
Introduction to Linear Programming

Steven Miller -- Fall 2014
? LinearProgramming

LinearProgramming[c, m, b] finds a vector x that minimizes the quantity c.x subject to the constraints m.x ≥ b and x ≥ 0.
LinearProgramming[c, m, {{b1, s1}, {b2, s2},…}] finds a vector x that minimizes c.x subject

to x ≥ 0 and linear constraints specified by the matrix m and the pairs {bi, si}. For each row mi of m,
the corresponding constraint is mi.x ≥ bi if si == 1, or mi.x == bi if si == 0, or mi.x ≤ bi if si == -1.

LinearProgramming[c, m, b, l] minimizes c.x subject to the constraints specified by m and b and x ≥ l.
LinearProgramming[c, m, b, {l1, l2,…}] minimizes c.x subject to the constraints specified by m and b and xi ≥ li.
LinearProgramming[c, m, b, {{l1, u1}, {l2, u2},…}] minimizes c.x subject to the constraints specified by m and b and li ≤ xi ≤ ui.
LinearProgramming[c, m, b, lu, dom] takes the elements of x to be in the domain dom, either Reals or Integers.

LinearProgramming[c, m, b, lu, {dom1, dom2,…}] takes xi to be in the domain domi. 

Diet Problem : 10 x + 4 y >= 9, 5 x + 8 y >= 11, 3 x + 2 y
>= 5, minimize 2 x + 3 y
In[26]:= (* Here is how we do a simple linear

programming problem if real variables and sizes small *)

(* we first enter the matrix A, where we enter row by row *)

(* we then enter the b-vector,

which must have the same number of entries as rows of A *)

(* we then enter the cost vector c,

which must have the same number of entries as the columns of A *)

(* the way the code works is we solve Ax ≥ b, x ≥ 0, min(c.x) *)

A = {{10, 4}, {5, 8}, {3, 2}};

b = {9, 11, 5};

c = {2, 3};

soln = LinearProgramming[c, A, b];

Print["The solution is ", soln]

Print["The cost is ", c.soln]

Print["Now let's do it where we require integer values."];

intsoln = LinearProgramming[c, A, b, Automatic, Integers];

Print["The solution in integers is ", intsoln]

Print["The integer solution cost is ", c.intsoln]

The solution is 
9

7
,
4

7


The cost is
30

7

Now let's do it where we require integer values.

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

The solution in integers is {1, 1}

The integer solution cost is 5

Chess Problem: n queens on n x n
board
In[3]:= (* making this a program so can call it with different arguments easily *)

(* have a board that is boardsize by boardsize and placing numberofqueens *)

(* use underscore to indicate a variable *)

(* Module indicates module / procedure / function,

the {} means no local variables *)

(* Thus all output can be felt / seen later *)

(* if printlinearprogrammingconditions is 1 print the matrix A and rest,

else don't *)

pawnqueenproblem[boardsize_, numberofqueens_,

printlinearprogrammingconditions_] := Module[{},

n = boardsize; (*just change for different board *)

numqueens = numberofqueens;

(* allows the number of queens to differ from board size *)

(* when programming you want freedom -- see

what matters and what depends on what *)

(* in some of the constraints what matters is the board size,

and in others its the number of queens *)

(* variables x1,, xn, x_{n+1} = x_{2,1}, ... *)

(* followed by p1, ..., pn, p_{n+1}, ... *)

(* the above requires some explanation. We

can't have our variables having indices unfortunately *)

(* we need a linear list of variables, not an array *)

(* fortunately it's very simple to pass from indices to a linear list *)

(* if we have x_{ij} with 1 ≤ i, j ≤ n then we let num(i,j) = (i-1)*n + j *)

(* note that counts from 1 to n^2 *)

(* we have two variables, the x_ij,

which say whether or not a queen is at (i,j), and *)

2 IntroLinearProgramming2.nb

(* p_ij, which say whether or not we can place a pawn at (i,j). *)

(* so x_ij --> x_num(i,j) is 1 if a queen is at (i,j) and 0 otherwise *)

(* and p_ij -->

x_{n^2 + num(i,j)} is 1 if a pawn is at (i,j) and 0 otherwise *)

(* notice that we are always using x subscript

an integer for our variables. *)

(* we write the queen variables first and then the pawn variables,

and hence adding n^2 in the subscript *)

A = {}; (* initializes our constraint matrix A to be empty,

we'll add constraints *)

(* notice we don't want to type all the constraints by hand,

but write code to add *)

bvec = {}; (* initializes bvector to empty *)

