An Introduction to Advanced Linear Algebra

Steven J. Millet

January 13, 2012

Department of Mathematics and Statistics
Williams University
Williamstown, MA 01267

Abstract

The abstract below describes the content of the notes wetidar; before delving into
these notes, we first sketch some thoughts about the clase@ahdok.

We describe Linear Programming, an important generatinaif Linear Algebra. Lin-
ear Programming is used to successfully model numerousnedd situations, ranging
from scheduling airline routes to shipping oil from refiresrito cities to finding inexpen-
sive diets capable of meeting the minimum daily requiremidntmany of these problems,
the number of variables and constraints are so large theahitienough to merely to know
there is solution; we need some way of finding it (or at leadbsecapproximation to it) in
a reasonable amount of time. We describe the types of prahlémear Programming can
handle and show how we can solve them using the simplex meWedliscuss generaliza-
tions to Binary Integer Linear Programming (with an exangfla manager of an activity
hall), and conclude with an analysis of versatility of Lin€aogramming and the types of
problems and constraints which can be handled linearly,edsas some brief comments
about its generalizations (to handle situations with gaticiconstraints).

*E-mail:sj mi@mi | | i ans. edu

Contents

1 Course/Book Outline

1.1
1.2

Motivating Questions e
Content for Advanced Linear Algebra

2 Linear Programming

2.1
2.2

2.3

2.4

2.5

Introduction e e e e

The Canonical Linear Programming Problem

2.2.1 Statement of the DietProblem
2.2.2 Definitions
2.2.3 Solution to the DietProblem
Duality and Basic Solutions
231 Duality e

2.3.2 BasicSolutions

Solving the Canonical Linear Programming Problem: Tingpx Method

2.4.1 Phaselofthe SimplexMethod
2.4.2 Phase ll ofthe SimplexMethod
2.4.3 Summary of the Simplex Method
Binary Integer Linear Programming a.u..

3 Versatility of Linear Programming

3.1
3.2
3.3
3.4
3.5
3.6

Binary Indicator Variables
OrStatements e e
If-Then Statements
Truncation e e
Minimums and Maximums
Absolute Values

4 Removing Quadratic (and Higher Order) Terms

4.1
4.2
4.3
4.4

Problem Formulation
Linearizing Certain Polynomials
Example: Applications to Scheduling
SUMMANY . . . o e e e e e e e e

1 Course /Book Outline

The following is a rough outline of ideas for a course on advanced
|inear algebra at Munt Hol yoke for the Spring 2012 senester, which
will serve as a nucleus for a textbook. The style of the book and
the course will be conversational and friendly.

1.1 Motivating Questions

Here are four questions I'm thinking about.

1. Should the course be just linear programming, or random matix theory too? What
about the book?

< There is more flexibility if we do both, more chance of showsigdents where
things can go, but for a book it might be a bit too much (thoughduld of course also
give instructors more flexibility). The advantage of jusirdplinear programming and not
random matrix theory is that we can make this also a briebéhtction to linear algebra,
and build on that. Thus, for now, the plan for the book to include much random
matrix theory, at most a few pages on it at the end of the boakrhat's next’ section. It
would fit well there, as the rest of the book is devoted to stuglfixed matrices. In fact,
we could even use this as a nice bridge / transition. In thiewedd, we of course don't
know exact values. What happens if we start drawing theesndéi random? There’s some
nice work on this subject, leads to a quick introduction tobability, and then can end
with random matrices. This is stochastic linear prograngmirots of references. A quick
search yielded the following paper: http://www.jstor/pgs/1907736; a more extensive
review of the literature is needed.

< Goal for the course: see where the math goes, use the maeaadpringboard to
introduce topics throughout mathematics. The goals fobtiwk will be very similar, with
the big addition of getting comfortable with mathematicaldaling (a very important and
marketable skill), being able to set up linear programmirapfems, having some idea of
what resources are out there to solve them, et cetera.

