MATH 313: INTRODUCTION TO NUMBER THEORY: SPRING 2017
HOMEWORK SOLUTION KEY

STEVEN J. MILLER (SIM1@WILLIAMS.EDU, STEVEN.MILLER.MC.6@AYA.YALE.EDU): MATH 313, SPRING 2017

ABSTRACT. A key part of any math course is doing the homework. This earfgom reading the material in the book so that you can do the
problems to thinking about the problem statement, how yaghbtgo about solving it, and why some approaches work andtiwa’t. Another
important part, which is often forgotten, is how the problsinto math. Is this a cookbook problem with made up numbersfunctions to
test whether or not you've mastered the basic material, es @idhave important applications throughout math and img@sBelow I'll try and
provide some comments to place the problems and their sofutn context.
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FIGURE 1. Counting the number @h, m) yielding a perfect square. We order the points by their vafue and
plot the pair withxz-coordinate equal to the count number andoordinate equal to the square root of the sum (the

right is the log-log version of this plot).

1. HW #2: DUE FEBRUARY 10, 2017

1.1. Problems: (1) 1.10. Find a sequence of consecutive numbers the sumadgendguares is a square. (Must have at least three

numbers.) (2) 1.15. Use induction to prove that® — n for any positive integen. (3) 1.17. Prove that the product of 3 consecutive
integers is divisible by 6.

1.2. Solutions: (1): 1.10. Find a sequence of consecutive numlsethe sum of whose squares is a square. (Must have at least
three numbers.)
Solution: Note that) ", _, k* = n(n + 1)(2n + 1)/6, and thus
1)(2 1 1)(2 1
(m+1)2+(m+2)% 4+ +n? = nin + )6( ntl) mm+ é( mt )
If we wish this to equal a square, sgy, then for a fixedn we gety? = f,.(n), wheref,, is a degree three polynomial with
coefficients which are a function @t. This turns out to be an elliptic curve, an extremely impettzbject in modern number theory,
with applications from cryptography to the proof of Ferrsdtast Theorem.
Below is some code to numerically explore and plot the reSiile first example with at least three termrism) = (24, 1), with
sum equal t@02. Note how useful a log-log plot can be in understanding thebier.

f[n, m] :=

n(n+1) (2n+1)/6 - (m-1) m(2 m- 1)/6 (* m2 + ... + n"2 *)
list = {};

loglist = {};

count = 0O;

For[n = 1, n <= 40000, n++,
Forfm=1, m<=n - 1, mt+,
If[Integer Sqart[f[n, mM]] == True,

{
count = count + 1;
If[n < 10000,
Print["(n,mM = (", n, ",", m ") and f[n,mM =", f[n, M,

St Ssart[fn, m]]
list = AppendTo[list, {count, Sgrt[f[n, m]}];
| oglist = AppendTo[loglist, {Log[count], Log[Sqrt[f[n, mM]]1}];
5
11;
Print[ListPlot[list]];
Print[ListPlot[loglist]];
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(2): 1.15. Use induction to prove thats|n® — n for any positive integer n.

Solution: Let P(n) be the statement thatn® — n. The base case clearly holds wher- 1, and we can check = 2 or 3 as well.

Let's do the inductive step: thus we assuf@) is true and must show(n + 1) follows. SinceP(n) is true we knows|n5 — n.
Consider(n + 1) — (n+ 1). While we could factor out an + 1, we want to somehow uncover the statem@at). Thus it seems

worthwhile to expand, which by the binomial theorem yields

(n+1)°—(n+1) = (n°+5n* +10n° + 100> +5n+1) — (n+1).
Notice the two+1 terms cancel, and what remains is
n5—n—|—5(n4—|—2n3—|—2n2+n).

The last part is clearly a multiple of 5, and the inductiveuasgtion gives 5 divides® — 5. Thus 5 dividegn + 1)° — (n + 1),
completing the proof.

(3): 1.17. Prove that the product of 3 consecutive integersidivisible by 6.
Solution: We sketch the proof. First one shows that every other intisgemultiple of 2, and then that every third integer is a npuei
of 3. Thus in any set of three consecutive integers we mu& dbleast one multiple of 2 and at least one multiple of 3.

For another proof, we can write any three consecutive imse@®sn + ¢, 6n + i+ 1,6n + i + 2 for somei € {0,1,2,3,4,5}. All
we need to do is show that at least one term, when we multiglytttee together, is of the forém + j with 5 a multiple of 6.

HW #3: Due February 17, 2017:(1) 1.6: The numbers 1051, 1529, and 2246 have the same renaiwhen divided by some
integerd. Findd andr. (2) 1.11. Forn a natural number considgt, = 22". (a). FactorT}, forn = 1,...,5. (b.) Prove that
T, has at least prime divisors. Note: what does this exercise allow you tdude? (3) 1.25. Prove that there are infinitely many
primes with remainder 3 when divided by 4. (4) Explorationlgem: How many of the Fibonacci numbdrE,, } are prime? What
do you observe? What can you prove? What do you conjectujé=n@ a formula for the sum of the first few consecutive Fibmma
numbers:F; + Fy + - - - + F,,. Your formula should involve the Fibonacci numbers. HEfe= 0, F; = 1 andF,, 41 = F,, + F,,_1.

(6) Find a formula for the sum of the first few consecutive sgaaf Fibonacci numbers’? + F§ + - - - + F2. Your formula should
involve the Fibonacci numbers. (7) Prove that for any fixadgerV, there exist at least two consecutive primes differing bgast

N.
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2. HW #3: DUE FEBRUARY 17, 2017

2.1. Problems. (1) 1.6: The numbers 1051, 1529, and 2246 have the same @enaivhen divided by some integér Findd andr.

(2) 1.11. Fom a natural number consid@&}, = 22". (a). Factofl,, forn = 1, ..., 5. (b.) Prove thafl,, has at least prime divisors.
Note: what does this exercise allow you to deduce? (3) 1.26vePthat there are infinitely many primes with remainder 3mwh
divided by 4. (4) Exploration problem: How many of the Fiboaienumberd F;, } are prime? What do you observe? What can you
prove? What do you conjecture? (5) Find a formula for the stitheofirst few consecutive Fibonacci numbers:+ F» + - - - + F,.
Your formula should involve the Fibonacci numbers. HEge= 0, F}, = 1 andF,,,1 = F,, + F,,—1. (6) Find a formula for the sum
of the first few consecutive squares of Fibonacci numbgfst+ F + - - - + F2. Your formula should involve the Fibonacci numbers.
(7) Prove that for any fixed integé¥, there exist at least two consecutive primes differing bgast/V.

