
MATH 313: INTRODUCTION TO NUMBER THEORY: SPRING 2017
HOMEWORK SOLUTION KEY

STEVEN J. MILLER (SJM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 313, SPRING 2017

ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material in the book so that you can do the
problems to thinking about the problem statement, how you might go about solving it, and why some approaches work and others don’t. Another
important part, which is often forgotten, is how the problemfits into math. Is this a cookbook problem with made up numbersand functions to
test whether or not you’ve mastered the basic material, or does it have important applications throughout math and industry? Below I’ll try and
provide some comments to place the problems and their solutions in context.
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FIGURE 1. Counting the number of(n,m) yielding a perfect square. We order the points by their valueof n, and
plot the pair withx-coordinate equal to the count number andy-coordinate equal to the square root of the sum (the
right is the log-log version of this plot).

1. HW #2: DUE FEBRUARY 10, 2017

1.1. Problems: (1) 1.10. Find a sequence of consecutive numbers the sum of whose squares is a square. (Must have at least three
numbers.) (2) 1.15. Use induction to prove that5|n5 − n for any positive integern. (3) 1.17. Prove that the product of 3 consecutive
integers is divisible by 6.

1.2. Solutions: (1): 1.10. Find a sequence of consecutive numbers the sum of whose squares is a square. (Must have at least
three numbers.)
Solution: Note that

∑n
k=0 k

2 = n(n+ 1)(2n+ 1)/6, and thus

(m+ 1)2 + (m+ 2)2 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
− m(m+ 1)(2m+ 1)

6
.

If we wish this to equal a square, sayy2, then for a fixedm we gety2 = fm(n), wherefm is a degree three polynomial with
coefficients which are a function ofm. This turns out to be an elliptic curve, an extremely important object in modern number theory,
with applications from cryptography to the proof of Fermat’s Last Theorem.

Below is some code to numerically explore and plot the result. The first example with at least three terms is(n,m) = (24, 1), with
sum equal to702. Note how useful a log-log plot can be in understanding the behavior.

f[n_, m_] :=
n (n + 1) (2 n + 1)/6 - (m - 1) m (2 m - 1)/6 (* m^2 + ... + n^2 *)

list = {};
loglist = {};
count = 0;
For[n = 1, n <= 40000, n++,

For[m = 1, m <= n - 1, m++,
If[IntegerQ[Sqrt[f[n, m]]] == True,

{
count = count + 1;
If[n < 10000,
Print["(n,m) = (", n, ",", m, ") and f[n,m] = ", f[n, m],
" " , Sqrt[f[n, m]]]];

list = AppendTo[list, {count, Sqrt[f[n, m]]}];
loglist = AppendTo[loglist, {Log[count], Log[Sqrt[f[n, m]]]}];
}];

]];
Print[ListPlot[list]];
Print[ListPlot[loglist]];
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(2): 1.15. Use induction to prove that5|n5 − n for any positive integern.
Solution: Let P (n) be the statement that5|n5 − n. The base case clearly holds whenn = 1, and we can checkn = 2 or 3 as well.
Let’s do the inductive step: thus we assumeP (n) is true and must showP (n+ 1) follows. SinceP (n) is true we know5|n5 − n.

Consider(n+1)5− (n+1). While we could factor out ann+1, we want to somehow uncover the statementP (n). Thus it seems
worthwhile to expand, which by the binomial theorem yields

(n+ 1)5 − (n+ 1) =
(

n5 + 5n4 + 10n3 + 10n2 + 5n+ 1
)

− (n+ 1) .

Notice the two+1 terms cancel, and what remains is

n5 − n+ 5
(

n4 + 2n3 + 2n2 + n
)

.

The last part is clearly a multiple of 5, and the inductive assumption gives 5 dividesn5 − 5. Thus 5 divides(n + 1)5 − (n + 1),
completing the proof.

(3): 1.17. Prove that the product of 3 consecutive integers is divisible by 6.
Solution: We sketch the proof. First one shows that every other integeris a multiple of 2, and then that every third integer is a multiple
of 3. Thus in any set of three consecutive integers we must have at least one multiple of 2 and at least one multiple of 3.

For another proof, we can write any three consecutive integers as6n+ i, 6n+ i+ 1, 6n+ i+ 2 for somei ∈ {0, 1, 2, 3, 4, 5}. All
we need to do is show that at least one term, when we multiply the three together, is of the form6n+ j with j a multiple of 6.

HW #3: Due February 17, 2017:(1) 1.6: The numbers 1051, 1529, and 2246 have the same remainderr when divided by some
integerd. Find d andr. (2) 1.11. Forn a natural number considerTn = 22

n

. (a). FactorTn for n = 1, . . . , 5. (b.) Prove that
Tn has at leastn prime divisors. Note: what does this exercise allow you to deduce? (3) 1.25. Prove that there are infinitely many
primes with remainder 3 when divided by 4. (4) Exploration problem: How many of the Fibonacci numbers{Fn} are prime? What
do you observe? What can you prove? What do you conjecture? (5) Find a formula for the sum of the first few consecutive Fibonacci
numbers:F1 + F2 + · · ·+ Fn. Your formula should involve the Fibonacci numbers. HereF0 = 0, F1 = 1 andFn+1 = Fn + Fn−1.
(6) Find a formula for the sum of the first few consecutive squares of Fibonacci numbers:F 2

1 + F 2
2 + · · ·+ F 2

n . Your formula should
involve the Fibonacci numbers. (7) Prove that for any fixed integerN , there exist at least two consecutive primes differing by atleast
N .
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2. HW #3: DUE FEBRUARY 17, 2017

2.1. Problems. (1) 1.6: The numbers 1051, 1529, and 2246 have the same remainderr when divided by some integerd. Findd andr.
(2) 1.11. Forn a natural number considerTn = 22

n

. (a). FactorTn for n = 1, . . . , 5. (b.) Prove thatTn has at leastn prime divisors.
Note: what does this exercise allow you to deduce? (3) 1.25. Prove that there are infinitely many primes with remainder 3 when
divided by 4. (4) Exploration problem: How many of the Fibonacci numbers{Fn} are prime? What do you observe? What can you
prove? What do you conjecture? (5) Find a formula for the sum of the first few consecutive Fibonacci numbers:F1 +F2 + · · ·+Fn.
Your formula should involve the Fibonacci numbers. HereF0 = 0, F1 = 1 andFn+1 = Fn + Fn−1. (6) Find a formula for the sum
of the first few consecutive squares of Fibonacci numbers:F 2

1 +F 2
2 + · · ·+F 2

n . Your formula should involve the Fibonacci numbers.
(7) Prove that for any fixed integerN , there exist at least two consecutive primes differing by atleastN .

