 , d = 4); and they are worse for other values of B.

If we just consider binary lexicodes, as in Table VII, comparison with the tables in

[16, Appendix A] shows that the lexicodes are very good. In the range of Table VII they

have dimensions within 1 or 2 of the best codes known, and often have the same

dimension (see the next section).

We now discuss some of these codes in more detail.

(3.2) Some well-known codes.

We first mention that some well-known codes are lexicodes. The proofs of the

following assertions will either be given later, can be found in [1], or are straightforward

verifications.

(a) Zero-sum codes
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For d = 2 and any B, the lexicode of length n is the zero-sum code, consisting of all

vectors

(ζ n − 1 ζ n − 2
. . . ζ 2 ζ 1 )

for which the nim-sum Σ ζ i = 0. For example, this is the even-weight code in the

binary case. We omit the easy proof by induction.

(b) Hamming codes

When B = 2 and d = 3, the turning sets have size 1 and 2, and the game is nim( 2 )

itself, the oldest and best known heap game [1, p. 430]. The corresponding lexicodes of

length n = 2m − 1 coincide with binary Hamming codes (see Theorem 6), and those of

other lengths are shortened Hamming codes. Similarly when B = 2 , d = 4 and n = 2m

we obtain extended Hamming codes (see (c) below). The heap game for d = 4 is called

Mock Turtles [1, p. 431].

(c) Extended binary codes

When B = 2 the lexicodes with d even are obtained from the lexicodes with d odd by

adding an overall parity check. This is equivalent to the ‘‘Mock Turtle Theorem’’ [1, p.

432]. So for B = 2 it is only necessary to consider even values of d. (This property does

not hold for B > 2.)

(d) The extended quadratic residue code of length 18

The lexicode with B = 2 , d = 6, and n = 18 is the [18,9,6] binary extended

quadratic residue code [16, p. 483]. The corresponding game is called Moebius [1, p.
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434].

(e) The extended Golay code

The lexicode with B = 2 , d = 8 and n = 24 is the [24,12,8] binary Golay code.

The corresponding game is called Mogul [1, p. 435].

(f) Binary codes with distance 10

If B = 2 and d = 10, when n = 27 or 31 the lexicodes have parameters [27,9,10]

and [31,12,10] respectively. Codes with the same parameters were constructed by

Hashim and Constantinides [12] and Piret [17]. The corresponding game is Moidores.

(g) The tetracode

Taking B = d = 3 , n = 4 we obtain the [4,2,3] code over GF( 3 ) sometimes called

the tetracode ([4, p. 321], [7]). The nine codewords are

0000 1012 2021
0111 1120 2102
0222 1201 2210

This code is ‘‘accidentally’’ linear over GF( 3 ). (See Table XI for the continuation.)

(h) The hexacode

As already mentioned in Section (2.7), when B = d = 4 and n = 6 we obtain the

[6,3,4] hexacode over GF( 4 ).

(3.3) The case B = 2a
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When B = 2a the lexicode may be efficiently specified by giving the values of the

function f (ζ ,i) (the G-value of a position in which there is a single nonzero digit

ζ , 0 ≤ ζ ≤ B − 1, in coordinate i - see Eq. (11)). It is convenient to write f (ζ ,i) in the

base B.

For example when B = 8 and d = 3 the values of f (ζ ,i) are shown in Table IX,

written in octal.

To illustrate how this table was obtained, we derive the entry f ( 2 , 3 ) = 023. From

the position


î

. . .
0

4

2

3

0

2

0

1

0

0 


we can move to any of

(... 0 x y 0 0 )

(... 0 x 0 y 0 )

(... 0 x 0 0 y)

where x = 0 , 1 , y = 0 , 1 , . . . , 7 (since the turning sets are of size 1 and 2). So

f ( 2 , 3 ) is the mex of



î f ( 1 , 3 ) ⊕ abc = 012 ⊕ abc

f ( 0 , 3 ) ⊕ abc = 000 ⊕ abc
(17)

where abc = f (y , 0 ), f (y , 1 ) or f (y , 2 ) is any entry from the first three rows of Table IX.

It is easily checked that the first octal number not of the form (17) is 023.

The additive property (Theorem 4) implies that the columns for ζ = 1 , 2 and 4

determine the others. The typical entry in the ζ = 6 column for example is the nim-sum

of the entries in columns 2 and 4.
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By Theorem 2, the codewords are the positions of G-value zero. We illustrate how

the codewords are found from the f (ζ ,i) table by an example. For what values of x and y

is

... 0 ... 020xy

a codeword? Since

f ( 2 , 3 ) = 023 , f (x , 1 ) = 0x0 , f (y , 0 ) = 00y

(from Table IX), the answer is x = 2 , y = 3, i.e.