2.2. Solutions. (1) 1.6: The numbers 1051, 1529, and 2246 have theme remainderr when divided by some integerd. Find
dandr.
Solution: We write

1051 = ad+r, 1529 = bd+r, 2246 = cd+ .

While this is three equations in four unknowns, our quaggitnust be integers, and that helps. If we subtract the finst fhe second
and the second from the third we get
478 = (b—a)d, 717 = (c—b)d.
We knowd must divide 478 and 717. If we factor these we fin@ = 2 - 239 and717 = 3 - 239. Thus the only options aré= 1
ord = 239.
Noted = 1 works, givingr = 0. If we try d = 239 then we have
1051 = 4-239495, 1529 = 6-239+ 95, 2246 = 9-239+ 95.

Thusd = 239, r = 95 also works.

(2) 1.11. Forn a natural number consider T,, = 22" — 1. (a). FactorT}, for n = 1,...,5. (b.) Prove that T}, has at leastn
prime divisors. Note: what does this exercise allow you to dkice?
Solution: As a? — b? = (a — b)(a + b), we have

n not1 2 — o

T, = 22" _ 1 = (22 1) 12 = (22 1_1) (22 1+1) = Th1- (Tho1+2).
We proceed by induction, and fact®y,_, asT,,_» - (T,—2 + 2), and thus find
T, = To(To +2)(T1 +2) - (Tn-1 +2)

(asTy = 1 we can drop that if we wish).
T[n_] :=2"2"n) - 1;

factorT[n_] := Factorlnteger[T[n]];
theoryfactorT[n_] := Factorlnteger[Product[T[i] + 2, {i, 0, n - 1}]];
For[n =1, n <=5, n++ Print["direct: ", factorT[n], "; theory: ", theoryfactorT[n]]]
The theoretical approach matches the brute force approaeh< 5; the results are
e 3:3.
e 15:3.5.
e 255:3-5-17.
e 65535:3-5-17-257.
e 42949672953 -5 - 17 - 257 - 65537.

We see that,, equalsl;, 1 - (T,,—1 +2). AsT,, is odd forn > 1, T,,_1 + 2 is relatively prime tdl,,; (if d divided both it divides
their difference; as that difference is 2 the only optionsdfare 1 or 2). Thus every time we increasee add a new factor which is
at least 2 and cannot share a factor with earlier numberss Thhas at least prime factors, aneve have proved there are infinitely
many primesNot bad for a homework assignment!

Note: These numbers are closely related to the Fermat numBgrs, 22" + 1. In particularT,, = T},_; - F,,. The factorizations
above suggest the conjecture that all Fermat numbers ane piriterestingly these five are tbaly ones known to be prime (and it
is believed there are no others). If there is interest | caa giheuristic proof that there are about 3 Fermat numbershvelre prime
(yes, | know there are five!).

(3) 1.25. Prove that there are infinitely many primes with renainder 3 when divided by 4.
Solution: We can tweak Euclid’s proof. Assume there are only finitelyngnsuch primes, which we dengie = 3,p2 = 7, ..., pn.
Considerz,, = 4paps - - - pn + 3. Notez,, > 12, and no prime in our list divides it. Further 3 does not divige(it is important that
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3is notincluded in the product, else that could be the pritie), is prime we found a new prime not on our list of the correct form
If it is composite we see it cannot only be divisible by prinvéth remainder 1 when divided by 4, which other than 2 aretadl t
remaining prime candidates (and note our number is cleaidlyamd thus not a multiple of 2). The reason is two numbershines
a remainder of 1 when divided by 4 have a product that also hesiainder of 1 when divided by 4. Thus at least one factar,of
must have a remainder of 3 when divided by 4.

Interestingly this argument only works for some remaindé&iée will probably talk about what happens in general. Saty e
mentary proofs don’t work for all cases. For more see R. MWRtimes in certain arithmetic progressiondournal of the Madras
University, (1988), 161-169.

(4) Exploration problem: How many of the Fibonacci numbers{F;,} are prime? What do you observe? What can you prove?
What do you conjecture?
Solution: Let's write some code. Mathematica fortunately has goodtians for primality testing.

fibprine[n_] := Prinme Fi bonacci[n]]
fibprineexplore[num] := Mdul e[{},
count = O;
For[n = 1, n <= num n++, |f[fibprine[n] == True,
{
[f[n <= 100, Print[n, " ", Fibonacci[n]]];
count = count + 1;
H

1
Print["Number F[n] prinme for nup to ", num

Print["Percentage of n up to ", num
100. count/nuni;

1

Forn < 5000 there are 23 giving rise to Fibonacci numbers that are prime; that insesao 26 if we let, go up to 10000. It
is conjectured that there are infinitely many Fibonacci neratthat are prime, but this is not known. If there is interesin give a
heuristic on how many Fibonacci numbers should be pri@ee can also ask similar questions about the intersectidfilminacci
numbers and other special sequences, such as the perfeosesqun other words, how often is a Fibonacci number a sqRieBee
https:// math. | a. asu. edu/ ~checkman/ Squar eFi bonacci . ht n for the answer.

is ", count];

giving prine is ",

(5) Find a formula for the sum of the first few consecutive Fibmacci numbers: F; + F; + --- + F,. Your formula should
involve the Fibonacci numbers. HereF, =0, Fy =1land F,, 1, = F,, + F,_1.

Solution: If we look at the Fibonacci numbers 1, 1, 2, 3,5, 8, 13, 21, veete first few sums are 1, 2, 4, 7, 12, 20, 33. We see that
these sums are 1 less than a Fibonacci number, and conjégtwés + - - - + F,, = F,, .o — 1. We can now prove this by induction.
The base case has been done, and for the inductive step weeais$1olds for the sum of the first and examine the sum of the first

n -+ 1. We find

Fi+F+- 4+ Fp = (FL+FR+-+F)+Fuoq
= Fn+2_1+Fn+1:Fn+3_17

as claimed.

(6) Find a formula for the sum of the first few consecutive squees of Fibonacci numbers: F2 + F3 + - - - + F2. Your formula

should involve the Fibonacci numbers.

Solution: Itis F,, F,,+1. There are several ways to prove this. Now that you know tisevan try to do it by induction. For another

proof, one can show that the Fibonaccis tile the plane inr@lsihiat gives us a rectangle at each stage; we do this by dnagumares

of side lengthF;. Draw the picture. Thus we have a rectangle thdtjy F,, + F,,_1 = F,+1, and hence its area is the product of

the two; however, the rectangle is just a union of disjoinizsgs with side lengths;, and thus the area is also the sum of the squares.
For more on this, see my blog pdstt ps://math.wi | I i ans. edu/ t o- bead- or - not - t o- bead/ (which has some

great additional readings). FiguP€ gives a (fun) depiction.