2.2. Solutions. (1) 1.6: The numbers 1051, 1529, and 2246 have thesame remainderr when divided by some integerd. Find
d and r.
Solution: We write

1051 = ad+ r, 1529 = bd+ r, 2246 = cd+ r.

While this is three equations in four unknowns, our quantities must be integers, and that helps. If we subtract the first from the second
and the second from the third we get

478 = (b− a)d, 717 = (c− b)d.

We knowd must divide 478 and 717. If we factor these we find478 = 2 · 239 and717 = 3 · 239. Thus the only options ared = 1
or d = 239.

Noted = 1 works, givingr = 0. If we try d = 239 then we have

1051 = 4 · 239 + 95, 1529 = 6 · 239 + 95, 2246 = 9 · 239 + 95.

Thusd = 239, r = 95 also works.

(2) 1.11. Forn a natural number consider Tn = 22
n − 1. (a). FactorTn for n = 1, . . . , 5. (b.) Prove that Tn has at leastn

prime divisors. Note: what does this exercise allow you to deduce?
Solution: As a2 − b2 = (a− b)(a+ b), we have

Tn = 22
n − 1 =

(

22
n−1

)2

− 12 =
(

22
n−1 − 1

)(

22
n−1

+ 1
)

= Tn−1 · (Tn−1 + 2).

We proceed by induction, and factorTn−1 asTn−2 · (Tn−2 + 2), and thus find

Tn = T0(T0 + 2)(T1 + 2) · · · (Tn−1 + 2)

(asT0 = 1 we can drop that if we wish).

T[n_] := 2^(2^n) - 1;
factorT[n_] := FactorInteger[T[n]];
theoryfactorT[n_] := FactorInteger[Product[T[i] + 2, {i, 0, n - 1}]];
For[n = 1, n <= 5, n++, Print["direct: ", factorT[n], "; theory: ", theoryfactorT[n]]]

The theoretical approach matches the brute force approach for n ≤ 5; the results are

• 3: 3.
• 15: 3 · 5.
• 255:3 · 5 · 17.
• 65535:3 · 5 · 17 · 257.
• 4294967295:3 · 5 · 17 · 257 · 65537.

We see thatTn equalsTn−1 · (Tn−1+2). AsTn is odd forn ≥ 1, Tn−1+2 is relatively prime toTn−1 (if d divided both it divides
their difference; as that difference is 2 the only options for d are 1 or 2). Thus every time we increasen we add a new factor which is
at least 2 and cannot share a factor with earlier numbers. ThusTn has at leastn prime factors, andwe have proved there are infinitely
many primes!Not bad for a homework assignment!

Note:These numbers are closely related to the Fermat numbers,Fn = 22
n

+ 1. In particular,Tn = Tn−1 · Fn. The factorizations
above suggest the conjecture that all Fermat numbers are prime; interestingly these five are theonly ones known to be prime (and it
is believed there are no others). If there is interest I can give a heuristic proof that there are about 3 Fermat numbers which are prime
(yes, I know there are five!).

(3) 1.25. Prove that there are infinitely many primes with remainder 3 when divided by 4.
Solution: We can tweak Euclid’s proof. Assume there are only finitely many such primes, which we denotep1 = 3, p2 = 7, . . . , pn.
Considerxn = 4p2p3 · · · pn + 3. Notexn ≥ 12, and no prime in our list divides it. Further 3 does not dividexn (it is important that
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3 is not included in the product, else that could be the prime). If xn is prime we found a new prime not on our list of the correct form.
If it is composite we see it cannot only be divisible by primeswith remainder 1 when divided by 4, which other than 2 are all the
remaining prime candidates (and note our number is clearly odd and thus not a multiple of 2). The reason is two numbers thathave
a remainder of 1 when divided by 4 have a product that also has aremainder of 1 when divided by 4. Thus at least one factor ofxn

must have a remainder of 3 when divided by 4.
Interestingly this argument only works for some remainders. We will probably talk about what happens in general. Sadly ele-

mentary proofs don’t work for all cases. For more see R. Murty, Primes in certain arithmetic progressions, Journal of the Madras
University, (1988), 161–169.

(4) Exploration problem: How many of the Fibonacci numbers{Fn} are prime? What do you observe? What can you prove?
What do you conjecture?
Solution: Let’s write some code. Mathematica fortunately has good functions for primality testing.

fibprime[n_] := PrimeQ[Fibonacci[n]]
fibprimeexplore[num_] := Module[{},

count = 0;
For[n = 1, n <= num, n++, If[fibprime[n] == True,

{
If[n <= 100, Print[n, " ", Fibonacci[n]]];
count = count + 1;
}];

];
Print["Number F[n] prime for n up to ", num, " is ", count];
Print["Percentage of n up to ", num, " giving prime is ",
100. count/num];

];

Forn ≤ 5000 there are 23n giving rise to Fibonacci numbers that are prime; that increases to 26 if we letn go up to 10000. It
is conjectured that there are infinitely many Fibonacci numbers that are prime, but this is not known. If there is interestI can give a
heuristic on how many Fibonacci numbers should be prime.One can also ask similar questions about the intersection ofFibonacci
numbers and other special sequences, such as the perfect squares. In other words, how often is a Fibonacci number a square? See
https://math.la.asu.edu/~checkman/SquareFibonacci.html for the answer.

(5) Find a formula for the sum of the first few consecutive Fibonacci numbers: F1 + F2 + · · · + Fn. Your formula should
involve the Fibonacci numbers. HereF0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1.
Solution: If we look at the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, we see the first few sums are 1, 2, 4, 7, 12, 20, 33. We see that
these sums are 1 less than a Fibonacci number, and conjectureF1 +F2 + · · ·+Fn = Fn+2 − 1. We can now prove this by induction.
The base case has been done, and for the inductive step we assume it holds for the sum of the firstn and examine the sum of the first
n+ 1. We find

F1 + F2 + · · ·+ Fn+1 = (F1 + F2 + · · ·+ Fn) + Fn+1

= Fn+2 − 1 + Fn+1 = Fn+3 − 1,

as claimed.

(6) Find a formula for the sum of the first few consecutive squares of Fibonacci numbers:F 2
1 + F 2

2 + · · ·+ F 2
n . Your formula

should involve the Fibonacci numbers.
Solution: It is FnFn+1. There are several ways to prove this. Now that you know the answer, try to do it by induction. For another
proof, one can show that the Fibonaccis tile the plane in a spiral that gives us a rectangle at each stage; we do this by having squares
of side lengthFi. Draw the picture. Thus we have a rectangle that isFn byFn + Fn−1 = Fn+1, and hence its area is the product of
the two; however, the rectangle is just a union of disjoint squares with side lengthsFi, and thus the area is also the sum of the squares.

For more on this, see my blog posthttps://math.williams.edu/to-bead-or-not-to-bead/ (which has some
great additional readings). Figure??gives a (fun) depiction.