(* the next lines take into account

which squares on the chessboard can attack (i,j) *)

(* we first record which squares can have a queen attacking (i,j),

remembering we count linearly and must convert *)

(* numbers to pairs; thus if we want to investigate what happens

for a queen at (a,b) that corresponds to index (a-1)*n + b *)

(* while similarly we could go from inex (a-1)*n + b to (a,b);

there is some small issue with how Mathematica looks at remainders *)

(* and so we change b if it is 0 mod n to n. *)

(* the constraint is the following:

-Sum_{(a,b) attacks (i,j)} x_{ab} - numqueens p_{ij} ≥ - numsqueens *)

(* this is NOT my first choice for how to write the constraint,

but remember Mathematica does Ax ≥ b *)

(* eventually we will maximize the sum of p_{ij},

so if it is available for a pawn the program will place one there *)

(* (of course we maximize the sum of p_{ij} by minimizing the sum of -p_{ij},

as we work with minimums!) *)

(* returning to the constraint: if all the x_{ab} that can

attack (i,j) are zero then we may take p_ij to be 1 *)

(* if even one x_{ab} is 1 then the constraint is too negative on

the LHS if p_ij is 1, and thus we have p_ij = 0 as desired *)

For[i = 1, i ≤ n, i++,

For[j = 1, j ≤ n, j++,

(* the i and j for statements go over all board locations *)

{

temp = {}; (* initialize temp to be empty,

we'll start putting the constraint info here and then append to A *)

For[num = 1, num ≤ n^2, num++, (* remember we index variables linearly,

this goes over the n^2 squares that can attack (i,j) *)

{

b = Mod[num, n];

If[b ⩵ 0, b = n];

a = ((num - b) / n) + 1; (* this converts from the linear index

IntroLinearProgramming2.nb 3

to a pair (a,b) for the board space under consideration *)

(*numat = (a-1)*n + b;*) (* moves from (a,b) to num from 1 to n^2 *)

(* we now see if a queen at (a,b) could attack

square (i,j). there are four ways this could happen. *)

(* they could have the same x-coord, so i = a;

they could have the same y-coord, so j = b. *)

(* they could also be on the same upward sloping diagonal,

so i-j = a-b, or downward, so i-j = a-b *)

(* the || is how we do an or condition; if either of the four

conditions hold we append a -1 to our list, else a 0 *)

(* this will give us n^2 elements, the first half of a row for A;

we then do the p_ij entries *)

temp = AppendTo[temp, If[a ⩵ i || b ⩵ j ||

i - j ⩵ a - b || i + j ⩵ a + b, -1, 0]];

}]; (* end of nuum loop *)

numij = (i - 1) * n + j;

(* this gives the linear index corresponding to (i,j) *)

(* we now finish the row constraint; we put a -

numqueens at the place corresponding to (i,j) and a 0 elsewhere *)

For[num = 1, num ≤ n^2, num++, temp =

AppendTo[temp, If[num ⩵ numij, -numqueens, 0]]];

A = AppendTo[A, temp]; (* add constraint to A *)

bvec = AppendTo[bvec, -numqueens]; (* add the entry to bvector *)

}]; (* end of j loop *)

]; (* end of i loop *)

(* now we want to add constraints saying there are EXACTLY numqueen queens,

ie, numqueen of the xij are 1 and the rest are 0 *)

(* as Mathematica does Ax ≥ b we need two constraints to get an

equality: one blah ≥ numqueens and one -blah ≥ -numqueens. *)

(* we initialize temp to be zero, and put a 1 in the first n^2

elements (those corresponding to xij) and a 0 elsewhere *)

(* we then put a numqueens for the entry of b-vec;

this gives the constraint sum xij ≥ numqueens *)

(* the next lines are similar and give -sum x_ij ≥ -numqueens *)

temp = {}; (* always remember to reinitialize

the temp list to empty before adding things to it! *)

For[num = 1, num ≤ 2 n^2, num++, temp = AppendTo[temp, If[num ≤ n^2, 1, 0]]];

A = AppendTo[A, temp]; (* now we add our constraint to the A matrix *)

bvec = AppendTo[bvec, numqueens];

temp = {};

For[num = 1, num ≤ 2 n^2, num++, temp = AppendTo[temp, If[num ≤ n^2, -1, 0]]];

A = AppendTo[A, temp];

bvec = AppendTo[bvec, -numqueens];

(* this finishes making sure we have numqueen queens *)

(* annoyingly I could only find commands for

Mathematica to do integer programming, NOT binary programming *)