2. Market for the book / course: Is this a general course with minmal pre-regs, or is
this a sequel to calculus?

< My original thought was that, as much as possible, let's min¢ calculus. This
will increase marketability. We can have calculus aside$erAalking with ED, it might
be good to include a calculus pre-req. This will make surdesits have some mathe-
matical maturity and familiarity. Also, of course, the bagl) weakness students have in
calculus classes is lack of algebra skills, and that woulddrg hard in a course such as
this.

o We don't need too much calculus for linear programming; astnmaybe some
comments on optimizing problems and boundary issues. Iftart ®lking about con-
straint matrices with random entries, however, then a bitenoalculus is needed as we
now must discuss probabilities. We wouldn’t need too muchmfprobability; many of the
concepts students should have already seen. A big advaottéigis is that many people
do not know that one of the biggest applications of calcudubat areas are probabilities.
We can thus motivate, after the fact, the calculus they &hrn

< For random matrix theory, we would need more probability. there are more
than enough interesting items in linear programming, dehthis deeply (in either the
course or the book) seems to be a mistake, and instead welstamikent ourselves with
references to the literature.

. What linear algebra is needed?

o We’'ll review what is needed below. This is a quick pass — asémeester progresses
and we start dealing with the material, we'll have a betteisee We can decide later for
a book if this should be an introductory chapter, or an append

o Firstis AZ = b. The left hand side is a linear combination of columns. Thia i
very important idea for linear programming. We'll talk a libout linear combinations.
This is not just important in linear algebra, but also in elifintial equations / difference
equations (linear combinations of solutions, Binet's fatanfor Fibonacci numbers). An-
other example is portfolio theory, where we want to minimiagiance subject to a given
expectation.

© Have to deal with degenerate casds: = b. This is not always solvable, talk about
determinants.

<o Tweaking answers: probability of an event: ‘almost’ all neds with real entries
are invertible. Need, however, to worry about numericabifitg, and this is a fasci-
nating topic and can make for some nice asides. Maybe talk @but computational
complexity, such as (my favorites) fast exponentiatioggtwgraphy), Horner’s algorithm
(fractal geometry), Strassen’s algorithm (fast matrix tiplication — huge applications).
Just ‘show’ or briefly describe these possibilities (or mayhese are advanced topics /
supplemental topics at the end of the book).

¢ Talk about the difference between real versus integerisakit Some riddles on
the number of animals satisfying given constraints, andetlage infinitely many ‘real’
solutions, but if you require the solutions to be integerki¢lv makes sense, as no one
hase/7 of a cow) then there is essentially ‘one’ solution (or maypeéaisome multiples,
but we often need to have non-negative numbers). Anothengleais the optimal base
for storing information in a computer; answer turns out tdbsee (a very nice calculus
problem, uses almost everything you learn in Calculus k), thns base 3 is surprisingly
better than base 2 in this respect (as 3 turns out to be closethan 2). This needs
naturally into (1) the backpack problem, (2) having to tagecific roads (and either go

to the city or don't), (3) This is a very real problem / qolivation in the real world;
you either do something or you don't, there is no temporiziNg one is half-pregnant;
you don't have a flight where some people go to Tucson and sorDenver. You can,
however, temporize a bit by breaking flights into legs...té\tbat this leads to our current
hub system.

o Need some combinatorics, nothing too advanced, mostly emetrel of (]JVVI) as
that arises in determining number of options, which is uskfudetermining how long
something will take.

. What is needed for Random Matrix Theory?

< Though the book is almost surely going to just be linear @ogning and what
spins off, if we do random matrix theory what is needed? Nedesbasic probability,
the fact that integration gives areas gives probabilitgégenvalues, and of course com-
binatorics. To ‘prove’ the theorems in full detail requir$ot of advanced material, but
there is no need to give a full proof; one can argue about tieoreableness of the method
of moments via a comparison with Taylor series and call itya da

1.2 Content for Advanced Linear Algebra

Here are three thoughts.

1. Why Linear Algebra? Where is it used?

o Let’s start with some standard linear algebra problems &ovegere we began.
Everyone is familiar with the boring problem of two traingWing at different times and
at different speeds and wondering when they meet. This islt#ssic example of a linear
algebra problem, but doesn’t showcadeythe subject is so important.

< Perhaps talk about perspective lines in art?

o Advanced application: cryptography: error correctionteddon, such as the Ham-
ming (7,4) code. We don't have to go into the entire theoryniaybe we do this as a
supplemental chapter for a longer, more advanced coursdascomments for the next

few items).

< Advanced application: fast Fourier transform, lots of sigprocessing applica-
tions.

< Advanced application: Method of Least Squares, fundarhémtfitting.... | do

have extensive notes on this, could make that an appendits iviorthwhile including (to
give a professor some flexibility in making a course).

< Another possibility is to talk about calculus, and the nesdirtearize non-linear
phenomena. This is probably a good idea as it then builds ercdlculus we say we
require.