(7) Prove that for any fixed integerN , there exist at least two consecutive primes differing by atleastN .
Solution: For anyN , let xN = N ! + 2. Note thatxN is not prime as it is a multiple of 2. Further,xN + j is composite for
0 ≤ j ≤ N − 2 as it is divisible byj + 2. Thus the largest prime at mostxN is N ! + 1 or smaller, while the smallest prime at least
xN + 1 isN ! +N or larger. Thus we have found two primes that differ by at least N .

https://math.la.asu.edu/~checkman/SquareFibonacci.html
https://math.williams.edu/to-bead-or-not-to-bead/
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FIGURE 2. Fibonacci spiral, made with Kayla and Cameron Miller.

Note: instead of settingxN = N ! + 2 we could studyyP = P# + 2, where# denotes theprimorial. The primorial is similar
to the factorial, except we only multiply by the primes fromP down to 2. For extra credit, investigate how fast the primorial grows
relative to the factorial. Is this a big savings? Is this worth doing? This method, while it works, appears quite wasteful. Compare the
ratioN/xN orP/yP ; is it possible to get a larger value so the numerators and denominators are of comparable size?

Homework #4: Due Friday, Feb 24, 2017: (1) Prove Wilson’s theorem: n > 1 is prime if and only if (n-1)! = -1 mod n.
Discuss how this can be used for a primality test. (2, 3, 4, 5: yes, counts as 4 problems!) Write a computer program to
investigate Fermat’s little Theorem for all n from 3 to 10000. For each n use ALL a relatively prime to n (take 1 < a < n),
and record what fraction of these a havea(n − 1) = 1 mod n. Gather data, list all the Carmichael numbers you find, and
formulate conjectures. YOU get to choose what data to gather, what you want to study, what you want to conjecture. One of
the purposes is to give you a feel of what research is like; youhave freedom here! Do not look up answers online.... (6, 7, 8,
9: yes, counts as four problems): Investigate the number of solutions to xd = a mod n for d = 1 to 10,n = 2 to 100, and for
eachn let a range over all numbers relatively prime ton AND also includea = 0. What is true about the average number
of solutions toxd = a mod n as we range over all these values ofa for a fixed n and d? Make a conjecture.... Now look at
x2 − ax− b = 0 mod n wherea and b are either 0 or relatively prime to n; note as they range we cover all possible quadratic
polynomials. Investigate the average number of solutions for 1 < n < 42. Make a conjecture....
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3. HW #4: DUE FEBRUARY 24, 2017

3.1. Problems. Homework #4: Due Friday, Feb 24, 2017: (1) Prove Wilson’s theorem:n > 1 is prime if and only if(n − 1)! =
−1 mod n. Discuss how this can be used for a primality test. (2, 3, 4, 5:yes, counts as 4 problems!) Write a computer program to
investigate Fermat’s little Theorem for all n from 3 to 10000. For each n use ALL a relatively prime to n (take 1 < a < n), and record
what fraction of these a havea(n− 1) = 1 mod n. Gather data, list all the Carmichael numbers you find, and formulate conjectures.
YOU get to choose what data to gather, what you want to study, what you want to conjecture. One of the purposes is to give you a
feel of what research is like; you have freedom here! Do not look up answers online.... (6, 7, 8, 9: yes, counts as four problems):
Investigate the number of solutions toxd = a mod n for d = 1 to 10,n = 2 to 100, and for eachn let a range over all numbers
relatively prime ton AND also includea = 0. What is true about the average number of solutions toxd = a mod n as we range over
all these values ofa for a fixedn andd? Make a conjecture.... Now look atx2 − ax − b = 0 mod n wherea andb are either 0 or
relatively prime ton; note as they range we cover all possible quadratic polynomials. Investigate the average number of solutions for
1 < n < 42. Make a conjecture....

3.2. Solutions. (1) Prove Wilson’s theorem:n > 1 is prime if and only if (n− 1)! = −1 modn. Discuss how this can be used
for a primality test. Solution: If n is composite, sayn = ab, then2 ≤ a, b ≤ n− 1 and thusn|(n− 1)!; hence(n− 1)! = 0 mod n.

Assume nown is prime; to emphasize this let’s writep. Since(Z/pZ)∗ is a multiplicative group, each number has an inverse and
the inverses are distinct (i.e., no element is the inverse totwo elements). Two elements are their own inverse: 1, -1. Canany other
number be its own inverse? In other words, what are the solutions tox2 = 1 mod p? Well, for this to hold there must be somem
such thatx2 = 1 +mp. Thus

x2 − 1 = mp, or (x− 1)(x+ 1) = mp

with 1 ≤ x ≤ p− 1. Sincep is prime,p must divide eitherx − 1 or x + 1. For our range ofx the first factor is a multiple ofp only
for x = 1, while the second only forx = p− 1 (which is the same as−1 mod p). Thus no other elements are their own inverses, and
when we look at the product

1 · 2 · 3 · · · (p− 2) · (p− 1) mod p

we can pair off all the terms by puttinga anda−1 together (which gives a product of 1 modulop) except for 1 andp − 1. Thus the
product isp− 1 mod p, or−1 mod p.

This provides a simple primality test. If we compute(n − 1)! mod n, if it is zero our number is composite while if it is -1 our
number is prime. Unfortunately it is painful to compute thisfor largen!

(2, 3, 4, 5: yes, counts as 4 problems!) Write a computer program to investigate Fermat’s little Theorem for all n from 3 to
10000. For each n use ALL a relatively prime to n (take 1 < a < n),and record what fraction of these a havea(n−1) = 1 mod n.
Gather data, list all the Carmichael numbers you find, and formulate conjectures. YOU get to choose what data to gather,
what you want to study, what you want to conjecture. One of thepurposes is to give you a feel of what research is like; you
have freedom here! Do not look up answers online....
Solution: From running our program we find the Carmichael numbers up to 10000 are:{561, 1105, 1729, 2465, 2821, 6601, 8911}.
Further,

Carmichael number 561 has factorization {{3,1},{11,1},{17,1}}.
Carmichael number 1105 has factorization {{5,1},{13,1},{17,1}}.
Carmichael number 1729 has factorization {{7,1},{13,1},{19,1}}.
Carmichael number 2465 has factorization {{5,1},{17,1},{29,1}}.
Carmichael number 2821 has factorization {{7,1},{13,1},{31,1}}.
Carmichael number 6601 has factorization {{7,1},{23,1},{41,1}}.
Carmichael number 8911 has factorization {{7,1},{19,1},{67,1}}.