4 IntroLinearProgramming2.nb

(* we can declare the variables to be integers but not 0,

1 integers. fortunately this is easily fixed *)

(* we just need to add a constraint that each variable is at most 1,

as they are assumed to be at least 0 (advantages canonical form!) *)

(* As the constraints are always Ax ≥ b,

if we want x ≤ 1 we have to program that as -x ≥ -1 *)

(* for each of the 2n^2 variables, the n^2 choices of xij and the n^2 of pij,

we make sure it is at most 1 *)

temp = {}; (* always initialize to empty *)

For[num = 1, num ≤ 2 n^2, num++, (* go through the 2n^2 variables *)

{

temp = {}; (* for each variable choice make our list empty,

put a -1 in the right spot and 0's elsewhere *)

For[counter = 1, counter ≤ 2 n^2, counter++, AppendTo[temp,

If[counter ⩵ num, -1, 0]]]; (* if in right spot 1, else 0 *)

A = AppendTo[A, temp]; (* appends new constraint to A,

and then next line appends -1 as needed to b-vector *)

bvec = AppendTo[bvec, -1];

}];

(* now we deine the vector needed for the optimization. we

initiallize it to empty, and then make it the right size *)

(* since we can only do minima we use -1 as the entries for c

corresponding to the pawn variable locations, and 0 for the queen *)

c = {};

For[num = 1, num ≤ 2 n^2, num++, c = AppendTo[c, If[num > n^2, -1, 0]]];

(* appending information to c *)

(* below is the key line -- it calls the linear program solver,

and the last bits inform it that the variables are integers *)

(* we save the output to a quantity we named soln,

for solution; we will then format the answer nicely *)

soln = LinearProgramming[c, A, bvec, Automatic, Integers];

Print["Solution is ", soln]; (* prints the soln vector,

but hard to parse so we work on it a bit *)

queenlist = {}; (* initializes the list of queens to empty,

this is the first n^2 variables *)

(* we then go through the soln list and save that info to the queen list *)

(* the next lines after this redo

this and make a list of pawn solution information *)

(* we really don't need to do this -- we can work directly with

the solution list, but thought this might be easier to parse *)

For[num = 1, num ≤ Length[soln], num++,

If[num ≤ n^2, queenlist = AppendTo[queenlist, soln[[num]]]]];

pawnlist = {};

For[num = 1, num ≤ Length[soln], num++,

If[num > n^2, pawnlist = AppendTo[pawnlist, soln[[num]]]]];

IntroLinearProgramming2.nb 5

(* now we will draw a board and place

Q for queen at P for pawn at the correct locations *)

board = {}; (* as always initialize to empty, this will be a matrix *)

For[i = 1, i ≤ n, i++, (* will construct the board row by row *)

{

temp = {}; (* initialize new row of matrix to empty and will add *)

For[j = 1, j ≤ n, j++, (* go through the n elements of the row *)

{

numat = (i - 1) * n + j;

(* convert from (i,j) board location to linear index number *)

If[queenlist[[numat]] ⩵ 1, temp = AppendTo[temp, "Q"],

(* if queen there write Q *)

If[pawnlist[[numat]] ⩵ 1, temp = AppendTo[temp, "P"],

(* if pawn there write P *)

temp = AppendTo[temp, "-"]]]; (* else write -

to show space empty but show the space is there *)

}];

board = AppendTo[board, temp]; (* save the new row to the board matrix *)

}];

Print[MatrixForm[board]]; (* print the board matrix NICELY *)

Print["Number of pawns = ", Sum[pawnlist[[i]], {i, 1, Length[pawnlist]}]];

(* prints number pawns *)

Print["Number of queens = ", Sum[queenlist[[i]], {i, 1, Length[queenlist]}]];

(* prints number queens *)

If[printlinearprogrammingconditions ⩵ 1,

{

Print["Constraint Matrix is"];

Print[MatrixForm[A]]; (* prints the constraint matrix *)

Print["b-vector is"];

Print[bvec]; (* prints the b-vector *)

Print["c vector for optimization is"];

Print[c] ;(* prints the c vector *)

}]; (* end of print condition --

only print if printlinearprogrammingconditions is 1 *)

]; (* end of module *)

In[4]:= pawnqueenproblem[1, 1, 0]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

Solution is {1, 0}

(Q)

Number of pawns = 0

Number of queens = 1

In[5]:= pawnqueenproblem[2, 2, 0]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

6 IntroLinearProgramming2.nb

Solution is {1, 1, 0, 0, 0, 0, 0, 0}


Q Q
- -



Number of pawns = 0

Number of queens = 2

In[6]:= pawnqueenproblem[3, 3, 0]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