... 0 ... 02023 .

In this way, if d is small, it is easy to obtain the number of codewords and a basis directly

from the table. The codes in the B = 8 column of Table IV and V were found in this

way.

These codes are comparable in efficiency with Reed-Solomon codes, and of course

exist for all lengths (whereas Reed-Solomon codes only exist for lengths up to B + 1 or

B + 2 [16, p. 317]). For example, when d = 3 , B = 8, if the lexicode contains 2k l

codewords and the Reed-Solomon code contains 2k R codewords, we have

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k l 3 5 8 11 14 17 20 23 25 28 31 34 37 40
k R 3 6 9 12 15 18 21

(This is a continuation of the B = 8 column in Table IV.)

(3.4) The case B = 22a

The multiplicative property of Theorem 5 makes it even easier to construct the
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lexicode in the case when B is of the form 22a

, since Eq. (12) holds. This property was

used in calculating the extensive table of G-values for the case B = 2 given on p. 433 of

[1]. Table VII above was then derived from that table.

One can also use (12) to establish the following result.

Theorem 6

In the case B = 22a

, d = 3, lexicodes of length

n = 1 + B + B 2 +... + B m − 1 =
B − 1

B m − 1_ ______

are Hamming codes, and those of other lengths are shortened Hamming codes.

We omit the proof.

As mentioned in Example (3.2c), the lexicode with B = 2 and d even is obtained by

adding an overall parity check to the lexicode with B = 2 and distance d − 1. So as far

as the earliest families of lexicodes are concerned, we have a complete theory in the cases

B arbitrary, d = 2 (zero-sum codes, (3.2a)), B = 2 , d = 3 (binary Hamming codes,

(3.2b)), B = 2 , d = 4 (extended binary Hamming codes, (3.2b)), and B = 4 , d = 3

(Hamming codes over GF( 4 ), (Theorem 6)).

The structure of the next family of lexicodes, for B = d = 4, has been determined by

R. A. Wilson [22]. Let us define a Wilson number to be one whose base-4 expansion is

either 1 or 10, or else has the form ζ m ζ m − 1
. . . ζ 2 ζ 1 ζ 0 (for m ≥ 2) where
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ζ m = 1 ,

ζ i = 0 or 1 for m > i ≥ 2 ,

ζ 1 = 0 , 1 , 2 or 3 ,

ζ 0 = 1 + ζ1
2 + ζ2

2 + . . . + ζm
2 , (18)

where the addition and multiplication in (18) are in the nim sense. The first few Wilson

numbers (written in base 4) are

1032 , 1101 , 1110 , 1122 , 1133 , 10000 ,...

1 , 10 , 100 , 111 , 123 , 132 , 1000 , 1011 , 1023 ,

Theorem 7 (R. A. Wilson [22])

The G-value ( f ( 1 ,i) ) of the position . . . 0 , 1 , 0 , . . . , 0 (with a single 1 in the ith

coordinate) is the i-th Wilson number.

Thus G( . . . 0001 ) = 1, G( . . . 0010 ) = 10, G( . . . 0100 ) = 100,

G( . . . 1000 ) = 111, etc. (in base 4).

For completeness we include a proof in our terminology.

Important Note. With the single exception that 4i means the usual i-th power of 4, all

additions and multiplications in the proof are in the nim sense.

Proof. The proof is by induction. Suppose we have checked that the first k G-values are

the first k Wilson numbers W 0 , . . . , W k − 1 . We must show that the next number

n =
i = 0
Σ
m

4i δ i (19)

that is not a linear combination of two of W 0 , . . . , W k − 1 is the next Wilson number

W k .
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(i) If some δi ( i ≥ 2 ) in (19) is 2 or 3 then n is a linear combination of two of

W 0 , . . . , W k − 1 . For we may obtain n as

N = 2p + 3q (20)

where

p =
i = 2
Σ
m

4i α i + 4α + (α 2 + θ1 ) ,

q =
i = 2
Σ
m

4i β i + 4β + (β2 + θ2 ) ,

θ1 =
i = 2
Σ
m

α i
2 + 1 , θ2 =

i = 2
Σ
m

βi
2 + 1 ,

and where we choose α i and β i according to

d i 0 1 2 3

α i 0 1 1 0

β i 0 1 0 1

for m ≥ i ≥ 2. Then α and β are uniquely determined by

2α + 3β = δ1 , (21)

2α 2 + 3β2 = δ0 + 2θ1 + 3θ2 . (22)

Since we are working in the field GF( 4 ), (21) and (22) can be solved for α and β. It is

easy to check that with these values of p and q, n is given by Eq. (20). p and q are

Wilson numbers, and, since some δi ( i ≥ 2 ) is 2 or 3, p ≠ q.