(7) Prove that for any fixed integer IV, there exist at least two consecutive primes differing by aeast V.

Solution: For any N, let zy = N! + 2. Note thatzy is not prime as it is a multiple of 2. Furthet, + j is composite for

0 <j <N —2asitisdivisible byj + 2. Thus the largest prime at mast; is N! + 1 or smaller, while the smallest prime at least
xn + 1is N!'+ N or larger. Thus we have found two primes that differ by attiéas


https://math.la.asu.edu/~checkman/SquareFibonacci.html
https://math.williams.edu/to-bead-or-not-to-bead/
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FIGURE 2. Fibonacci spiral, made with Kayla and Cameron Miller.

Note: instead of setting:y = N! + 2 we could studyyp = P# + 2, where# denotes th@rimorial. The primorial is similar
to the factorial, except we only multiply by the primes frabndown to 2. For extra credit, investigate how fast the primlogrows
relative to the factorial. Is this a big savings? Is this atbing? This method, while it works, appears quite wastéfoimpare the
ratio N/xz or P/yp; is it possible to get a larger value so the numerators andrdarators are of comparable size?

Homework #4: Due Friday, Feb 24, 2017: (1) Prove Wilson’s thereem: n > 1 is prime if and only if (n-1)! = -1 mod n.
Discuss how this can be used for a primality test. (2, 3, 4, 5:eg, counts as 4 problems!) Write a computer program to
investigate Fermat’s little Theorem for all n from 3 to 1000Q For each n use ALL a relatively prime to n (take 1 < a < n),
and record what fraction of these a havea(n — 1) = 1 mod n. Gather data, list all the Carmichael numbers you find, and
formulate conjectures. YOU get to choose what data to gathewhat you want to study, what you want to conjecture. One of
the purposes is to give you a feel of what research is like; yolnave freedom here! Do not look up answers online.... (6, 7, 8,
9: yes, counts as four problems): Investigate the number ofadutions to 2% = @ mod n for d = 1 to 10,n = 2 to 100, and for
eachn let a range over all numbers relatively prime ton AND also includea = 0. What is true about the average number
of solutions toz¢ = a mod n as we range over all these values of for a fixed n and d? Make a conjecture.... Now look at
22 — az — b= 0 mod n wherea and b are either 0 or relatively prime to n; note as they range we cover all possible quadratic
polynomials. Investigate the average number of solution®f 1 < n < 42. Make a conjecture....
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3. HW #4: DUE FEBRUARY 24, 2017

3.1. Problems. Homework #4: Due Friday, Feb 24, 2017: (1) Prove Wilson'oteen:n > 1 is prime if and only if(n — 1)! =

—1 mod n. Discuss how this can be used for a primality test. (2, 3, 4,€S; counts as 4 problems!) Write a computer program to
investigate Fermat'’s little Theorem for all n from 3 to 1006@r each n use ALL a relatively prime to n (take 1 < a < n), ardre
what fraction of these a havén — 1) = 1 mod n. Gather data, list all the Carmichael numbers you find, anuditate conjectures.
YOU get to choose what data to gather, what you want to stubigt wou want to conjecture. One of the purposes is to give you a
feel of what research is like; you have freedom here! Do nok lap answers online.... (6, 7, 8, 9: yes, counts as four prog):
Investigate the number of solutions46 = a mod n for d = 1 to 10,n = 2 to 100, and for each let a range over all numbers
relatively prime ton AND also includez = 0. What is true about the average number of solutions'te- « mod n as we range over

all these values of for a fixedn andd? Make a conjecture.... Now look at — az — b = 0 mod n wherea andb are either 0 or
relatively prime ton; note as they range we cover all possible quadratic polyalsminvestigate the average number of solutions for
1 < n < 42. Make a conjecture....

3.2. Solutions. (1) Prove Wilson’s theorem:n > 1 is prime if and only if (n — 1)! = —1 mod n. Discuss how this can be used
for a primality test. Solution: If n is composite, say = ab, then2 < a,b < n — 1 and thusz|(n — 1)!; hence(n — 1)! = 0 mod n.

Assume now: is prime; to emphasize this let's write Since(Z/pZ)* is a multiplicative group, each number has an inverse and
the inverses are distinct (i.e., no element is the inverdedoelements). Two elements are their own inverse: 1, -1. &gnother
number be its own inverse? In other words, what are the solsitioz?> = 1 mod p? Well, for this to hold there must be some
such that? = 1 + mp. Thus

22 —1 =mp, or (x—1)(z+1) = mp
with 1 < x < p — 1. Sincep is prime,p must divide either: — 1 or x + 1. For our range of the first factor is a multiple of only
for x = 1, while the second only far = p — 1 (which is the same as1 mod p). Thus no other elements are their own inverses, and
when we look at the product
1-2-3---(p—2)-(p—1) mod p

we can pair off all the terms by puttinganda ' together (which gives a product of 1 moduylpexcept for 1 angh — 1. Thus the
productisp — 1 mod p, or —1 mod p.

This provides a simple primality test. If we compuyte— 1)! mod n, if it is zero our number is composite while if it is -1 our
number is prime. Unfortunately it is painful to compute tfaslargen!

(2, 3, 4, 5: yes, counts as 4 problems!) Write a computer progm to investigate Fermat’s little Theorem for all n from 3 to
10000. For each n use ALL a relatively prime to n (take 1 < a < njand record what fraction of these a havei(n—1) = 1 mod n.
Gather data, list all the Carmichael numbers you find, and formulate conjectures. YOU get to choose what data to gather,
what you want to study, what you want to conjecture. One of thepurposes is to give you a feel of what research is like; you
have freedom here! Do not look up answers online....

Solution: From running our program we find the Carmichael numbers u@@®Q are:{561, 1105, 1729, 2465, 2821, 6601, 8911}.
Further,

Car mi chael nunber 561 has factorization {{3,1},{11,1},{17,1}}.
Car mi chael nunber 1105 has factorization {{5,1},{13,1},{17,1}}.
Car mi chael nunber 1729 has factorization {{7,1},{13,1},{19,1}}.
Car mi chael nunber 2465 has factorization {{5,1},{17,1},{29,1}}.
Car mi chael nunber 2821 has factorization {{7,1},{13,1},{31,1}}.
Car mi chael nunber 6601 has factorization {{7,1},{23,1},{41,1}}.
Car mi chael nunber 8911 has factorization {{7,1},{19, 1},{67,1}}.
Here is the code; see Figutds 3 &hd 4 for results of the exjgora
FI Ttester[nundo_] := Mdul e[{},
(*» store results here x)
(* storing two ways: both as a list of n and value to plot, and just the val ues *)
results = {}; (*stores n and percent of a that led to a failed test for n conposite *)
hi stogranresults = {}; (* same as above but stores not a pair
just percent of a failing *)
| owestresults = {}; (* stores pair of n and first a that failed *)
hi st ogram owestresults = {}; (* sane as above but stores not a pair, just first a that failed *)
carm chael = {}; (* stores our carnichael nunbers here *)
For[n = 3, n <= nundo, n++, (* look at the nunbers from3 to nundo *)

