(*3x+1 function *)
f[x_] := If[Mod[x, 2] == 0, x/2, 3x + 1];
g[x_] := Module[{},
 (* input is an odd number *)
 temp = 3x + 1;
 While[Mod[temp, 2] == 0, temp = temp/2];
 Return[temp];
];

iteratef[start_, print_] := Module[{},
 count = 0;
 current = start;
 Print["We are starting at ", current, "."];
 While[current > 0,
 current = f[current];
 count = count + 1;
 If[print == 1, Print[current]];
]; (* end of while loop *)
];

iteratefrange[numdo_, startpower_, function_] := Module[{},
 results = {};
 h[y_] := If[function == 1, f[y], g[y]];
 For[n = 1, n <= numdo, n++,
 {count = 0;
 current = RandomInteger[10^startpower];
 While[current > 0,
 {current = h[current];
 count = count + 1;
 }]; (* end of while loop *)
 results = AppendTo[results, count];
 }]; (* end of n loop *)
 Print["Doing ", numdo, " runs starting at 10^", startpower];
 Print["Average is ", 1.0 Mean[results]];
 Print["StDev is ", 1.0 StandardDeviation[results]];
 Print[Histogram[results, Automatic, "Probability"]];
];

Timing[iteratefrange[100000, 1000, 2]]
Doing 100000 runs starting at 10^1000
Average is 8003.02
StDev is 304.15

\[
\begin{array}{c}
\text{In[5]}: \quad \text{Timing[iteratefrange[1000, 400, 2]]} \\
\text{Out[5]}: \quad \{6545.02, \text{Null}\}
\end{array}
\]

Doing 1000 runs starting at 10^400
Average is 3203.2
StDev is 196.651

\[
\begin{array}{c}
\text{In[5]}: \quad \text{Timing[iteratefrange[1000, 400, 2]]} \\
\text{Out[5]}: \quad \{25.1942, \text{Null}\}
\end{array}
\]
iteratefrangeanalyze[numdo_, startpower_, numpowers_, function_] := Module[{},
 results = {};
 powerresults = {};
 semilogpowerresults = {};
 loglogpowerresults = {};
 h[y_] := If[function == 1, f[y], g[y]];
 For[p = 1, p ≤ numpowers, p++,
 exponent = startpower + 10*p;
 count = 0;
 If[Mod[p, numpowers/10] == 0, Print["We have done ", 100 * p / numpowers, ", %."]];
 For[n = 1, n ≤ numdo, n++,
 current = RandomInteger[10^exponent];
 While[current > 1,
 current = h[current];
 count = count + 1;
]]; (* end of while loop *)
 results = AppendTo[results, count];
]; (* end of n loop *)
 loglogpowerresults = AppendTo[loglogpowerresults,
 {Log[10., 10.^exponent], Log[10., 1.0 count / numdo]}];
 semilogpowerresults = AppendTo[semilogpowerresults,
 {Log[10.^exponent], 1.0 count / numdo}];
]; (* end of p loop *)
 Print["Log-Log Plot, Base 10, Pull out all powers of 2"];
 Print[
 ListPlot[loglogpowerresults, AxesLabel → {"Log_10(seed)", "Log_10(steps)"}]];
 Print["SemiLog Plot, Base 10, Pull out all powers of 2"];
 Print[ListPlot[semilogpowerresults, AxesLabel → {"Log_10(seed)", "steps"}]];
];

Timing[iteratefrangeanalyze[100, 10, 200, 2]]
We have done 10%.
We have done 20%.
We have done 30%.
We have done 40%.
We have done 50%.
We have done 60%.
We have done 70%.
We have done 80%.
We have done 90%.
We have done 100%.

Log-Log Plot, Base 10, Pull out all powers of 2

Semilog Plot, Base 10, Pull out all powers of 2

Out[13]= {1316.46, Null}