(ii) We next check that no Wilson number is a linear combination of two earlier

Wilson numbers. Suppose on the contrary that n = ap + bq, where n is given by (19)

and
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p =
i = 0
Σ
m

4i α i , q =
i = 0
Σ
m

4i β i .

There are two cases. (a) If α m = βm = 1, we must have { a ,b } = {2 , 3}, say a = 2,

b = 3. Since δm − 1 , . . . , δ2 are 0 or 1, we must have

α m − 1 = βm − 1 , . . . , α 2 = β2 . Then

δ0 =
i = 1
Σ

m − 1
δi

2 =
i = 1
Σ

m − 1
( 2α i + 3β i )2

= 3
i = 1
Σ

m − 1
α i

2 + 2
i = 1
Σ

m − 1
βi

2

= 3 α 0 + 2 β0 .

But also δ0 = 2 α 0 + 3 β0 , implying δ0 = α 0 = β0 . Therefore α 1 = β1 , hence

p = q, so n = p = q, contradicting n > p. (b) If α m = 1 , βm = 0, we must have

a = 1 , b = 0, and then

δ0 = αm
2 + . . . + (α 1 + β1 )2

= (αm
2 + . . . + α1

2 ) + ( 12 + . . . + β1
2 )

= (α 0 + 1 ) + β0 ,

which contradicts δ0 = α 0 + β0 .

(iii) If all δi ( i ≥ 2 ) in (19) are 0 or 1, n has the form

n =
i = 2
Σ
m

4i δi + 4 ζ + ξ , (δi = 0 or 1 ) . (23)

We must show that the next numbers of this form that are not linear combinations of two

earlier Wilson numbers are Wilson numbers. In other words, we must show that if the

number of 1’s in {δm , δm − 1 , . . . , δ2 } is odd (resp. even) then (ζ ,ξ ) runs through
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3 , 2

2 , 3

1 , 1

0 , 0 




î

resp.

3 , 3

2 , 2

1 , 0

0 , 1






.

Let

n ′ =
i = 2
Σ
m

4i δi . (24)

If the number of 1’s in n ′ is odd, then the earliest numbers of the form (23) that are

accepted are

p = n ′ + 4 ⊗ 0 + 0

(this is a Wilson number, and by (ii) it is accepted), and

q = n ′ + 4 ⊗ 1 + 1

(this is the smallest number that differs from p in two coordinates). Then

n ′ + 4 ⊗ 2 + 2 = 3p + 2q

is excluded, but

r = n ′ + 4 ⊗ 2 + 3 ,

s = n ′ + 4 ⊗ 3 + 2

are accepted. On the other hand, suppose the number of 1’s in n ′ is even. We can write

n
matrix {
lcol {4 ˆ citimes ˆ 0 ˜+˜ 0 above 4 ˆ citimes ˆ 1 ˜+˜ 1 above 4 ˆ citimes ˆ 2 ˜+˜ 3 above 4 ˆ citimes ˆ 3 ˜+˜ 2}
}

n ′ = n where the numbers of ones in n are odd. Then
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are earlier Wilson numbers. Adding, we see that

n ′ +







î
4 ⊗ 3 + 2

4 ⊗ 2 + 3

4 ⊗ 1 + 1

4 ⊗ 0 + 0

are excluded, and so we must go to at least

p = n ′ + 4 ⊗ 0 + 1 ,

q = n ′ + 4 ⊗ 1 + 0 ,

r = n ′ + 4 ⊗ 2 + 2 ,

s = n ′ + 4 ⊗ 3 + 3 .

Since these are Wilson numbers, by part (ii) they are accepted. This completes the proof.
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Corollary 8

For B = d = 4, the lexicode of length n = 2m − 2 contains 4k codewords, where

k = 2m − m − 2.

The case m = 3 is described in Example (3.2h).

Wilson’s theorem does not hold for B = 22a

> 4 and d = 4. The first few G-values

f ( 1 ,i) are shown in Table X, and the last entry in the table does not have the form of a

Wilson number.

(3.5) Other values of B

Lexicodes in general appear to have little or no structure. This can already be seen in

the case B = d = 3. The numbers of codewords in the first few codes are given in Table

IV, and the complete code of length 8 is shown in Table XI. We have been unable to

discover any structure to this code (or the solution of the corresponding game).