< Another item is difference equations, where we can writatgmis as iterates of a
matrix (this ties in with efficiency and many other items).

< Describe the types of solutions to linear algebra probleneso, one (unique) or
infinitely many.

< Most things sadly non-linear. It is hard to solve problemaaotly. Often we get
approximate answers to approximate equations for the reddl\wroblem. This is some-
thing many people haven't experienced; we’re so used in teeféw math classes of
having clean equations with clean solutions. This isn'tdage in the real world. We have
two conflicting items: we want our model to accurately ddseithe real world, and we
want it to be mathematically tractable. These are compejias.

2. Non-linear Equations

< There are many ways to generalize from Linear Algebra. Ote ¢® from linear
equations to non-linear equations, which we discuss now.

< Math can be ‘simple’ but have lots of applications. A grearaple is GPS systems
(motivated by my son Cam asking how the computer knows wherare). Imagine you
have a few satellites that tell you how far they are from yoaclEone localizes you to a

surface of a sphere, and then you need to find the points efatton to uniguely deter-
mine where you are. This can tie into the Method of Least Stp@ret an overdetermined
system).

< Advanced application: Hamiltonians from Physics. Othesgituilities are plane-
tary trajectories, ballistics, Lots of possibilitieere!

. Linear Programming (and beyond)

< Instead of generalizing to non-linear equations, we caeigdize another way: we
now want to optimize a function subject to various constsiriThe most general case
gives non-linear constraints, which sometimes is doabteisbquite hard. We discuss
now linear programming.

< Start with optimization with linear constraints. Much diliis optimization. We
can talk about Physics (Hamiltonians, Feynman'’s actiof,soap bubbles, economics,

—

< Main problem: givenAr = b, optimizec* . We'll see later that there is no
loss of generality in using equality instead of inequadditie the matrix constraints. Also
constraints on the variables. Typically take> 0, and again will see there is no loss.
Here we can talk about ‘canonical’ formulations. This is @ bbncept in mathematics,
namely that it is sufficient to reduce certain general pnoisi¢o special cases. Examples
abound (find them!). One is solving the cubic — enough to clanghe depressed cubic.
Another nice example is tic-tac-toe; there aren’t 9 opemnayes, but up to isomorphism
just 3.

< In solving linear programming problems, we’ll learn abduwg dual problem. Sim-
ilar to the argument above (getting a canonical formulatithns is another big concept.
It seems strange, but a related problem is often much ea&igreat (but high level!)
version of this is Poisson Summation; try and find other examp

< Lots of applications to discuss. Big one is the oil industmave a bunch of oil
sources, a bunch of refineries, a bunch of markets — wheréshipped from). Another
is the airlines (this led to the hub system we have now, figudat what flights planes
should take, but there are lots of problems because we dooi khe ‘true’ demands
for people for flying from city A to city B on day D). There are kefhora of scheduling
problems (can do movie theaters: what movies to buy, whaessrto use, what times
to start, but again, we often have to estimate demand anchatien effects, which are
fascinating problems in their own right). We can also lookaseball. One possibility is
describing a schedule (lots of issues, such as hard camstraéut also wanting to have
big games between popular teams at popular times, saveodigames for the end of the
season, ...). Another possibility is the fascinating peablof elimination numbers (some
great papers on this, and how the presiscalculateghis!). One final problem: pure
mathematics: Hales proof of the Kepler conjecture (on sppacking) involved solving
hundreds of thousands of linear programming problems.

< A key question is how much theory to get into. While the simpigethod is not
the best algorithm out there, it has a very approachablé prdrch is worth doing in full
detail. The proof also has a nice outline. It's broken into arts, Phase | and Phase
Il (using the notation from Joel Franklin's excellent bookeed to check if this is the
original notation). First, assuming we can do Phase Il we@me can do Phase I. Then,
using Phase I, we prove we can do Phase Il. This sounds airdidaot — to prove Phase
I, we only need to know how to do Phase Il for a related problend in that case it is
trivial to show Phase Il is doable. This is a beautiful idea, and wgndkking fully. Other
methods to solve linear programming should be mentionedefiedenced, but not really
discussed.