Here is the code; see Figures 3 and 4 for results of the exploration.
FlTtester[numdo_] := Module[{},

(* store results here *)
(* storing two ways: both as a list of n and value to plot, and just the values *)
results = {}; (*stores n and percent of a that led to a failed test for n composite *)
histogramresults = {}; (* same as above but stores not a pair,
just percent of a failing *)
lowestresults = {}; (* stores pair of n and first a that failed *)
histogramlowestresults = {}; (* same as above but stores not a pair, just first a that failed *)
carmichael = {}; (* stores our carmichael numbers here *)
For[n = 3, n <= numdo, n++, (* look at the numbers from 3 to numdo *)
{
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numpass = 0; (* for each n initialize number of a that pass fail test to 0 *)
numfail = 0;
foundlowest = 0; (* use this to record first a that failed *)
For[a = 2, a <= n - 1, a++, (* tests a relatively prime to n *)
{
If[GCD[a, n] == 1, (* only need to test a that are relatively prime to n,
hence this test *)
If[Mod[a^(n - 1), n] == 1, numpass = numpass + 1,
numfail = numfail + 1];

(* above:
if equals 1 then pass test and increment numpass by 1,
else fail and increment numfail by 1 *)
]; (* end of gcd test and increment *)

If[foundlowest == 0 && numfail == 1, (* enter here if FIRST time failed a test *)
{
foundlowest = 1; (*
increment foundlowest so that won’t enter again for this n *)
lowestresults = AppendTo[lowestresults, {n, a}]; (*save results to file *)
histogramlowestresults = AppendTo[histogramlowestresults, a];
}

]; (* end of IF loop *)
}]; (* end of a loop *)

(* now that a loop is done we will save results *)
(* first bits are to make output nice *)
If[numfail == 0, printclaim = {PASSED ALL}, {}];
If[PrimeQ[n] == True, primestatus = {PRIME},
primestatus = {COMPOSITE}];

(* prints out a lot of info on first 20 numbers *)
If[n <= 20,
Print[n, ", numpass = ", numpass, ", numfail = ", numfail,
", ", printclaim, ", ", primestatus]];

If[Mod[n, numdo/10] == 0,
Print["We have done ", 100.0 n/numdo, "%."]]; (*update every 10% on where we are *)

If[numfail == 0 && PrimeQ[n] == False, (*this prints out carmichael numbers and
adds to our carmichael list *)

{
Print[" ", n, " is CARMICHAEL."];
carmichael = AppendTo[carmichael, n];
}

];
If[PrimeQ[n] == False, (* saves info on composite numbers *)
{
results =
AppendTo[results, {n, 1.0 numfail / (EulerPhi[n] - 1)}];

histogramresults =
AppendTo[histogramresults, 1.0 numfail / (EulerPhi[n] - 1)];

}]; (* end of composite loop *)
}]; (* end of n loop *)

Print[ " "]; (* blank line followed by outputting results *)
Print["Carmichael numbers up to ", numdo, " are: ", carmichael];
For[c = 1, c <= Length[carmichael], c++,
Print["Carmichael number ", carmichael[[c]],
" has factorization ", FactorInteger[carmichael[[c]]], "."]];

Print["Plots of how often tests fail for composite numbers."];
Print[ListPlot[results, PlotRange -> Full]];
Print[Histogram[histogramresults, Automatic, "Probability"]];
Print["Plots of location of first failure for composite numbers."];
Print["Largest value of the first a to fail is ",
Max[histogramlowestresults]];
Print[ListPlot[lowestresults, PlotRange -> Full]];
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FIGURE 3. Plot of what percent ofa relatively prime to a compositen fail an−1 = 1 mod n.

FIGURE 4. Location of firsta relatively prime to a compositen that failsan−1 = 1 mod n.

Print[Histogram[histogramlowestresults, Automatic, "Probability"]]
] (* end of module *)

Some possible conjectures on Carmichael numbers: (1) Square-free. (2) At least three factors. (3) Probably having a 3, 5or 7
is due to small set and not worth conjecturing, but.... (4) Most numbers if fail, fail quickly and often (around 50% ofa witness the
failure, but maybe should look at primea and not justa relatively prime ton).

(6, 7, 8, 9: yes, counts as four problems): Investigate the number of solutions toxd = a mod n for d = 1 to 10,n = 2 to 100,
and for eachn let a range over all numbers relatively prime ton AND also includea = 0. What is true about the average
number of solutions toxd = a mod n as we range over all these values ofa for a fixed n and d? Make a conjecture.... Now
look at x2 − ax − b = 0 mod n where a and b are either 0 or relatively prime to n; note as they range we cover all possible
quadratic polynomials. Investigate the average number of solutions for 1 < n < 42. Make a conjecture....
Solution: Below is the code to investigate. Interestingly the averagenumber of solutions is always exactly 1! Natural to conjecture
this is always the case.
quadratictester[numdo_, deg_, printall_] := Module[{},

results = {}; (* store results here *)
Print[" "]; (* blank line to separate outputs *)
Print[
"If printall == 1 print all; else just print when the average

number of solns to x^d == a mod n is not exactly 1."];
Print["d = ", d, " and n ranges from 2 to ", numdo];
For[n = 2, n <= numdo, n++,
{
templist = {}; (* place to store data for given a, temp spot *)
numsolnsalla = 0; (* keeps track of number of solns as vary a,
fixed n *)
For[a = 0, a <= n - 1, a++, (* our a counting loop *)
{
If[GCD[a, n] == 1 || GCD[a, n] == n, (* only look at a=0 or a rel prime to n *)
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{
numsolns = 0; (* for given a, set number of solns to zero *)
For[x = 0, x <= n - 1, x++, (* brute force:
see how many solns to x^deg = a mod n *)
{
(*simple check: if a given x works then increment by 1, make sure x rel prime to n or is 0*)
If[Mod[x^deg - a , n] == 0 && (GCD[x, n] == 1 || GCD[x, n] == n), numsolns = numsolns + 1];
}]; (* end of x loop *)

templist = AppendTo[templist, {n, a, numsolns}]; (* store temp results to results *)
numsolnsalla = numsolnsalla + numsolns; (* compute total number of solns for fixed a *)
}]; (* end of IF statement from a rel prime to n *OR* a is zero *)

}]; (* end of a loop *)
If[printall == 1,
Print["n = ", n, " and average number of solutions: ", numsolnsalla / (EulerPhi[n] + 1)]];

(* prints average numb solns if told to print all *)
If[ numsolnsalla / (EulerPhi[n] + 1) != 1,
Print["n = ", n, " and average number solns is ", numsolnsalla / (EulerPhi[n] + 1)]];

results = AppendTo[results, templist];
}]; (* end of n loop *)

]; (* end of module *)

For the second part, we just need to tweak the middle code.