IV. Constant weight lexicographic codes

(4.1) Introduction

A constant weight lexicode is defined similarly: we consider all words of the specified

weight in lexicographic order, and accept a word if it is at Hamming distance at least d

from all previously accepted words. Only binary codes will be considered here. The

Hamming distance d is necessarily even. To distinguish these codes from the lexicodes

of Section III we refer to the latter as unrestricted lexicodes.

The game corresponding to a constant weight lexicode of weight w and minimal
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distance d = 2t ≥ 4 is the following. The typical position is a set { a 1 , a 2 , . . . , a w }

of distinct nonnegative integers, and the legal move is to decrease 1 , 2 , . . . , or t − 1 of

these integers while preserving their distinctness. As always, the first player who is

unable to move loses. (These games are no longer well described by turning sets.) Again

the Sprague-Grundy theory applies, and we may define the corresponding winning code

as in Section (2.3).

Theorem 9

For any d = 2t ≥ 4 and any w, the winning code for this game is the constant weight

lexicode with the same parameters.

The proof is analogous to that of Theorem 2 and is omitted.

(4.2) The case d = 2.

The condition d = 2 is automatically satisfied, and the corresponding lexicode

consists of all codewords of weight w.

(4.3) The case d = 4.

The constant weight lexicode for d = 4 and any w is the winning code for Welter’s

game [1, pp. 472-481], [2, Chap. 13], [20], [21]. This is the only other case (besides

d = 2) where there is a complete theory.

Welter’s game is the case t = 2 of the game described in Section (4.1). A typical

position is a set { a 1 , a 2 , . . . , a w } of distinct nonnegative integers, and the legal move

is to decrease one of these integers while preserving their distinctness. The complete
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solution [1, pp. 472-481], [2, Chap. 13] uses Welter’s remarkable function

W(a 1 , a 2 , . . . , a w ), which can be defined recursively by

W(a 1 ) = a 1 , (25a)

W(a 1 , a 2 ) = (a 1 ⊕ a 2 ) − 1 (25b)

and

W(a 1 , . . . , a k + 1 )

= W(a 2 , . . . , a k ) ⊕ 
î (W(a 1 , . . . , a k ) ⊕ W(a 2 , . . . , a k + 1 ) ) − 1

 . (25c)

The −1 in (25) is ordinary subtraction, so the definition of W mixes nim-addition and

ordinary subtraction.

Theorem 10

(a 1 , . . . , a w ) is a winning position for Welter’s game, or equivalently the vector

with 1’s in positions a 1 , . . . , a w is in the lexicode with constant weight w and minimal

distance 4, if and only if

W(a 1 , . . . , a w ) = 0 .

As we shall see, Theorem 10 is a consequence of the following property of Welter’s

function.

Theorem 11. The even alteration property.

If W(a 1 , . . . , a w ) = n, and n ′ ≠ n, there are unique nonnegative numbers

a ′ 1 , . . . , a ′ w such that a 1 , . . . , a w , a ′ 1 , . . . , a ′ w are distinct and satisfy
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W(a ′ 1 , a 2 , . . . , a w ) = n ′ ,

W(a 1 , a ′ 2 , . . . , a w ) = n ′ ,

...

W(a 1 , a 2 , . . . , a ′ w ) = n ′ .

More generally

W(a 1 , a 2 , . . . , a w ) = n

remains true if any even number of the letters a 1 , . . . , a w , n are replaced by the

corresponding sup primed letters. Furthermore an even number of the inequalities

a ′ 1 < a 1 ,

a ′ 2 < a 2 ,

. . .

a ′ w < a w ,

n ′ < n

are true.

For the proof see [2, Chap. 13]. When n ≠ 0, if we take n ′ = 0 we see that there is

always at least one a ′ i < a i , and so it is always possible to move from a position in

which W(a 1 , . . . , a w ) ≠ 0 to a position in which W(a 1 , . . . , a w ) = 0. Theorem 10

follows.

The calculation of Welter’s function from (25) is best carried out using the tableau

shown in Fig. 1 (cf. [1, p. 476]). Notice that once the first two rows are filled in (using

(25a)), the tableau may be completed by the rule that any four entries arranged in a
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diamond

D

B C

A

(26a)

must satisfy

A ⊕ D = (B ⊕ C) − 1 . (26b)

Remarks (i) A tableau satisfying such a rule is called a frieze pattern. They have

interesting properties in the cases f (x ,y) = xy , x + y , x ⊕ y; see [1, p. 475],[3].