< Note in the various linear programming problems mentiomadny are Integer
Linear Programming problems, or Binary Integer Linear Paogming problems. | find
formulating these a lot of fun. Specifically, so many relasidhat do not look linear can
be made linear (such as max/min, absolute values, cut-nfftians) at the cost of in-
troducing more variables and constraints. This provide®aderful platform to discuss
trade-offs. Would you rather do lots and lots of simple peois, or a few hard problems?
Most of the time, it's better to do the simpler problem, esgicwhen we have cranks
to churn out the answer. Maybe motivate solving a generginoohial to solving a chain
of quadratic equations. There is of course a run-time casadding variables and con-
straints, but linear programming exists, while quadratid higher is either harder or is
not available. The motivating quote should Méhat is amazing is not that the horse sings
well, but that the horse sings at alll.

< The problems above (except maybe Hales’ proof of the Keglejecture) involve
linear programming problems, where the parameters in thst@nt matrix are fixed. In
the real world, we won't know these values exactly, and &gk to stochastic linear pro-
gramming, where these parameters are now drawn from digtrts (hopefully known).
A little probability is needed here. The goal would probabé/to do a few examples to
give the flavor, but not proofs in general, just a literatuzeiew and an attempt to get
things on people’s radar.

2 Linear Programming

2.1 Introduction

We describe the ideas and applications of Linear Prograggmonr presentation is heavily
influenced by Joel Franklin's excellent bodWethods of Mathematical Economifsr]. We
strongly recommend this book to anyone interested in a we&glable presentation, replete with
examples and references.

Linear Programming is a generalization of Linear Algebtés tapable of handling a variety
of problems, ranging from finding schedules for airlines awvias in a theater to distributing oil
from refineries to markets. The reason for this great vditgat the ease at which constraints
can be incorporated into the model. To see this, in the fafigvsection we describe a specific
problem in great detail, and in 84 we discuss how some quedathigher order) constraints
can be handled as well.

2.2 The Canonical Linear Programming Problem
2.2.1 Statement of the Diet Problem

We consider a simple case of the diet problem first, and theuds the generalization. Assume
for simplicity that there are only two foods, which for defemess we shall assume are cereal
and steak. Further, we assume that there are only two pogeciple need to stay alive, iron
and protein; each day a person must consume at least 60 Gimts @nd at least 70 units of
protein to stay alive. Let us assume that one unit of cerests@@0 and contains 30 unit of
iron and 5 units of protein, and that one unit of steak c8tand contains 15 units of iron
and 10 units of protein. The goal is to find the cheapest diéthwill satisfy the minimum
daily requirementsWe have deliberately chosen absurd prices and levels ofar@hprotein
for cereal and steak to illustrate a point later.

Let z; represent the number of units of cereal that the person omesa day, and, the
number of units of iron consumed. For the diet to meet the mmumn requirements, we must
have

30z; + 5z2 > 60
1521 + 1020 > 70
x>
Ty = (1)

The left hand side of the first inequality represents the arholiron the person consumes when
eatingx, units of cereal and: units of steak; it must be at least 60 as otherwise not enough
iron is consumed. Similarly the left hand side of the secorwrdjiiality represents the amount of
protein consumed, and must be at least 70. The last two ihgesiaepresent the fact that we
cannot eat a negative amount of a food. The cost of the diet is

Cost(x1,x2) = 201 + 222, 2

and the diet problem becomeBtinimize Cost(z1, z2), subject tory, x5 satisfy(1). It is very
important that, not only are the constraints linear in theighles, but the function we are trying
to maximize is linear as well.

We may rewrite (1) in matrix form. Let

(30 5 [z ([60
A‘<15 10)’“_<x2>’b_<70>' 3
Then the diet problem is equivalent to

Minimize 20x; 4 2x2, subject to Az > b and x > 0. (4)

The above is an example of a Linear Programming problem:

1. we have variables; > 0forj e {1,...,N};

2. the variables satisfy linear constraints, which we catevasAx > b;

3. the goal is to minimize Bnear function of the variablesc’ z = c¢;z1 + - - - + enzn.

Note the similarity between (4) and a standard linear akygioblem. The differences
are that, instead oflx = b we haveAz > b, and instead of solving fox with Az = b
we are solving forr satisfying Ax > b which minimizes some linear function. Thus Linear
Algebra becomes a subset of Linear Programming. In fachamext section we show how, by
introducing additional variables, we may replace the qaitss Az > b with new constraints
and new variablesd’z’ = t'.