{
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nunmpass 0; (» for each n initialize nunber of a that pass fail test to 0 x)
nunf ai | 0;

foundl owest = 0; (* use this to record first a that failed *)

For[a =2, a<=n - 1, a++, (* tests arelatively prime to n *)

{
If[GCD[a, n] == 1, (* only need to test a that are relatively prime to n,
hence this test x)
If[Mod[ar(n - 1), n] == 1, nunpass = nunpass + 1,
nunfail = nunfail + 1];
(» above:

if equals 1 then pass test and increnent nunpass by 1,
el se fail and increment nunfail by 1 x)
]; (» end of gcd test and increment x)
If[foundl owest == 0 & nunfail == 1, (* enter here if FIRST tine failed a test =*)
{
foundl owest = 1; (*
increnment foundl owest so that won't enter again for this n *)
| owestresults = AppendTo[l owestresults, {n, a}]; (*save results to file *)
hi st ogram owestresults = AppendTo[ hi st ogram owestresults, aj;
}
]; (» end of IF loop *)
}1; (x end of a loop *)
(*» nowthat a loop is done we will save results *)
(» first bits are to nake output nice *)
If[nunfail == 0, printclaim= {PASSED ALL}, {}];
If[Prime@ n] == True, prinmestatus = {PRI Mg},
prinestatus = {COWCSI TE}];
(* prints out a lot of info on first 20 nunbers »*)
I1f[n <= 20,
Print[n, ", nunmpass =", nunpass, ", nunfail =", nunfail,
", ", printclaim ", ", prinmestatus]];
I f[ Mod[ n, nundo/10] == O,
Print["We have done ", 100.0 n/nunmdo, "% "]]; (xupdate every 10% on where we are *)

If[nunfail == 0 & Prine@ n] == False, (*this prints out carm chael nunbers and
adds to our carmchael list *)
{
Print[" ", n, " is CARM CHAEL."];
carni chael = AppendTo[carnichael, n];
}
I
If[Prime@ n] == False, (* saves info on conposite nunbers x)
{
results =

AppendTo[results, {n, 1.0 nunfail / (EulerPhi[n] - 1)}];
hi stogranresults =
AppendTo[ hi stogranresults, 1.0 nunfail / (EulerPhi[n] - 1)];
}1; (* end of conposite |oop *)
}1; (* end of n loop *)

Print[ " "]; (* blank line followed by outputting results *)
Print["Carm chael nunbers up to ", nundo, " are: ", carm chael];
For[c = 1, ¢ <= Length[carmichael], c++,

Print["Carm chael nunber ", carmichael[[c]],

" has factorization ", Factorlnteger[carm chael[[c]]], "."1];

Print["Plots of how often tests fail for conposite nunbers."];
Print[ListPlot[results, PlotRange -> Full]];

Print[Hi stogranfhistogranresults, Automatic, "Probability"]];
Print["Plots of location of first failure for conposite nunbers."];
Print["Largest value of the first ato fail is ",

Max[ hi st ogram owestresul ts]];

Print[ListPlot[lowestresults, PlotRange -> Full]];
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FIGURE 3. Plot of what percent af relatively prime to a composite fail a”~! = 1 mod n.
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FIGURE 4. Location of firsta relatively prime to a composite that failsa” ! = 1 mod n.

Print[ Hi stogranf hi stogranm owestresults, Automatic, "Probability"]]
] (* end of nodule *)

Some possible conjectures on Carmichael numbers: (1) &drew. (2) At least three factors. (3) Probably having a 8r 3
is due to small set and not worth conjecturing, but.... (4sMwmbers if fail, fail quickly and often (around 50% @fvitness the
failure, but maybe should look at prinasand not just: relatively prime ton).

(6,7, 8, 9: yes, counts as four problems): Investigate the mber of solutions toz? = @ mod n for d = 1 to 10,n = 2 to 100,
and for eachn let a range over all numbers relatively prime ton AND also includea = 0. What is true about the average
number of solutions toz? = a mod n as we range over all these values af for a fixed n and d? Make a conjecture.... Now
look at 2% — ax — b = 0 mod n where a and b are either 0 or relatively prime to n; note as they range we cover all possible
guadratic polynomials. Investigate the average number of@utions for 1 < n < 42. Make a conjecture....
Solution: Below is the code to investigate. Interestingly the averagmber of solutions is always exactly 1! Natural to conjeetu
this is always the case.
quadratictester[nundo_, deg_, printall_] := Mdule[{},

results = {}; (* store results here *)

Print[" "]; (* blank line to separate outputs x)

Print]

"I'f printall == 1 print all; else just print when the average
number of solns to x*d == a mobd n is not exactly 1."];

Print["d =", d, " and n ranges from2 to ", nundo];

For[n = 2, n <= nundo, n++,

{

templist = {}; (* place to store data for given a, tenp spot =*)
nunsol nsalla = 0; (* keeps track of nunber of solns as vary a,
fixed n x)
For[a =0, a<=n - 1, a++ (* our a counting |oop *)
{
If[GCDa, n] == 1 || GDa, nl ==n, (* only look at a=0 or a rel prime to n *)
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{

nunsolns = 0; (* for given a, set nunber of solns to zero *)

For[x = 0, x <= n - 1, x++, (* brute force:

see how many solns to x"deg = a nod n *)

{
(*sinmple check: if a given x works then increment by 1, nmake sure x rel prime to n or is Ox)
If[Md[x"deg - a, n] == 0 && (GCDO[x, n] == 1 || GCDx, n] == n), numsolns = nunsolns + 1];
}1; (* end of x loop *)

templist = AppendTo[tenplist, {n, a, nunsolns}]; (* store tenp results to results *)

nunsol nsal l a = nunmsol nsal l a + nunsol ns; (* conpute total nunber of solns for fixed a *)

}1; (* end of IF statenent froma rel prine ton *ORx a is zero x)

}1; (* end of a loop *)

If[printall == 1,

Print["n =", n, " and average nunber of solutions: ", nunsolnsalla / (EulerPhi[n] + 1)]];
(*» prints average nunmb solns if told to print all )

I f[ numsolnsalla / (EulerPhi[n] + 1) != 1,

Print["n =", n, " and average nunber solns is ", nunsolnsalla / (EulerPhi[n] + 1)]];

results = AppendTo[results, tenplist];
}1; (* end of n loop *)
1; (* end of nodule x)