(ii) Although it is not apparent from (25), Welter’s function is a symmetric function

of its arguments. For this and other combinatorial properties see [2, Chap. 13].

Theorem 9 guarantees that if a vector ζ ζ is not in the code, there is a codeword within

Hamming distance 3 that is earlier than ζ ζ in the lexicographic order. To find a winning

move a i → a ′ i , and hence to decode ζ ζ , it is again convenient to use a frieze pattern (cf.

[1, p. 477]).

We illustrate the decoding (or winning) strategy with an example. Suppose w = 5,

we are given a ,b ,c ,d ,e and n ,n ′ , and wish to find a ′ , b ′ , c ′ , d ′ , e ′ as in Theorem 11.

That theorem implies that if we place the numbers a ,b , . . . , d ′ ,e ′ in the first row of the

tableau, and the numbers n , n ′ , n , n ′ ,... in the fifth row, as in Figure 2, the frieze rule

(26) will still hold. So we may compute a ′ , b ′ , c ′ , d ′ , e ′ by working downwards in the

left half of the tableau and upwards in the right half, as illustrated by the numerical

example in Fig. 3. Here a = 2 , b = 3 , c = 5 , d = 7 , e = 11, n = 4 and n ′ = 0.

Figure 3 shows that the winning move is from {2 , 3 , 5 , 7 , 11} to {1 , 2 , 3 , 7 , 11}, i.e. that
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... 100010101100

should be decoded as

... 100010001110 .

For d = 4 , w = 3 and n = 2m − 1, the words in the constant weight lexicode are

the vectors of weight 3 in the Hamming code of length 2m − 1. For d = w = 4 and

n = 2m , the lexicode consists of the weight 4 vectors in the extended Hamming code of

length 2m . These two assertions follow from the fact that Welter’s game for w = 3 and

4 is equivalent to nim [1, p. 473].

Table XII gives the number of codewords in the first few constant weight lexicodes

with d = 4. These values are of course lower bounds on the quantity A(n , 4 , w), where

A(n , d , w) is the size of the largest possible code of length n, constant weight w, and

minimal distance d. However, in this case (for d = 4), these codes are in general inferior

to codes already known (compare Table I of [8]).

(4.4) Other values of d; S(5,8,24)

In Section (4.3) we saw that Welter’s game gives the structure of constant weight

lexicodes with minimal distance 4. We have made extensive computations for other

minimal distances, but although there are many interesting special cases, the resulting

codes apparently display no general structure.

One interesting case occurs when w = d = 8. We recall from Example (3.2e) that

the unrestricted lexicode for base B = 2, d = 8 and length 24 is the binary Golay code

containing
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1 word of weight 0
759 words of weight 8

2576 words of weight 12
759 words of weight 16

1 word of weight 24

Our computations show that at length 24 the constant weight lexicode with w = d = 8

consists precisely of the 759 weight 8 codewords in the full code.

Thus we have the following surprising fact.

Theorem 12.

The words of the constant weight lexicode with w = d = 8 and n = 24 are the

blocks (or octads) of a Steiner system( 3 ) S( 5 , 8 , 24 ).

However, for w = 12 and d = 8, there are only 481 codewords of length 24, instead

of the 2576 in the Golay code. For w = 16 and d = 8, the constant weight lexicode

does indeed contain 759 codewords. However, they are not precisely the 759 weight 16

words of the unrestricted d = 8 lexicode, but rather these words changed by the

coordinate permutation

( 0 ) ( 1 ) . . . ( 19 ) ( 20 23 ) ( 21 22 ) .

(4.5) Constant weight lexicodes with a sum constraint; S(5,6,12).

In view of Theorem 11 it is natural to ask if there is a similar definition for Mathieu’s

other famous Steiner system, S( 5 , 6 , 12 ). The correct answer to this question emerged

from some calculations of A. J. E. Ryba [18], which showed that this Steiner system can

be obtained if a side condition is imposed on the lexicode.
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A constant weight lexicode with sum s is a constant weight lexicode as in Section

(4.1), with the additional requirement that every codeword

... ζ 3 ζ 2 ζ 1 ζ 0

must satisfy

i
Σ iζ i ≥ s , (27)

where the sum is calculated as an ordinary integer. In other words (since the ζ i are 0 or

1), the sum of the w coordinates where the 1’s are located must be at least s. Since every

set of size w sums to at least 
î 2
w

 , the sum constraint is vacuous if s ≤ 
î 2
w

 .

Then Ryba’s discovery is the following.

Theorem 13. (Ryba [18].)

The words of the constant weight lexicode with w = 6 , d = 4 , n = 12 and sum

constraint s = 21 are the blocks (or hexads) of a Steiner system S( 5 , 6 , 12 ).