2.2.2 Definitions

Before defining the canonical Linear Programming problera, finst observe that it suffices
to consideronly cases where the constraints are greater than or equal t@. isThecause a
constraint such as

apnz1+ - +ainen < b (5)

may be re-written as
—anTy — - — GNIN > —bg; (6)

the entries of the matri¥ are allowed to be any real number. Thus there is no loss inrgene
ality in assuming all the constraints are greater than oakigu Further, at the cost of adding
additional variables, we may assume all the constraintacttally equalities.

Consider some constraint

aix1 + - +aNey > by (7)
We introduce a new variablg > 0, and change the above constraint to

—ajpry — - — aGNTN + 2 = by (8)

10

Thus for each constraint iAz > b with a greater than sign, at the cost of adding a new variable
z; > 0 we may replace the greater than sign with an equality. Thablarz; is addedonlyto a
constraint, not to the linear function we are trying to miraen

We note that we may assume each variahle> 0. To do this may require adding additional
constraints and additional variables (and the additiomalables will also be non-negative).
Assume we want; > m; (we allowm; to equal—oo). If m; > 0 and is finite then we simply
add the constraint; > m;. If m; < 0 and is finite we replace the variablg with z; by
settingz; = x; — m; with z; > 0; note we still have a linear function to minimize. Finallfy, i
mj = —oo We introduce two new variables;, v; > 0, and we replace; with u; — v;.

Finally, say that instead of minimizing the linear functiehz we want to maximize it. As
minimizing the linear function-c¢’ z is the same as maximizing the functiohz, there is no
loss in generality in assuming we want to minimize a lineacfion.

The above arguments shows that we may &kelLinear Programming problem and write
it in the following form:

Definition 2.1 (Canonical Linear Programming Problenf)he canonical Linear Programming
problem is of the following form:

1. we have variables; > 0forj € {1,...,N};

2. the variables satisfy linear constraints, which we caitavas Az = b (whereA is a
matrix with M rows andN columns, and is a column vector witth/ components);

3. the goal is to minimize a linear function of the variable$§x = c¢;z; + - - - + enz .

If = satisfies the constraintsA¢f = b, * > 0) then we callz a feasible solution to the
canonical Linear Programming problem; if furtheminimizes the linear function” z, thenz
is called aroptimal solution to the canonical Linear Programming problem.

We discuss some pathological cases. Consider the follogéingnical Linear Programming
problems.

1. The constraints are;, = —2007, with z; > 0 and minimizelOzx;. There are no feasible
solutions; thus there are no optimal solutions.

2. The constraints argr; — 5z = 0, with z1, 29 > 0 and minimize—17x;. There are
infinitely many feasible solutions: arfy, z2) works withz; = 2.5x9; however, there is
no optimal solution (send; — o).

3. The constraints are, + zo = 1, with 21, x5 > 0 and minimizer; + x». Here there are
infinitely many feasible solutions, and each feasible smiuis also an optimal solution.

The above examples show some care is required. A generariRfregramming problem
need not have a feasible solution. If it does have a feasithlgian, it need not have an optimal
solution. Further, even if it does have an optimal solutibmeed not have a unique optimal
solution.

11

Figure 1: Plot of constraints for Diet Problem

Exercise 2.2. Assume there ar@ plants (i.e., Alaska, Texas, Mexico,) that produce oil and
there areM markets that need oil (i.e., Boston, London, Tokyo). Letc;; denote the cost of
shipping one barrel of oil from plantto market; (thusc;s is the cost of shipping one barrel of
oil from our plant in Texas to London). Assume gityeedsd; barrels of oil each day, and plant
1 can supplys; barrels of oil a day. Write the Linear Programming problentregponding to
this situation: find the constraints, and find the quantitypéominimized.

2.2.3 Solution to the Diet Problem

In Figure 1 we graph the four constraints to the Diet Problemswlered earlier (see (4}, =
andb are defined in (3)). Before finding an optimal solution, wetfisd all possible feasible
solutions. Note that ifz1, z2) is a feasible solution than it must be in the region in the first
guadrant above both lines. Thus there are infinitely mangidates for the optimal solution (or
solutions!).

Fortunately, we may greatly winnow down the candidate listdptimal solutions. The
idea is somewhat similar in spirit to optimization problemorh calculus; here we first show the
optimal solutionscannotoccur in the interior and thereforaustoccur on the boundary of the
polygon, and then show that theyustoccur at a vertex.