numsolnsallab = 0; (* keeps track of number of solns as vary a, fixed n *)
For[b = 0, b <= n - 1, b++,
{
If[GCD[b, n] == 1 || GCD[b, n] == n, (* only look at b=0 or n rel prime to n *)
For[a = 0, a <= n - 1, a++, (* our a counting loop *)
{
If[GCD[a, n] == 1 || GCD[a, n] == n, (* only look at a=0 or a rel prime to n *)
{
numsolns = 0; (* for given a, set number of solns to zero *)
For[x = 0, x <= n - 1, x++, (* brute force:
see how many solns to x^deg = a mod n *)
{
(*simple check: if a given x works then increment by 1,make sure x rel prime to n or is 0*)
If[

Mod[x^2 - a x - b , n] == 0 && (GCD[x, n] == 1 || GCD[x, n] == n),
numsolns = numsolns + 1];

}]; (* end of x loop *)
templist = AppendTo[templist, {n, a, numsolns}]; (* store temp results to results *)
numsolnsallab = numsolnsallab + numsolns; (*compute total number of solns for fixed a *)
}]; (* end of IF statement from a rel prime to n *OR* a is zero *)

}]; (* end of a loop *)
]; (* end of if statement for b gcd test *)
}]; (* end of b loop *)

See the average number of solutions is exactly 1 ifn prime, fluctuates otherwise. Conjecture: range over alla, b that are 0 or
relatively prime to a primep, the average number of solutions tox2 − ax− b = 0 mod p is 1 (divide byp2, asϕ(p) + 1 = p).

Proof: As n = p is prime, the condition that the gcd ofa andb with p is 1 or they are zero meansa andb freely range over
{0, 1, . . . , p− 1}. Thus consider the triples(x, a, b), wherex runs over the same range. There arep3 such triples. Given a pair(x, a)
there is a uniqueb such thatx2 − ax − b = 0 mod p; we just takeb = x2 − ax! Thus there arep2 solutions to thep2 equations, so
on average there is one solution! There is nothing special about a quadratic; the same argument and the same average holdsfor any
finite degree polynomial.

If n were composite, however, this would break down as sometimeswe would have the constant term equal to an element outside
of (Z/nZ)∗ ∪ {0}, though if we studied this in(Z/nZ) we would again have on average 1 solution. For example, if we have
x2 − 7x − b = 0 mod 12 thenb = x(x − 7) mod 12, and ifx = 11 (which is invertible modulo 12, as is 7, then we would have
b = 8 mod 12 and 8 is not invertible modulo 12 and thus not accessible. If we look atall polynomials, however, then on average we
do regain exactly one solution; if we havexd − ad−1x

d−1 − · · · − a0 then given any tuple(x, ad−1, . . . , a1) ∈ (Z/nZ)d there is a
unique choice fora0 that gives a solution.Moral: we should be investigating these polynomials with coefficients and values inZ/nZ,
not (Z/nZ)∗.
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Due Friday, March 3: Might be easier to do in a different order.... Some problems might be very easy, others might require
work, and p always refers to a prime number. (1) Do Exercise 3.1 from Hutz’ book. (2) Do Exercise 3.2 from Hutz’ book.
(3) Do Exercise 3.11 from Hutz’ book. (4) Show that ifa is a root of f(x) modulo a prime p then f(x) = (x − a)g(x) mod p
for some polynomialg(x) of degree less thanf . (5) Prove a polynomial of degreed has at mostd roots modulo p. (6) Prove
the polynomial x(p − 1) = 1 mod p has exactlyp − 1 roots modulo p. (7) The order of ana in (Z/pZ)∗ = {1, 2, . . . , p− 1} is
the smallestd such that ad = 1 mod p. Prove that the order of anya in (Z/pZ)∗ divides p − 1. (8) Prove if a and b are two
relatively prime roots to x(p − 1) = 1 mod p with orders da and db that if da and db are relatively prime then ab has order
dadb. (9) Let q be a prime dividing p− 1. Prove there is an elementx in (Z/pZ)∗ that has order exactlyq. (10) Assumep− 1
is a square-free number; thus ifn2 dividesp− 1 then n = 1. Prove for such primes that(Z/pZ)∗ is cyclic; this means there is
someg such that the group equals{1, g, g2, . . . , g(p− 2)}. This result actually holds for all primes (done in the book); this is
meant to be a guided set of exercises to this important resultin a special case; you can look and see where we use the prime
has special properties, and can that be removed.



12 STEVEN J. MILLER (SJM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 313, SPRING 2017

4. HW #5: DUE MARCH 3, 2017

4.1. Problems. Due Friday, March 3: Might be easier to do in a different order.... Some problems might be very easy,
others might require work, and p always refers to a prime number. (1) Do Exercise 3.1 from Hutz’ book. (2) Do Exercise
3.2 from Hutz’ book. (3) Do Exercise 3.11 from Hutz’ book. (4)Show that if a is a root of f(x) modulo a prime p then
f(x) = (x − a)g(x) mod p for some polynomialg(x) of degree less thanf . (5) Prove a polynomial of degreed has at most
d roots modulo p. (6) Prove the polynomialx(p − 1) = 1 mod p has exactlyp − 1 roots modulo p. (7) The order of ana in
(Z/pZ)∗ = {1, 2, . . . , p− 1} is the smallestd such thatad = 1 mod p. Prove that the order of anya in (Z/pZ)∗ dividesp− 1.
(8) Prove if a and b are two relatively prime roots to x(p− 1) = 1 mod p with orders da and db that if da and db are relatively
prime then ab has order dadb. (9) Let q be a prime dividing p − 1. Prove there is an elementx in (Z/pZ)∗ that has order
exactlyq. (10) Assumep− 1 is a square-free number; thus ifn2 dividesp− 1 then n = 1. Prove for such primes that(Z/pZ)∗

is cyclic; this means there is someg such that the group equals{1, g, g2, . . . , g(p− 2)}. This result actually holds for all primes
(done in the book); this is meant to be a guided set of exercises to this important result in a special case; you can look and see
where we use the prime has special properties, and can that beremoved.

4.2. Solutions.

(1) Do Exercise 3.1 from Hutz’ book.
Solution: For (a): We have

(

324

31

)

=

(

14

31

)

=

(

2

31

)(

7

31

)

.

As 82 = 2 mod 31 and102 = 7 mod 31 both symbols above are 1, and thus 324 is a square modulo 31 (itis 80 mod 31, or 18).
For (b): We have

(

34538

1237

)

=

(

1139

1237

)

=

(

17

1237

)(

67

1237

)

.

As 1237, 17 and 67 are primes we can use quadratic reciprocity. As 1237 mod 4 = 1 the power of -1 is even, and thus we do not
need to worry about it. We find

(

34538

1237

)

=

(

1237

17

)(

1237

67

)

=

(

13

17

)(

31

67

)

.