This may be easily verified by computer. Furthermore the hexads are obtained with

the so-called ‘‘shuffle labeling’’ described in [7, Chap. 12].

Mathematical Blackjack (or Mathieu’s Vingt-et-un)

The game for which this code (i.e. the hexads of S( 5 , 6 , 12 )) gives the winning

positions may be called Mathematical Blackjack, or Mathieu’s Vingt-et-un. Six cards

from a deck of 12 cards labeled {0 , 1 , 2 , . . . , 11} are laid out face upwards on the table.

The two players move alternately, the move being to replace one of the laid out cards
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with any lower one chosen from the remainder of the deck. The first player to make the

sum less than 21 loses. Then Theorem 13 is equivalent to the assertion that the winning

strategy is always to move to a hexad from S( 5 , 6 , 12 ).

(4.6) Further examples; new lower bounds to A(n , 10 ,w)

The only example of a constant weight lexicode with a sum constraint for which we

have a general theoretical result is the case d = 4 , s = 
î 2
w

 + 1. It can be shown that

the codewords in this case are the winning positions in the mise ̀ re version of Welter’s

game [1, pp. 480-481]. We omit the details.

When d = 10, we discovered by experimenting that constant weight lexicodes with a

sum constraint in many cases improved on the best previously known lower bounds for

A(n , 10 ,w) as given in [8, Table IV]. The results are shown in Table XIII. We also take

the opportunity to correct an error in Table IV of [8]: the value of A( 16 , 10 , 7 ) should be

4 (not 3).

Finally, we also experimented with applying a sum constraint to unrestricted

lexicodes, but only found one code worth mentioning. When B = 2 , d = 3 , n = 8 and

s = 21, the corresponding lexicode contains 18 codewords. This is better than any linear

code, although not as good as Julin’s optimal code [13] with 20 words.
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List of Footnotes

( 1 ) G(n) has been calculated for n ≤ 107 , but it is not even known if it is eventually a

periodic function of n [1, pp. 96, 111], [10], [11].

( 2 ) This version of nim is also called Turning Turtles [1, p. 429].

( 3 ) Defined on p. 59 of [16], for example.
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List of Table Captions

Table I. First few codewords and corresponding winning positions in the code for

Grundy’s game.

Table II. Nim-addition of numbers 0 to 15.

Table III. Nim-multiplication of numbers 0 to 15.

Table IV. Number of codewords in lexicode of base B, length n and minimal distance

d = 3. The continuation of the B = 8 column can be found in Section (3.3).

Table V. Number of codewords in lexicode of base B, length n and minimal distance

d = 4.

Table VI. Number of codewords in lexicode of base B, length n and minimal distance

d = 6.

Table VII. Binary lexicodes. The table gives the dimension k of binary [n ,k ,d]

lexicodes for n ≤ 44 and d ≤ 10.

Table VIII. Number of codewords in Hamming code of base B and length n (using

the first column); also number of codewords in extended Hamming code of base B and

length m (using the last column).

Table IX. G-values f (ζ ,i) of coordinate positions for the case B = 8 , d = 3. The

G-values are written in octal.

Table X. G-values f ( 1 ,i) for case B = 22a

> 4, d = 4. Here α is any digit

0 , 1 , . . . , B − 1, and all additions and multiplications are in the nim sense.
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Table XI. The 198 words of the lexicode of length 8, distance d = 3 and base

B = 3.

Table XII. Number of codewords in constant weight lexicodes with d = 4.

Table XIII. New lower bounds on A(n , 10 ,w) obtained from constant weight

lexicodes with sum constraint s. [After this work was completed L. Hemachandra and V.

K. Wei (personal communication) used the method of simulated annealing to show that

A( 23 , 10 , 7 ) ≥ 18, A( 23 , 10 , 8 ) ≥ 28 and A( 24 , 10 , 8 ) ≥ 33.]
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Table I
_ ______________________

codeword heap sizes
_ ______________________

...0000000 0

...0000001 1

...0000010 2

...0000011 2,1

...0001000 4

...0001001 4,1

...0001010 4,2

...0001011 4,2,1

...0100100 6,3

...1000000 7
... ...