We are trying to minimize the linear cost functi@dz; + 2x5. Consider the function
Cost(x1,x2) = 20z1+2x2. We look at contours where the function is const&iust (x1, x2) =
¢; we sketch some constant cost contours in Figure 2. Noteéfteatontours of constant cost are
parallel; this is clear as they are of the fo2Ow; + 225 = c. Further, the smaller the value af

12

25

15

10}

Figure 2: Plot of constraints for Diet Problem

the smaller the cost. Thus, given the choice between tws,lilmeminimize cost we choose the
lower line.

Therefore, if we start at any poimtside the polygon (the set of feasible solutions), by
flowing on a line of constant cost we may move to a point on thendary with the same cost.
Thus, to findan optimal solution, it suffices to check the feasible solusion the boundary; this
is a general feature of linear programming problems.

Additionally, it is enough to check theerticesof the polygon. This is because if we are
on one of the edges of the polygon, if we move to the left the desreases. Thus it suffices
to check the three vertices to find the cheapest diet whickaotnthe minimum daily require-
ments. Because of the cost of a unit of ceréaDj and steak$2), the slope of the line is such
that the cheapest diet has cereal, and only steak. This is why we chose such unreasonabl
numbers for the cost of cereal and steak, so that we couldkaha@cfirst solution with our
intuition.

Let us now consider a more reasonable set of prices. Let tdwomtion beCost(x1, z2) =
x1 + x2 (so the two products both co$t per unit). We plot some cost lines in Figure 3. Note
now that the optimal solution, while still one of the verteoins, isnotz; = 0.

Exercise 2.3.Find the optimal solution to the Diet Problem when the costfion isCost(z1, z2) =
xr1 + xo.

Exercise 2.4.There are three vertices on the boundary of the polygon @filiée solutions);
we have seen two choices of cost functions that lead to twioeathtee points being optimal

13

5.8+¢

;

5.4+

0. 95 I 1.05 1.1 1.15 1.2 1.25

Figure 3: Plot of constraints for Diet Problem

solutions; find a linear cost function which has the thirdtegras an optimal solution.

Exercise 2.5.Generalize the diet problem to the case when there are thrémiotypes of food,
and each food contains one of three items a person needstddilye (for example, calcium,
iron, and protein). The region of feasible solutions willWwbe a subset dR3. Show that an
optimal solution is again a point on the boundary.

2.3 Duality and Basic Solutions

2.3.1 Duality

Recall the canonical Linear Programming problem may bemasduo be in the following form:
1. variablest = (z1,...,znx) > 0;
2. linear constraintslz = b, with b = (b1, ..., by);
3. minimize the linear function’ z.

Definition 2.6 (Dual Problem) Given a canonical Linear Programming problem, the Dual
Problem is defined by

1. variablesy = (y1,...,yu) € RM;

2. linear constraintg/” A < ¢T';

14

3. maximize the linear functiop’ b.

We shall see later that it is often useful to pass from thamalgroblem to the dual problem;
we give an example here to show how a dual problem can ofterasiereo study. Consider
the following chess problem: place 5 queens dh:a 5 chessboard such that there are three
squares where we may place pawns so that no queen attacksaany(gemember a queen
attacks horizontally, vertically, and diagonally). We @¢pmne configuration of five queens
which allows three pawns to be placed safely én>a5 board:

P P
P

Q)
Q Q
QlQ

One way to attack the problem is to look at all the differenysva queens may be placed on
the5 x 5 chessboard. Sadly, however, there @5@ = 53, 130 possibilities to check! One can
cut down on this by exploiting symmetry (there are only 6 uieglent places to place the first
gueen, not 25), though even if we do this, the number of piligieib is large enough so that it
is undesirable to check all by hand.

The principle of duality is applicable here — we replace thebfem we are studying with
an easier, equivalent one. Instead of trying to put down ®gsiso that 3 pawns can be placed
safely on thes x 5 chessboard, consider tial Problem where we try to place 3 queens
on the board so that 5 pawns can be placed safely. Why is thigsatgnt? If we are able to
do this, say the 3 queens are(at, y;) (for i € {1,2,3}) and the 5 pawns are &t;, v;) (for
i € {1,...,5}). Then all we need do is replace each pawfuaty;) with a queen, and each
queen atu;, v;) with a pawn.

The advantage is clear: rather than having to investigétg possibilities, now we need
only study(235) = 2,300 (and we may further reduce the number of possibilities byraginy
arguments).

Exercise 2.7.Prove the Dual Problem of the Dual Problem is the originaléan Programming
problem.