For the second part, we just need to tweak the middle code.

nunsol nsal lab = 0; (* keeps track of number of solns as vary a, fixed n *)
For[b = 0, b <=n - 1, b++,

If[GCDOb, n] == 1 || GD b, n] ==n, (* only look at b=0 or nrel prime to n *)
For[a =0, a<=n - 1, a++ (* our a counting |oop *)

{
If[GCDa, n] == 1 || GDa, n] ==n, (* only look at a=0 or a rel prime to n *)

nunsolns = 0; (* for given a, set nunber of solns to zero *)
For[x =0, x <= n - 1, x++, (* brute force:
see how many solns to x"deg = a nod n *)

{

(*sinmple check: if a given x works then increnent by 1,nmake sure x rel prime to n or is 0%)
I f[
Mod[x*2 - a x - b, n] == 0 & (CCD[x, n] == 1 || GO X, n] == n),
nunmsol ns = nunsol ns + 1];
}1; (* end of x loop *)
tenmplist = AppendTo[tenplist, {n, a, nunsolns}]; (* store tenp results to results *)
nunsol nsal I ab = nunsol nsal | ab + nunsol ns; (*conpute total nunmber of solns for fixed a *)
}1; (* end of IF statenent froma rel prime ton *ORx a is zero x)
}1; (* end of a loop *)
]; (* end of if statement for b gcd test »*)
}1; (* end of b loop *)

See the average number of solutions is exactly 1 ffrime, fluctuates otherwise. Conjecture: range ovec dllthat are 0 or
relatively prime to a prime, the average number of solutionsitd — ax — b = 0 mod p is 1 (divide byp?, asp(p) + 1 = p).

Proof: Asn = p is prime, the condition that the gcd afandb with p is 1 or they are zero meansandb freely range over
{0,1,...,p— 1}. Thus consider the triplgs:, a, b), wherez runs over the same range. Theregteuch triples. Given a pair, a)
there is a uniqué such thate? — az — b = 0 mod p; we just takeb = 2> — az! Thus there ar@? solutions to the? equations, so
on average there is one solution! There is nothing spec@ltad quadratic; the same argument and the same averaged ooy
finite degree polynomial.

If n were composite, however, this would break down as sometiveasould have the constant term equal to an element outside
of (Z/nZ)* U {0}, though if we studied this itZ/nZ) we would again have on average 1 solution. For example, if ae h
2?2 — Tz — b = 0mod 12 thenb = x(x — 7) mod 12, and ifz = 11 (which is invertible modulo 12, as is 7, then we would have
b =8 mod 12 and 8 is not invertible modulo 12 and thus not accessible elfapk atall polynomials, however, then on average we
do regain exactly one solution; if we havé — a4_12%~! — --- — aq then given any tupléz,ay_1,...,a1) € (Z/nZ)? there is a
unique choice fon, that gives a solutiorMoral: we should be investigating these polynomials witeficients and values it/ nZ,
not(Z/nZ)*.
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Due Friday, March 3: Might be easier to do in a different order.... Some problems might be very easy, others might require
work, and p always refers to a prime number. (1) Do Exercise a. from Hutz’ book. (2) Do Exercise 3.2 from Hutz’ book.
(3) Do Exercise 3.11 from Hutz’ book. (4) Show that ifa is a root of f () modulo a prime p then f(z) = (z — a)g(z) mod p
for some polynomial g(z) of degree less thanf. (5) Prove a polynomial of degreel has at mostd roots modulo p. (6) Prove
the polynomial 2{p — 1) = 1 mod p has exactlyp — 1 roots modulop. (7) The order of ana in (Z/pZ)* = {1,2,...,p—1}is
the smallestd such thata? = 1 mod p. Prove that the order of anya in (Z/pZ)* divides p — 1. (8) Prove if  and b are two
relatively prime roots to 2{p — 1) = 1 mod p with orders d, and d,, that if d, and d,, are relatively prime then ab has order
d.dy. (9) Let ¢ be a prime dividing p — 1. Prove there is an element: in (Z/pZ)* that has order exactlyq. (10) Assumep — 1
is a square-free number; thus ifn? dividesp — 1 thenn = 1. Prove for such primes that(Z/pZ)* is cyclic; this means there is
someg such that the group equals{1, g, g% ..., g'p — 2)}. This result actually holds for all primes (done in the book) this is

meant to be a guided set of exercises to this important resuih a special case; you can look and see where we use the prime
has special properties, and can that be removed.
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4. HW #5: DUE MARCH 3, 2017

4.1. Problems. Due Friday, March 3: Might be easier to do in a diffeent order.... Some problems might be very easy,
others might require work, and p always refers to a prime numtker. (1) Do Exercise 3.1 from Hutz’ book. (2) Do Exercise
3.2 from Hutz’ book. (3) Do Exercise 3.11 from Hutz’ book. (4)Show that if a is a root of f(x) modulo a prime p then
f(z) = (z — a)g(x) mod p for some polynomial g(z) of degree less thanf. (5) Prove a polynomial of degreel has at most
d roots modulo p. (6) Prove the polynomialz(p — 1) = 1 mod p has exactlyp — 1 roots modulo p. (7) The order of ana in
(Z/pZ)* = {1,2,...,p — 1} is the smallestd such thata? = 1 mod p. Prove that the order of anya in (Z/pZ)* dividesp — 1.
(8) Prove if a and b are two relatively prime roots to z(p — 1) = 1 mod p with orders d, and dj, that if d, and dj, are relatively
prime then ab has order d,d,. (9) Let ¢ be a prime dividing p — 1. Prove there is an element: in (Z/pZ)* that has order
exactly¢. (10) Assumep — 1 is a square-free number; thus ifn? divides p — 1 thenn = 1. Prove for such primes that(Z/pZ)*
is cyclic; this means there is some such that the group equals{1, g, ¢%, ..., g'p — 2)}. This result actually holds for all primes
(done in the book); this is meant to be a guided set of exercise¢o this important result in a special case; you can look andeze
where we use the prime has special properties, and can that lemoved.

4.2. Solutions.

(1) Do Exercise 3.1 from Hutz’ book.
Solution: For (a): We have

() = () = () (&)

As 82 = 2 mod 31 and10? = 7 mod 31 both symbols above are 1, and thus 324 is a square moduloi8B(iinod 31, or 18).
For (b): We have
34538\  (1139\ [ 17 67
(T?,?) B (1237) B (1237) (1237)'
As 1237, 17 and 67 are primes we can use quadratic reciprdgity237 mod 4 = 1 the power of -1 is even, and thus we do not

need to worry about it. We find
34538\ _ (1237\ (1237\ _ (13) /31
1237 ) \ 17 67 ) \17)\67)"

We use quadratic reciprocity again; the first factor has -dnteven power as both primes are 1 mod 4, while the second hasnl
odd power as both primes are 3 mod 4, giving

() - -(8) &) - -(6) &)

As 62 = 5 mod 31 we see both symbols above are 1, and thus the answer hers@s34538 is not a square modulo 1237.