Solution is {0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

- - Q
- - -

Q Q -

Number of pawns = 0

Number of queens = 3

In[18]:= Timing[pawnqueenproblem[4, 4, 0]]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

Solution is
{1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}

Q - Q -

- - - Q
- P - -

- - - Q

Number of pawns = 1

Number of queens = 4

Out[18]= {0.093601, Null}

In[20]:= Timing[pawnqueenproblem[5, 5, 1]]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

Solution is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

- P - - P
- - - - P
Q - - - -

Q - - Q -

- - Q Q -

Number of pawns = 3

Number of queens = 5

Constraint Matrix is

-1 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 -1 0 0 -1 0 0 -1 0 -1 0 0 0 -1 -5
-1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 -1 0 0 -1 0 0 -1 0 -1 0 0 0 0
-1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 0 -1 0 -1 0 0 -1 0 0 0 0 -1 0 0 0
-1 -1 -1 -1 -1 0 0 -1 -1 -1 0 -1 0 -1 0 -1 0 0 -1 0 0 0 0 -1 0 0
-1 -1 -1 -1 -1 0 0 0 -1 -1 0 0 -1 0 -1 0 -1 0 0 -1 -1 0 0 0 -1 0
-1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 -1 0 0 -1 0 0 -1 0 0
-1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 -1 0 0 -1 0 0 -1 0
0 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 0 -1 0 -1 0 0 -1 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0

IntroLinearProgramming2.nb 7

0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 -1 0 -1 0 -1 0 0 -1 0 0
0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 0 0 -1 0 -1 0 -1 0 0 -1 0
-1 0 -1 0 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 -1 0 0 0
0 -1 0 -1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 -1 0 0
-1 0 -1 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 0 -1 0 -1 0
0 -1 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 -1 0 -1 0 0
0 0 -1 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 0 0 -1 0 -1 0
-1 0 0 -1 0 -1 0 -1 0 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 0
0 -1 0 0 -1 0 -1 0 -1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0
0 0 -1 0 0 -1 0 -1 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 0 0
-1 0 0 -1 0 0 -1 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0
0 -1 0 0 -1 0 0 -1 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 0
-1 0 0 0 -1 -1 0 0 -1 0 -1 0 -1 0 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 0
0 -1 0 0 0 0 -1 0 0 -1 0 -1 0 -1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 0
0 0 -1 0 0 0 0 -1 0 0 -1 0 -1 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 0
0 0 0 -1 0 -1 0 0 -1 0 0 -1 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0
-1 0 0 0 -1 0 -1 0 0 -1 0 0 -1 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 0
1 0
-1 0
-1 0
0 -1 0
0 0 -1 0
0 0 0 -1 0
0 0 0 0 -1 0
0 0 0 0 0 -1 0
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 -1 0 0 0 0 0
0 -1 0 0 0 0
0 -1 0 0 0
0 -1 0 0
0 -1 0
0 -1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

8 IntroLinearProgramming2.nb

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

b-vector is

{-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, 5, -5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}

c vector for optimization is

{0, -1, -1, -1, -1,
-1, -1}

Out[20]= {0.436803, Null}

In[21]:= Timing[pawnqueenproblem[6, 6, 0]]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

Solution is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0}

- P - - P -

P - - - P -

- P - - - -

- - - Q - Q
- - Q - - -

- - Q Q - Q

Number of pawns = 5

Number of queens = 6

Out[21]= {5.148033, Null}

In[22]:= Timing[pawnqueenproblem[7, 7, 0]]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

IntroLinearProgramming2.nb 9

Solution is
{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Q - - - - - Q
- - P P P - -

Q - - - - - Q
- - P - P - -

- - - P - P -

- Q - - - - -

Q - - - - - Q

Number of pawns = 7

Number of queens = 7

Out[22]= {138.248086, Null}

In[23]:= Timing[pawnqueenproblem[8, 8, 0]]

LinearProgramming::lpip : Warning: integer linear programming will use a machine-precision approximation of the inputs. 

Solution is {0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0}

- - - P P P - -

P - - - P P - -

P P - - - P - -

P P - - - - - -

- - - - - - Q -

- - - - - - Q Q
- - Q - - - Q Q
- - Q - - - - Q

Number of pawns = 11

Number of queens = 8

Out[23]= {2759.158487, Null}

In[24]:= 2759 / 60.

Out[24]= 45.9833

10 IntroLinearProgramming2.nb