We use quadratic reciprocity again; the first factor has -1 toan even power as both primes are 1 mod 4, while the second has -1to an
odd power as both primes are 3 mod 4, giving

(

34538

1237

)

= −
(

17

13

)(

67

31

)

= −
(

4

13

)(

5

31

)

.

As 62 = 5 mod 31 we see both symbols above are 1, and thus the answer here is -1,so 34538 is not a square modulo 1237.

(2) Do Exercise 3.2 from Hutz’ book.Find all the residue classes which are quadratic residues modulo 61.
Solution: We could computex2 for eachx ∈ (Z/61Z)∗ and see which 30 values emerge.

list = {};
For[n = 1, n <= 60, n++,
If[MemberQ[list, Mod[n^2, 61]] == False,
list = AppendTo[list, Mod[n^2, 61]]]]

Print[Sort[list]]
{1,3,4,5,9,12,13,14,15,16,19,20,22,25,27,34,36,39,41,42,45,46,47,48,49,52,56,57,58,60}

We could also use Euler’s criterion to encode the Legendre symbol.

list = {};
For[n = 1, n <= 60, n++,

If[Mod[n^30, 61] == 1, list = AppendTo[list, n]]];
Print[list]

{1,3,4,5,9,12,13,14,15,16,19,20,22,25,27,34,36,39,41,42,45,46,47,48,49,52,56,57,58,60}

(3) Do Exercise 3.11 from Hutz’ book.Letp > 2 be a prime. Prove that
(−1

p

)

= 1 if and only ifp = 1 mod 4.
Solution: For this problem we use the results of the rest of the homework, namely that sincep is prime, the group(Z/pZ)∗ is cyclic
and generated by some elementg of orderp− 1. Thus there is anm such that−1 = gm mod p.
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Assumep = 1 mod 4 Then there is ak such thatp − 1 = 4k, and the order ofg is 4k. In particular, this means thatg2k is not 1
modulop; however, sinceg2k squares to 1 it must be 1 or -1. As it is not 1 the only option leftis it is -1, and hence−1 is a square (it
is congruent tog2k, which is(gk)2).

Assume nowp 6= 1 mod 4. If p = 2 then−1 = 1 mod p and -1 would thus be a square, however, the problem states that p > 2
so there is no need to look at this case. Thusp = 3 mod 4, and we may writep − 1 as4k + 2 for somek. Thusg2k+1 squares to 1
modulop, and must be 1 or -1. It can’t be 1 as then the order ofg would be too small, and must be -1. Thus−1 = g2k+1 mod p, and
-1 is not a square as it is an odd power of the generator. We could also use Euler’s criterion:

(−1)(p−1)/2 = (g2k+1)(p−1)/2 = (g(p−1)/2)2k+1 = (−1)2k+1 = −1 mod p.

(4) Show that if a is a root of f(x) modulo a prime p then f(x) = (x − a)g(x) mod p for some polynomialg(x) of degree less
than f .

As every non-zero element ofZ/pZ is invertible, we can perform polynomial long division and write f(x) as(x− a)g(x) + r(x),
where the degree ofr(x) is less than that ofx− a, and hencer(x) is constant. To see this, sayf(x) = cnx

n + cn−1x
n−1 + · · ·+ c0.

We findg term by term. To get the leading term we see we must multiplyx− a by cnxn−1 to get the leading term off . We then have

f(x)− cnx
n−1(x− a) = (cn−1 − acn)x

n−1 + cn−2x
n−2 + · · ·+ c0 mod p.

We then proceed by induction. Ifcn−1 = acn mod p we can skip the next term, if not the next term ofg is (cn−1 − acn)x
n−2.

All that remains is showing thatr(x) = 0. We knowr is a constant, sayc. Thusf(x) = (x − a)g(x) + c mod p; however, as
f(a) = 0 we seec must be zero, completing the proof.

Remark: the result above holds in much greater generality. What greatly aids us is thatx− a is a monic coefficient and we have a
field (non-zero elements have multiplicative inverses. If instead we had a composite moduli and tried to write3x2−9x as(4x−4)g(x)
with a remainder, we would be in trouble. The method above would generalize and we would want to start by multiplying4x− 4 by
3 · 4−1x, but 4 is not invertible. The trouble is when there are divisors of zeros, two non-zero elements multiplying to zero. Think
about how far you can generalize this result.

(5) Prove a polynomial of degreed has at mostd roots modulop.
Solution: From the previous problem we can pull the roots out one at a time. If there are fewer thand roots the problem is trivial. If
there ared roots we may label themr1, . . . , rd and we have

f(x) = (x− r1) · · · (x− rd)gr(x) mod p

for somegr(x); we must show thatgr is constant. This follows from the previous problem, as thisgr is of degree 0 and hence constant
(remember each time we pull out a root the degree of theg polynomial is at most one less than that of the polynomial whose root we
are taking). Ifgr(x) is identically zero thenf is identically zero, contradicting the fact that it is a polynomial of degreed. Thusgr(x)
is some non-zero constant, sayc. Becausep is a prime, if we evaluatef(x) for anyx not one of ourd roots then we have a product
of non-zero numbers modulop, which must be non-zero; note this step would fail ifp were composite (if we were working modulo
12, for example, we could have a product that is2 · 2 · 3 which vanishes, even though no term vanishes).

Remark: The proof here illustrates a common technique: do itonce and then lather, rinse, repeat; this is often called theshampoo
method. We’ll see this method again later.

(6) Prove the polynomialx(p− 1) = 1 mod p has exactlyp− 1 roots modulop.
Solution: By Fermat’s little Theorem we know ifgcd(a, p) = 1 thenap−1 = 1 mod p. Thus each of thep− 1 elements of(Z/pZ)∗

is a root, and hence there are exactlyp− 1 roots modulop as 0 is not a root.

(7) The order of ana in (Z/pZ)∗ = {1, 2, . . . , p− 1} is the smallestd such thatad = 1 mod p. Prove that the order of anya in
(Z/pZ)∗ dividesp− 1.
Solution: We knowap−1 = 1 mod p. If d dividesp − 1 we’re done, if not assume1 < gcd(d, p − 1) = k < d. By the Euclidean
algorithm there areα, β such thatαd+ β(p− 1) = k. Thus

ak = aαd+β(p−1) = aαdaβ(p−1) =
(

ad
)α (

ap−1
)

β = 1 mod p.

Thusak = 1 mod p, contradicting the fact thatd is the order.
Remark: This won’t be the first time on the homework that knowing some abstract algebra, specifically Lagrange’s theorem,would

help! What we’re doing is independently deriving these results just in the special cases we need!

(8) Prove if a and b are two relatively prime roots to x(p− 1) = 1 mod p with orders da and db that if da and db are relatively
prime then ab has orderdadb.
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Solution: Clearly the order ofab dividesdadb as

(ab)dadb = (ada)db(bdb)da = 1 · 1 = 1 mod p.