(2) Do Exercise 3.2 from Hutz’ book.Find all the residue classes which are quadratic residuedum61.
Solution: We could compute? for eachr € (Z/61Z)* and see which 30 values emerge.
list = {};
For[n =1, n <= 60, n++,
| f[ Menber Iist, Mdd[n”*2, 61]] == Fal se,
list = AppendTo[list, Mdd[n"2, 61]]1]
Print[Sort[list]]
{1,3,4,5,9, 12, 13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36, 39, 41, 42, 45, 46, 47, 48, 49, 52, 56, 57, 58, 60}
We could also use Euler’s criterion to encode the Legendrésy.
list = {};
For[n =1, n <= 60, n++,
| f[ Mod[ n*30, 61] == 1, list = AppendTo[list, n]]];
Print[list]

{1,3,4,5,9, 12,13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36, 39, 41, 42, 45, 46, 47, 48, 49, 52, 56, 57, 58, 60}

(3) Do Exercise 3.11 from Hutz’ book.Letp > 2 be a prime. Prove tha(t‘Tl) = lifand only ifp = 1 mod 4.

Solution: For this problem we use the results of the rest of the homewnarkely that since is prime, the groupZ/pZ)* is cyclic
and generated by some elememtf orderp — 1. Thus there is am such that-1 = ¢™ mod p.
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Assumep = 1 mod 4 Then there is & such thatp — 1 = 4k, and the order of is 4k. In particular, this means tha#” is not 1
modulop; however, sincg?* squares to 1 it must be 1 or -1. As it is not 1 the only optionikeitis -1, and hence-1 is a square (it
is congruent tgy?*, which is(g*)?).

Assume nowp # 1 mod 4. If p = 2then—1 = 1 mod p and -1 would thus be a square, however, the problem states th&
so there is no need to look at this case. Thus 3 mod 4, and we may writep — 1 as4k + 2 for somek. Thusg?**! squares to 1
modulop, and must be 1 or -1. It can’t be 1 as then the orderwbuld be too small, and must be -1. Thug = ¢?**! mod p, and
-1lis not a square as it is an odd power of the generator. Wel @sb use Euler’s criterion:

(_1)(1;71)/2 _ (92k+1)(p71)/2 _ (g(pfl)/2)2k+1 _ (_1)2k+1 — HlOdp.

(4) Show that if a is a root of f(x) modulo a prime p then f(x) = (z — a)g(x) mod p for some polynomialg(x) of degree less
than f.

As every non-zero element &f/pZ is invertible, we can perform polynomial long division andt® f(z) as(x — a)g(z) + r(z),
where the degree of z) is less than that of — a, and hence(z) is constant. To see this, sgyz) = c,2" + c,—12" L+ + ¢p.
We find g term by term. To get the leading term we see we must multiplya by ¢, 2"~ ! to get the leading term gf. We then have

fx) —cpz™ Hxz—a) = (a1 —acy)z" t +cpox™ % 4 -+ ¢o mod p.

We then proceed by induction. df,_; = ac,, mod p we can skip the next term, if not the next termgdk (c,,_1 — ac,,)x™ 2.

All that remains is showing that(z) = 0. We knowr is a constant, say. Thusf(z) = (z — a)g(z) + ¢ mod p; however, as
f(a) = 0 we seec must be zero, completing the proof.

Remark: the result above holds in much greater generalityaMgreatly aids us is that — « is a monic coefficient and we have a
field (non-zero elements have multiplicative inversesistidad we had a composite moduli and tried to wiité — 9z as(4x—4)g(x)
with a remainder, we would be in trouble. The method abovddwpeneralize and we would want to start by multiplyitug— 4 by
3 - 471z, but4 is not invertible. The trouble is when there are divisors &bs, two non-zero elements multiplying to zero. Think
about how far you can generalize this result.

(5) Prove a polynomial of degreel has at mostd roots modulo p.
Solution: From the previous problem we can pull the roots out one at e.tifrthere are fewer that roots the problem is trivial. If
there arel roots we may label themy, ..., r; and we have

f@) = (@—=r1)--(z = r4)gr(x) mod p

for someg,.(x); we must show tha, is constant. This follows from the previous problem, as ghiis of degree 0 and hence constant
(remember each time we pull out a root the degree ofjthelynomial is at most one less than that of the polynomial sehmot we
are taking). Ifg,-(x) is identically zero theryf is identically zero, contradicting the fact that it is a pudynial of degre@. Thusg, (x)
is some non-zero constant, sayBecause is a prime, if we evaluatg¢(x) for anyz not one of ourd roots then we have a product
of non-zero numbers modujg which must be non-zero; note this step would faj iivere composite (if we were working modulo
12, for example, we could have a product thét i - 3 which vanishes, even though no term vanishes).

Remark: The proof here illustrates a common technique: dade and then lather, rinse, repeat; this is often calledshampoo
method. We’'ll see this method again later.

(6) Prove the polynomialz(p — 1) = 1 mod p has exactlyp — 1 roots modulo p.
Solution: By Fermat’s little Theorem we know ifcd(a, p) = 1 thena?~! = 1 mod p. Thus each of the — 1 elements of Z/pZ)*
is a root, and hence there are exagthy 1 roots modulg as 0 is not a root.

(7) The order of ana in (Z/pZ)* = {1,2,...,p — 1} is the smallestd such thata? = 1 mod p. Prove that the order of anya in
(Z/pZ)* dividesp — 1.

Solution: We knowa?~! = 1 mod p. If d dividesp — 1 we're done, if not assume < ged(d,p — 1) = k < d. By the Euclidean
algorithm there arev, 8 such thaind + 8(p — 1) = k. Thus

ab = qodtBle—1) — gadgBle—1) — (ad)a (a”_l)ﬁ = 1 mod p.

Thusa* = 1 mod p, contradicting the fact thatis the order.
Remark: This won't be the first time on the homework that kngwome abstract algebra, specifically Lagrange’s theorgauld
help! What we're doing is independently deriving theseltegust in the special cases we need!

(8) Prove if a and b are two relatively prime roots to z{p — 1) = 1 mod p with orders d, and d, that if d, and d,, are relatively
prime then ab has orderd, dp.
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Solution: Clearly the order ofib dividesd, d, as
(ab)lad = (g%)de(pd)de = 1.1 = 1 mod p.