_ ______________________ 
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Table II
_ ____________________________________________________

⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
_ ____________________________________________________

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

_ ____________________________________________________ 






































































- 41 -

Table III
_ ___________________________________________________

⊗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
_ ___________________________________________________

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 3 1 8 10 11 9 12 14 15 13 4 6 7 5
3 0 3 1 2 12 15 13 14 4 7 5 6 8 11 9 10
4 0 4 8 12 6 2 14 10 11 15 3 7 13 9 5 1
5 0 5 10 15 2 7 8 13 3 6 9 12 1 4 11 14
6 0 6 11 13 14 8 5 3 7 1 12 10 9 15 2 4
7 0 7 9 14 10 13 3 4 15 8 6 1 5 2 12 11
8 0 8 12 4 11 3 7 15 13 5 1 9 6 14 10 2
9 0 9 14 7 15 6 1 8 5 12 11 2 10 3 4 13

10 0 10 15 5 3 9 12 6 1 11 14 4 2 8 13 7
11 0 11 13 6 7 12 10 1 9 2 4 15 14 5 3 8
12 0 12 4 8 13 1 9 5 6 10 2 14 11 7 15 3
13 0 13 6 11 9 4 15 2 14 3 8 5 7 10 1 12
14 0 14 7 9 5 11 2 12 10 4 13 3 15 1 8 6
15 0 15 5 10 1 14 4 11 2 13 7 8 3 12 6 9

_ ___________________________________________________ 
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Table IV
_ _________________________________________________________

n \ B 2 3 4 5 6 7 8 9 10 15 16 17
_ _________________________________________________________

3 2 3 4 5 6 7 8 9 10 15 16 17

4 2 9 16 17 22 25 32 48 70 187 256 257

5 4 9 64 74 112 182 28 372 532

6 8 24 64 265 618 1175 211

7 16 72 28 1113 2994 214

8 16 198 210 217

9 32 519 212 220

10 64 1390 214 223

11 128 3650 216 225

_ _________________________________________________________ 
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Table V
_ _________________________________________________

n \ B 2 3 4 5 6 7 8 9 10
_ _________________________________________________

4 2 3 4 5 6 7 8 9 10

5 2 3 16 17 18 27 32 33 46

6 4 10 64 67 88 147 28 314 446

7 8 24 64 165 390 766 211

8 16 60 28 676 214

9 16 136 210 216

10 32 334 212 219

11 64 807 214 222

_ _________________________________________________ 























































- 44 -

Table VI
_ ____________________________________________

n \ B 2 3 4 5 6 7 8
_ ____________________________________________

6 2 3 4 5 6 7 8
7 2 3 4 5 12 25 32
8 2 9 16 33 58 95 256
9 4 17 64 99 222

10 4 29 256
11 8 59
12 16 124
13 16 269

_ ____________________________________________ 
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Table VII
_ ____________________________________________

n \ d 4 6 8 10 n \ d 4 6 8 10
_ ____________________________________________

4 1 0 0 0 25 19 14 12 7
5 1 0 0 0 26 20 15 12 8
6 2 1 0 0 27 21 16 12 9
7 3 1 0 0 28 22 17 13 9
8 4 1 1 0 29 23 18 13 10
9 4 2 1 0 30 24 19 14 11

10 5 2 1 1 31 25 19 15 12
11 6 3 1 1 32 26 20 16 12
12 7 4 2 1 33 26 21 16 13
13 8 4 2 1 34 27 22 17 14
14 9 5 3 1 35 28 23 18 14
15 10 6 4 2 36 29 24 19 15
16 11 7 5 2 37 30 25 20 16
17 11 8 5 2 38 31 26 21 17
18 12 9 6 3 39 32 27 22 17
19 13 9 7 3 40 33 27 23 18
20 14 10 8 4 41 34 28 23 19
21 15 11 9 5 42 35 29 24 20
22 16 12 10 5 43 36 30 25 21
23 17 12 11 6 44 37 31 26 21
24 18 13 12 6

_ ____________________________________________ 
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Table VIII
_ ____________________________________________________

n \ B 2 3 4 5 7 8 9 m
_ ____________________________________________________

3 2 3 4 5 7 8 9 4

4 2 9 16 25 49 64 81 5

5 4 9 64 125 343 512 729 6

6 8 27 64 625 74 84 94 7

7 16 81 44 625 75 85 95 8

8 16 243 45 55 76 86 96 9

9 32 729 46 56 76 87 97 10

10 64 2187 47 57 77 87 98 11

11 128 6561 48 58 78 88 98 12
_ ____________________________________________________ 
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Table IX
_ ______________________________________________________

i \ ζ 0 1 2 3 4 5 6 7
_ ______________________________________________________

0 000 001 002 003 004 005 006 007
1 000 010 020 030 040 050 060 070
2 000 011 022 033 044 055 066 077
3 000 012 023 031 100 112 123 131
4 000 013 021 032 104 117 125 136
5 000 014 042 056 101 115 143 157
6 000 015 041 054 105 110 144 151
7 000 016 045 053 107 111 142 154
8 000 017 046 051 103 114 145 152
9 000 024 043 067 102 126 141 165