Could the order be smaller?
First note that{1, a, a2, . . . , ada−1} and{1, b, b2, . . . , bdb−1} only have one element in common, 1. The reason is these are cyclic

groups and the order of anything in the first set must non-trivially divide da (if it isn’t 1), while similarly the order of anything in
the second set must non-trivially dividedb (if it isn’t 1). To see our claim about orders we could use Lagrange’s theorem from group
theory, but as abstract algebra isnot a pre-requisite for this course we’ll also give a direct proof. Imagine for example thatai, which
we assume is not 1, has orderd not dividingda. Sinceda is the smallest power ofa that is 1 modulop, wemusthaveid ≥ da. If they
are equal we are done, if not assumeid > da. By the division algorithm we can writeid = αda + r for somer ∈ {0, 1, . . . , da − 1}.
But now

1 = aid = aαda+r = aαdaar = (ada)αar = ar mod p;

thusar = 1 mod p, contradictingd being the minimal order.
We now return to the main proof, using the cyclicity of the twosets and showing the only element in common is 1. Ifai = bj then

the order of this element must divide bothda anddb; as these two numbers are relatively prime the only possibility is that the order
of this element is 1, and henceai = bj = 1 mod p.

Thus the only way(ab)d can be 1 is ifad andbd are both 1 modulop (as otherwisead is the inverse ofbd, which isbdb−d mod p).
Thusd must be a multiple ofda and a multiple ofdb; the smallest multiple it can be isdadb, which we have shown works, completing
the proof.Note we never needed to usea andb are relatively prime, only that their orders are!

Remark: while sometimes we may think we need or want certain conditions, oftentimes they turn out to be unnecessary. We don’t
need the two elements to be relatively prime. What we need is their orders to be relatively prime. The key idea is getting a sense of
the structure of the sub-group generated bya (or by b). The proof that the order ofai divides the order ofa could be deduced from
Lagrange’s theorem, but again our goal is to do things elementarily. We obtain a nice contradiction by the concept ofminimality;
the order is the smallest integer with a given problem, and weshow that if the order ofai is not a divisor of that then we can find a
smaller power ofa that is 1. This is an extremely important property, and one ofthe biggest uses of the division algorithm.

(9) Let q be a prime dividing p− 1. Prove there is an elementx in (Z/pZ)∗ that has order exactlyq.
Solution: We know every element has order dividingp− 1, andxd = 1 mod p has at mostd roots. Assume there are no solutions to
xq = 1 mod p for someq dividing p− 1. Note there cannot be an element of orderq2 or q3 et cetera; if sayxq2 = 1 mod p thenxq

would have orderq. More generally, if somex had orderbq for someb > 0 thenxbq = 1 mod p implies(xb) has orderq, violating
our assumption. Thusall elements have order relatively prime toq.

By Fermat’s little Theorem we knowxp−1 = 1 mod p for all x ∈ (Z/pZ)∗; thus there are exactlyp − 1 roots to this equation.
Since each element has order dividingp− 1 and by assumption each order is relatively prime toq, we see each element also has order
dividing (p− 1)/q. But by Exercise (5) the polynomialx(p−1)/q = 1 mod p can have at most(p− 1)/q roots, but it must havep− 1
roots (as all elements satisfy it); contradiction.

Remark: What ifqℓ dividesp− 1? What can you say?

(10) Assumep− 1 is a square-free number; thus ifn2 dividesp− 1 then n = 1. Prove for such primes that(Z/pZ)∗ is cyclic;
this means there is someg such that the group equals{1, g, g2, . . . , g(p − 2)}. This result actually holds for all primes (done
in the book); this is meant to be a guided set of exercises to this important result in a special case; you can look and see where
we use the prime has special properties, and can that be removed.
Solution: The problem follows by showing there is an element of orderp − 1. By the previous result, for each primeq dividing
p− 1 there is an elementxq of orderq. Let p− 1 = q1 · · · qr; note the primes are distinct asp− 1 is assumed square-free. Consider
x1 · · ·xr. This element has orderq1 · · · qr = p− 1 by repeated applications of Exercise (8) (i.e., grouping).To see this, we first note
x1 andx2 have relatively prime orders (our proof never used the elements being relatively prime, only their orders). Thus the order of
x1x2 is q1q2. We now apply Exercise (8) again, this time tox1x2 andx3, with relatively prime ordersq1q2 andq3, and findx1x2x3

has orderq1q2q3. We continue marching down....
As a nice exercise, can you prove(Z/pZ)∗ is cyclic for all primes? All that you need to change is that ifℓ is the highest power of

q dividingp− 1 then there is an element of orderqℓ.

NO WRITTEN HW DUE NEXT WEEK BECAUSE OF MIDTERM.
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5. HW #7: DUE MARCH 17, 2017

#1: Problem 4.4: Find the inverse cipher to the affine cipher3x+ 7 mod 26.
Solution: If y = 3x+ 7 mod 26 thenx = (y − 7)3−1 mod 26, where3−1 = 9 mod 26. Thusx = 9y − 63 = 9y + 15 mod 26, so
the inverse is the map9y + 15 mod 26.

#2: Devise a system so that three people can share a secret in acrowded room, but no one else will know it.
Solution: We can extend the method from class. Letp be a prime andg a generator for(Z/pZ)∗. Let Alice choose ana, Bob ab, and
Charlie ac, which they keep private. They computega, gb, gc and share. They now publicly sharegab, gac, gbc. Each can now com-
putegabc. This is the the simplest method I can think of, and is essentially what is on Wikipedia (seehttps://en.wikipedia.
org/wiki/Diffie%E2%80%93Hellman_key_exchange#Operation_with_more_than_two_parties). The nat-
ural question, of course, is how secure is all of this. See also http://ijns.jalaxy.com.tw/contents/ijns-v15-n4/
ijns-2013-v15-n4-p256-264.pdf.

#3: Generalize the previous problem so thatN people can share a secret in a crowded room, but no one else will know.
Solution: Let each person choose a numberai and, withg as in the previous problem, computegai . We want the most efficient way
to get toga1···an . One way is to start with the first person (Alice), who sendsga1 to the second person (Bob), who sendsga1a2 to
the third person (Charlie), and so on. This chain will end with thenth person (Nancy) receivingga1···an−1 . She raises this to theanth

power to get the secret. At this point only the last person knows the secret.
We now help the first find the secret. Bob starts another of these chains, sendingga2 to Charlie. Charlie sendsga2a3 to Denise,

and so on. Eventually Nancy sendsga2···an to Alice, who raises this to thea1th power, and now she too has the secret.
Thus we haven chains, and afterwards all have the secret. How many computations would there be if we used the method from

the previous problem, with everyone talking to everyone? Note in this method you only communicate with the person immediately
before or after.