Could the order be smaller?

First note thaf 1, a,a?,...,a% 1} and{1,b,b%,...,b% 1} only have one element in common, 1. The reason is these die cyc
groups and the order of anything in the first set must nonathvdivide d,, (if it isn’t 1), while similarly the order of anything in
the second set must non-trivially divide (if it isn't 1). To see our claim about orders we could use lzaqge’s theorem from group
theory, but as abstract algebranist a pre-requisite for this course we'll also give a direct gramagine for example that?, which
we assume is not 1, has ordenot dividingd,,. Sinced,, is the smallest power af that is 1 modulg, we musthaveid > d,. If they
are equal we are done, if not assuide> d,,. By the division algorithm we can writel = ad,, + r forsomer € {0,1,...,d, — 1}.
But now

1 = aid _ aada+r _ aadaar _ (ada)aar — 4" mod P;
thusa” = 1 mod p, contradictingl being the minimal order.

We now return to the main proof, using the cyclicity of the tsets and showing the only elementin common is &’ K b; then
the order of this element must divide bath andd,; as these two numbers are relatively prime the only podsilisl that the order
of this elementis 1, and heneé= b/ = 1 mod p.

Thus the only wayab)? can be 1 is itz? andb? are both 1 modulp (as otherwise? is the inverse ob?, which isb% ¢ mod p).
Thusd must be a multiple off, and a multiple ofi,; the smallest multiple it can be i d;,, which we have shown works, completing
the proof.Note we never needed to usandb are relatively prime, only that their orders are!

Remark: while sometimes we may think we need or want centaiditions, oftentimes they turn out to be unnecessary. \W& do
need the two elements to be relatively prime. What we neédiisar der s to be relatively prime. The key idea is getting a sense of
the structure of the sub-group generateddofor by b). The proof that the order af’ divides the order of: could be deduced from
Lagrange’s theorem, but again our goal is to do things eletady. \We obtain a nice contradiction by the conceptohi nal i ty;
the order is the smallest integer with a given problem, andskhw@w that if the order ofi’ is not a divisor of that then we can find a
smaller power of: that is 1. This is an extremely important property, and onthefbiggest uses of the division algorithm.

(9) Let ¢ be a prime dividing p — 1. Prove there is an element: in (Z/pZ)* that has order exactlyq.
Solution: We know every element has order dividipg- 1, andz? = 1 mod p has at most roots. Assume there are no solutions to
29 = 1 mod p for someq dividing p — 1. Note there cannot be an element of orgfeor ¢> et cetera; if saytq2 = 1 mod p thenx?
would have ordey. More generally, if some had ordemq for someb > 0 thenz?? = 1 mod p implies (z*) has orde, violating
our assumption. Thuall elements have order relatively prime¢o

By Fermat's little Theorem we know”~! = 1 mod p for all z € (Z/pZ)*; thus there are exactly — 1 roots to this equation.
Since each element has order dividing 1 and by assumption each order is relatively prime,teve see each element also has order
dividing (p — 1)/q. But by Exercise (5) the polynomiaf?~1/¢ = 1 mod p can have at mosp — 1)/q roots, but it must have — 1
roots (as all elements satisfy it); contradiction.

Remark: What i/ dividesp — 1? What can you say?

(10) Assumep — 1 is a square-free number; thus ifn? dividesp — 1 thenn = 1. Prove for such primes that(Z/pZ)* is cyclic;
this means there is someg such that the group equals{1, g, ¢°, ..., ¢'p — 2)}. This result actually holds for all primes (done
in the book); this is meant to be a guided set of exercises toighimportant result in a special case; you can look and see whe
we use the prime has special properties, and can that be remed.
Solution: The problem follows by showing there is an element of onder 1. By the previous result, for each pringedividing
p — 1 there is an element, of orderq. Letp — 1 = ¢; - - - ¢»; note the primes are distinct as- 1 is assumed square-free. Consider
x1 -+ -x,.. This element has ordes - - - ¢, = p — 1 by repeated applications of Exercise (8) (i.e., groupifig)see this, we first note
x1 andx, have relatively prime orders (our proof never used the efgsigeing relatively prime, only their orders). Thus theavraof
122 IS q1g2. We now apply Exercise (8) again, this timeatar, andxs, with relatively prime orderg; g2 andgs, and findz, xoxs
has order; g2g3. We continue marching down....

As a nice exercise, can you pro{#@/pZ)* is cyclic for all primes? All that you need to change is thati$ the highest power of
q dividingp — 1 then there is an element of ordef.

NO WRITTEN HW DUE NEXT WEEK BECAUSE OF MIDTERM.
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5. HW #7: DUE MARCH 17, 2017

#1: Problem 4.4: Find the inverse cipher to the affine cipheBx + 7 mod 26.
Solution: If y = 3z + 7 mod 26 thenz = (y — 7)37! mod 26, where3~! = 9 mod 26. Thusz = 9y — 63 = 9y + 15 mod 26, SO
the inverse is the magy + 15 mod 26.

#2: Devise a system so that three people can share a secret inrawded room, but no one else will know it.

Solution: We can extend the method from class. héte a prime ang a generator fofZ/pZ)*. Let Alice choose an, Bob ab, and
Charlie ac, which they keep private. They comput, ¢°, ¢¢ and share. They now publicly shay&’, ¢*¢, g*°. Each can now com-
puteg®®c. This is the the simplest method | can think of, and is esatypiivhat is on Wikipedia (sebt t ps: // en. wi ki pedi a.
org/wi ki/Diffie¥®E2980%93Hel | man_key_ exchange#Operation_with_nore_than_two_parties). The nat-
ural question, of course, is how secure is all of this. Seelals p: //ij ns.jal axy.comtw contents/ijns-v15-n4/

i jns-2013- v15- n4- p256- 264. pdf .

#3: Generalize the previous problem so thafV people can share a secret in a crowded room, but no one else Mdhow.
Solution: Let each person choose a numbgand, withg as in the previous problem, comput&. We want the most efficient way
to get tog®t%~. One way is to start with the first person (Alice), who septisto the second person (Bob), who serts*z to
the third person (Charlie), and so on. This chain will endhiiten™ person (Nancy) receivingf*%»-1. She raises this to thg,™"
power to get the secret. At this point only the last persomigiihe secret.

We now help the first find the secret. Bob starts another oftlebains, sending®2 to Charlie. Charlie sendg*2%s to Denise,
and so on. Eventually Nancy sengls %~ to Alice, who raises this to the, " power, and now she too has the secret.

Thus we have: chains, and afterwards all have the secret. How many cortipngavould there be if we used the method from
the previous problem, with everyone talking to everyone?eNio this method you only communicate with the person immaedly
before or after.