10 000 025 047 062 200 225 247 262
_ ______________________________________________________ 
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Table X
___________________________

1

B

B 2 + αB + α

B 3 + αB + α2

B 3 + B 2 + αB + α2 + 1

B 4 + αB + α2

B 4 + B 2 + αB + α2 + 1

B 4 + B 3 + B 2 + αB + α2

B 4 + 2B 3 + 4B 2

...
___________________________ 
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Table XI
_ _________________________________________________________________

00000000 01100010 02201020 10221212 12121022 21020101
00000111 01100101 02202012 11000001 12122212 21021022
00000222 01101002 02202121 11000110 12201001 21022211
00001012 01101220 02210220 11001020 12201122 21100202
00001120 01102122 02211112 11001102 12202210 21102100
00001201 01102211 02212202 11001211 12210011 21120221
00002021 01120112 10010010 11002012 12212022 21122012
00002102 01121011 10010101 11002121 12220201 21200111
00002210 01121100 10011002 11002200 20010021 21200220
00110001 01122020 10011220 11110000 20010212 21210102
00110110 01122202 10012122 11110111 20011111 21212121
00111020 01200022 10012211 11110222 20012100 21221201
00111102 01201110 10020112 11111012 20020002 22000011
00111211 01202000 10020221 11111120 20020120 22001000
00112012 01211021 10021011 11111201 20021210 22001112
00112121 01211200 10021100 11112021 20101021 22001221
00112200 01221122 10022020 11112102 20102201 22002101
00120022 01222210 10022202 11112210 20110220 22011120
00210122 02012000 10100002 11200212 20120011 22012012
00220010 02012221 10100120 11220002 20121000 22020222
00220101 02020012 10100211 11220120 20121112 22022021
00221002 02021001 10101010 11221010 20122222 22022200
00221220 02021110 10101101 11222101 20200012 22100110
00222112 02022122 10101222 11222222 20200100 22102022
01010002 02100021 10102112 12000022 20201211 22110002
01010120 02100200 10120200 12010200 20202020 22110121
01010211 02101111 10122001 12011021 20211001 22111010
01011010 02110212 10200021 12011212 20211222 22112211
01011101 02120120 10201200 12012110 20212210 22121202
01011222 02121221 10210202 12102000 21000122 22220000
01012112 02122101 10211110 12102221 21012001 22220112
01020021 02200102 10212000 12120010 21012220 22221011
01020200 02200211 10221121 12120102 21020010 22222120

_ _________________________________________________________________ 
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Table XII
_ ______________________________________________

n \ w 2 3 4 5 6 7 8 9
_ ______________________________________________

4 2 1 1
5 2 2 1 1
6 3 4 3 1 1
7 3 7 7 3 1 1
8 4 7 14 7 4 1 1
9 4 8 14 14 8 4 1 1

10 5 10 18 22 18 10 5 1
11 5 13 26 34 34 26 13 5
12 6 17 39 54 68 54 39 17

_ ______________________________________________ 
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Table XIII
_ _______________________________

A( 21 , 10 , 9 ) ≥ 26 (use s = 59)

A( 22 , 10 , 9 ) ≥ 31 (use s = 70)

A( 22 , 10 , 10 ) ≥ 39 (use s = 92)

A( 23 , 10 , 7 ) ≥ 17 (use s = 58)

A( 23 , 10 , 8 ) ≥ 27 (use s = 54)

A( 23 , 10 , 9 ) ≥ 39 (use s = 74)

A( 23 , 10 , 10 ) ≥ 50 (use s = 75)

A( 23 , 10 , 11 ) ≥ 53 (use s = 80)

A( 24 , 10 , 8 ) ≥ 32 (use s = 54)

A( 24 , 10 , 9 ) ≥ 49 (use s = 65)

A( 24 , 10 , 10 ) ≥ 64 (use s = 82)

A( 24 , 10 , 11 ) ≥ 75 (use s = 79)

A( 24 , 12 , 12 ) ≥ 80 (use s = 96)
_ _______________________________ 

















































- 52 -

List of Figure Captions

Figure 1. Tableau for calculation of Welter’s function. The entries are calculated by

W(a i ) = a i and the frieze rule (26).

Figure 2. Tableau for decoding.

Figure 3. Illustration of decoding technique in the case w = 5. The arrows indicate

the order in which the entries are computed, using (26).
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