Chapter 5: #4: Calculate the average order ofφ in various ranges: this means find1
x

∑

n≤x φ(n) for various x. Make a
conjecture about the rate of growth.
Solution: Below is the code and we give some plots in Figure 5; it sure does look like the average order is linearly increasing! It’s
often worth doing a log-log plot, as that can illuminate relationships. For example, it may be hard to see a curve looks likey = Cxr

(especially ifr is some number like11
√
2/3), but if we do a log-log plot we getY = rX + C, whereY = log(y), X = log(x) and

C = log(C). We can thus use the method of least squares to figure out the exponentr and the constantC = exp(C).

phiplot[num_] := Module[{},
(* will do up to num, saving results in lists *)
list = {};
loglist = {};
sum = 0; (* initializes sum to 0 *)
For[n = 1, n <= num, n++,
{
sum = sum + EulerPhi[n]; (* increases sum by phi(n) *)
If[Mod[n, num/1000] == 0, (*
only print every 1000 to keep size manageable *)
{ (* stores results in list, for plot and log-log plot *)
list = AppendTo[list, {n, 1.0 sum/n}];
loglist = AppendTo[loglist, {Log[n], Log[1.0 sum/n]}];
}];

}];
Print[ListPlot[list]]; (* prints output *)
Print[ListPlot[loglist]];
(* Best Fit Line Parts: Will do for log-log plot *)
(* x_n = log(n), y_n = log(sum at n divided by n, N =
Length(loglist) *)
Print[
"Using Method of Least Squares: analysis online available at"];

Print[
Hyperlink[
"https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/
54/handouts/MethodLeastSquares.pdf"]];

bigN = Length[loglist];

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Operation_with_more_than_two_parties
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Operation_with_more_than_two_parties
http://ijns.jalaxy.com.tw/contents/ijns-v15-n4/ijns-2013-v15-n4-p256-264.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v15-n4/ijns-2013-v15-n4-p256-264.pdf
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xsum = Sum[loglist[[n, 1]], {n, 1, bigN}];
xxsum = Sum[loglist[[n, 1]]^2, {n, 1, bigN}];
ysum = Sum[loglist[[n, 2]], {n, 1, bigN}];
xysum = Sum[loglist[[n, 1]] loglist[[n, 2]], {n, 1, bigN}];
matM = {{xxsum, xsum}, {xsum, bigN}};
outputvec = {{xysum}, {ysum}};
bestfit = Inverse[matM].outputvec;
Print[
"Looks like of the form Const x^power + smaller; trying to get Const, power."];

Print["Best guess for power from log-log plot: ", bestfit[[1, 1]]];
Print["Best guess for Const from log-log plot: ",
Exp[bestfit[[2, 1]]]];

Print["Note 1/(2 zeta(2)) = 3/pi^2 = ", 3. / Pi^2];
];

Looks like of the form Const x^power + smaller; trying to get Const, power.
Best guess for power from log-log plot: 0.999999
Best guess for Const from log-log plot: 0.303969
Note 1/(2 zeta(2)) = 3/pi^2 = 0.303964

FIGURE 5. Left: average order of the Euler totient function. Right:log-log plot of average order of the Euler totient function.

Figure 6 is a proof from a former student of mine:
http://mathoverflow.net/questions/84571/averages-of-euler-phi-function-and-similar.

FIGURE 6. Post proving the growth rate of the average order of the Euler totient function.

No written HW over spring break.

http://mathoverflow.net/questions/84571/averages-of-euler-phi-function-and-similar


MATH 313: SOLUTIONS TO HOMEWORK PROBLEMS 17

6. HW #8: DUE APRIL 7, 2017

6.1. Problems. Homework #8: Due Friday April 7, 2017: #1: Prove
√
p is irrational if p is prime. #2: Use Roth’s theorem to

prove that there are only finitely many solutions in the integers tox3 − 2y3 = 2017. #3: (Exercise 6.12a) Prove that for any
two rational numbers a and b with a < b, there is an irrational number x with a < x < b. #4: (Exercise 6.14): Prove or find a
counter example for each of the following statements. a. Theproduct of two rational numbers is rational. b. The product of
two nonzero irrational numbers is irrational. c. The product of a nonzero irrational number and a nonzero rational number
is irrational.

6.2. Solutions. Solution:#1: If
√
p = a/b with a, b relatively prime thenb2p = a2 sop|a2 and sincep is prime we havep|a (if a

prime divides a product it divides at least one term). Thus wemay writea = pα, then findb2p = α2p2 sob2 = α2p, and thusp|b2 so
p|b, contradictinga, b relatively prime.

Solution: #2: There are only finitely many integer solutions(x, y) ∈ Z
2 to

x3 − 2y3 = a

(we do the more general case, not justa = 2017). In order to see this, we proceed as follows. Letρ = e2πi/3 = (−1)1/3 = − 1
2+i

√
3
2 .

Then
x3 − 2y3 = (x− 21/3y)(x− ρ21/3y)(x− ρ221/3y),

and therefore
∣

∣

∣

∣

a

y3

∣

∣

∣

∣

=

∣

∣

∣

∣

x

y
− 21/3

∣

∣

∣

∣

∣

∣

∣

∣

x

y
− ρ21/3

∣

∣

∣

∣

∣

∣

∣

∣

x

y
− ρ221/3

∣

∣

∣

∣

≥
∣

∣

∣

∣

x

y
− 21/3

∣

∣

∣

∣

∣

∣

∣
Im(ρ21/3)

∣

∣

∣

∣

∣

∣
Im(ρ221/3)

∣

∣

∣

=
3

24/3

∣

∣

∣

∣

x

y
− 21/3

∣

∣

∣

∣

.

Hence every integer solution(x, y) to x3 − 2y3 = a is a solution to
∣

∣

∣

∣

21/3 − x

y

∣

∣

∣

∣

≤ 3 · 2−4/3

|y|3 .

By Roth’s Theorem there are only finitely many such solutions.

Solution: #3: We want to find an irrational between two rational numbersa andb. LetD = (b−a)/22017. Notea+
√
2L is irrational,

and as
√
2L < b − a we havea < a +

√
2L < b. (If our number were rational, say equal top/q, then

√
2 = (p/q − a)/L and thus√

2 would be rational.

Solution: #4: (a) True: ifr1 = p1/q1 andr2 = p2/q2 thenr1r2 = (p1p2)/(q1q2). (b) False: As
√
2 is irrational, then

√
2
√
2 = 2

is rational. (c) True: ifr = p/q andx is irrational, assumerx is rational; thenrx = a/b for some integersa, b, which implies
x = a/br = aq/bp is rational, contradictingx irrational.
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