Chapter 5: #4: Calculate the average order ofy in various ranges: this means find% Y n<s @(n) for various z. Make a
conjecture about the rate of growth. B

Solution: Below is the code and we give some plots in Fiddre 5; it sures dmek like the average order is linearly increasing! It's
often worth doing a log-log plot, as that can illuminate tielaships. For example, it may be hard to see a curve lookg/lik Ca"
(especially ifr is some number liké11/2/3), but if we do a log-log plot we ge¥ = rX 4+ C, where) = log(y), & = log(x) and

C = log(C). We can thus use the method of least squares to figure out po@ent- and the constartt’ = exp(C).

phiplot[num] := Mdule[{},
(* will do up to num saving results in lists *)
list = {};
loglist = {};

sum=0; (* initializes sumto 0 *)
For[n = 1, n <= num n++,
{
sum = sum + EulerPhi[n]; (* increases sumby phi(n) *)
I f[ Mod[ n, nunf 1000] == 0, (*
only print every 1000 to keep size nmanageabl e *)
{ (* stores results in list, for plot and |l og-1og plot *)
list = AppendTo[list, {n, 1.0 sum n}];
| oglist = AppendTo[l oglist, {Log[n], Log[1l.0 sum n]}];
s
s
Print[ListPlot[list]]; (* prints output =)
Print[ListPlot[loglist]];
(» Best Fit Line Parts: WII do for log-l1og plot x)
(» x_n =1og(n), y.n =1log(sumat n divided by n, N =
Length(loglist) =)

Print[

"Usi ng Met hod of Least Squares: analysis online available at"];
Print]

Hyper | i nk[

"https://web.willians. edu/ Mat hematics/sjmller/public_htm/Brownd asses/
54/ handout s/ Met hodLeast Squar es. pdf"]];
bi gN = Length[loglist];


https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Operation_with_more_than_two_parties
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Operation_with_more_than_two_parties
http://ijns.jalaxy.com.tw/contents/ijns-v15-n4/ijns-2013-v15-n4-p256-264.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v15-n4/ijns-2013-v15-n4-p256-264.pdf
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xsum = Suniloglist[[n, 1]], {n, 1, bigN];

xxsum = Sunfloglist[[n, 1]]72, {n, 1, bigN];

ysum = Sunfloglist[[n, 2]], {n, 1, bigN];

xysum = Sunfloglist[[n, 1]] loglist[[n, 2]], {n, 1, bigN];
mat M = {{xxsum xsun}, {xsum bigN};

out putvec = {{xysun}, {ysumt};

bestfit = Inverse[ mat M . out put vec;

Print]

"Looks |ike of the form Const x“power + smaller; trying to get Const, power."];
Print["Best guess for power fromlog-log plot: ", bestfit[[1, 1]]];

Print["Best guess for Const fromlog-log plot:
Exp[bestfit[[2, 1]]]];

Print["Note 1/(2 zeta(2)) = 3/pi*2 =", 3. | Pi"2];
1

Looks |i ke of the form Const x“power + smaller; trying to get Const, power.
Best guess for power fromlog-log plot: 0.999999

Best guess for Const fromlog-log plot: 0.303969

Note 1/(2 zeta(2)) = 3/pi~2 = 0.303964

FIGURE 5. Left: average order of the Euler totient function. Rigbg-log plot of average order of the Euler totient function.

Figure[® is a proof from a former student of mine:
http:// mat hoverfl ow. net/ questi ons/ 84571/ aver ages- of - eul er - phi - functi on-and-sinil ar.

Here is the standard, but very enlightening, elementary computation. Using

¢(n) =n3 4, # = md—n Mp(d), we manipulate finite sums:

En(X ¢(n) = Edm()( m#’(d) o Ed<X l‘l’(d) Em<X,"dm

=Y x M(d)(3X?/d* + O(X/d)) = 3X* 3 ;. x d*p(d) + O(X log X)

= 527 X2+ O(Xlog X).

A similar calculation gives Y ,,_ x 8(n) = ﬁx“ + O(X?) . (Why is the error log-free?)

share cite improve this answer

David Hansen
| 7474 » 52 37 » 67

FIGURE 6. Post proving the growth rate of the average order of therEatient function.

No written HW over spring break.


http://mathoverflow.net/questions/84571/averages-of-euler-phi-function-and-similar

MATH 313: SOLUTIONS TO HOMEWORK PROBLEMS 17

6. HW #8: DUE APRIL 7, 2017

6.1. Problems. Homework #8: Due Friday April 7, 2017: #1: Prove,/p is irrational if p is prime. #2: Use Roth’s theorem to
prove that there are only finitely many solutions in the integers to 2% — 2y% = 2017. #3: (Exercise 6.12a) Prove that for any
two rational numbers a and b with a < b, there is an irrational number x with a < x < b. #4: (Exercise 6.14): Prove or find a
counter example for each of the following statements. a. Thproduct of two rational numbers is rational. b. The product of
two nonzero irrational numbers is irrational. c. The product of a nonzero irrational number and a nonzero rational number
is irrational.

6.2. Solutions. Solution:#1: If \/p = a/b with a, b relatively prime therb?p = a? sop|a® and sincep is prime we have|a (if a
prime divides a product it divides at least one term). Thusnag writea = pa, then findb?p = o?p? sob? = a?p, and thup|b? so
p|b, contradictingz, b relatively prime.

Solution: #2: There are only finitely many integer solutiopsy) € Z? to

2 -2 =a

N

(we do the more general case, not just 2017). In order to see this, we proceed as follows. pet e2™/3 = (—1)1/% = -1 4
Then

2 —2y% = (x—2"%y)(x — p2'/%y)(x — p*2'/%),
and therefore

% _ T _ o3|t _p21/3 €z _p221/3
Y Y Y Y
> T _ 913 ’3m(p21/3)’ ’7m(p221/3)’
Y
I I RPN YE
24/3 y :
Hence every integer solutidi, y) to 2° — 2y® = a is a solution to
gus_e|  3:2748
yl = P

By Roth’s Theorem there are only finitely many such solutions

Solution: #3: We want to find an irrational between two rational numheasdb. Let D = (b—a)/2%°17. Notea + /2L is irrational,
and asy2L < b — a we havea < a + /2L < b. (If our number were rational, say equaligy, theny/2 = (p/q — a)/L and thus
v/2 would be rational.

Solution: #4: (a) True: ifr; = py/q1 andry = po/qo thenriry = (p1p2)/(qug2). (b) False: Asy/2 is irrational, theny/2v/2 = 2
is rational. (c) True: ifr = p/q andx is irrational, assumex is rational; thenrz = a/b for some integers, b, which implies
x = a/br = aq/bp is rational, contradicting irrational.
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