We give a simple example of how the Dual Problem can providerimation about the
original problem. Assumg is a feasible solution of the Dual Problem. Thyfsd < ¢”'. We
immediately find that, itz is a feasible solution of the original Linear Programminglpem,
then

yTAz = (YT Az < (10)

and
yT Az = yT'(Az) = yTo. (12)

Thus
v < la, (12)

and any feasible solution of the Dual Problem gives a lowenkidor the linear function we are
trying to maximize in the canonical Linear Programming peol This leads to the following
test for optimality:

15

Lemma 2.8. Consider a canonical Linear Programming problem with a fessolutionz, and
its Dual Problem with a feasible solutian If ¢z = 376 thenZz is also an optimal solution.

Proof. Let z be any feasible solution to our Linear Programming problErom (12) we know
thaty”b < ¢’'z; however, by assumption we hav€z = 37'b, which implies that’z < ¢’z
for 2 anyfeasible solution to our Linear Programming problem. Thus an optimal solution,
minimizing our linear function. O

2.3.2 Basic Solutions

Let x be a feasible solution for the canonical Linear Programnuraplem with constraints
Ax = b. While all the coordinates aof are non-negative, some may be zero. kgt z;,,
..., z;, denote the coordinates othat arepositive If the corresponding columns;,, ..., A;,
are linearly independent, then we say thas a basic solution' to the Linear Programming
problem. The following simple observation is crucial to@#ntly solving Linear Programming
problems.

Lemma 2.9. There are only finitely many basic solutions to a canonicalelar Programming
problem.

Proof. Let A haveM rows andN columns. There are only finitely many subsets of columns (in
fact, there ar@" — 1 non-empty subsets @&f columns ofA4, 1 < k < N). Consider one such

subset; let4; ,..., A;, denote a set of linearly independent columns of. We are reduced
to showing that there are only finitely maqy;,, ..., z;,) (with each coordinate positive) such
that

Ajxj, 4o+ Ajxg, = b (13)

We do this by showing there is at most one such solution. Wenatite (13) as
Az = b, (14)

whereA’ = (A;, Aj, --- Aj,) hasM rows andk columns. NoteM > k, because if\/ < k
then thek columns cannot be linearly independent. We would like tosgay A'~'b; however,
A’ is not necessarily a square matrix (and if it is not a squarteixn# cannot be invertible). We
remedy this by multiplying both sides by”’, obtaining

AT A = AT (15)
asM > k, thek x k matrix AT A’ is invertible. Therefore
= (A/TA/)_IA/TZ), (16)

proving that for every set df linearly independent columns, there is at most one basitisol
(there is only a basic solution if all the coordinatescbfire positive). O

\We assume thdt # 0; if b = 0 thenz = 0 is also considered a basic solution.

16

For example, if

1 2 3
A=1|25 7], (17)
2 3 5
then we may takel’ to be the first two columns, and we find
T A 9 18 AN
AP A = (18 38)’ det(A™" A") = 18. (18)

Exercise 2.10.Prove that if A’ has M rows andk columns, withA/ > k, then AT A’ is
invertible.

The above arguments show that there are only finitely mani katutions to a canonical
Linear Programming problem. We will show that wheneverdtigir feasible solution then there
is a basic feasible solution (i.e., a feasible solutionsciig also a basic solution); similarly, we
will show that whenever there is an optimal solution themeheg also a basic optimal solution.
Thus, rather than having to check infinitely many possibsit we are reduced to checking a
finite set.

While this is a terrific simplification (any finite number igificantly less than infinity!), in
order for this to baisefulwe must have an efficient algorithm for checking all the bésisible
and basic optimal solutions. In many problefmsand N (the size of the constraints matrix)
are quite large. The number of possible basic solutions€neber that if a basic solution has
components then/ > k) can be as large agﬁil (],:f) For largeM and NV, it is infeasible to
directly check each possibility.

Exercise 2.11.For fixed M, find some lower bounds for the sizeXaf,”, (Y). If M = N =
1000 (which can easily happen for real world problems), how maagitb feasible solutions
could there be? There are less thad’® sub-atomic objects in the universal (quarks, photons,
et cetera). Assume each such object is a supercomputer leapfathecking 02° basic solutions

a second (this is much faster than current technology!). Heamy years would be required to
check all the basic solutions?

Theorem 2.12. Consider a canonical Linear Programming problem. If thexaifeasible solu-
tion, then there is a basic feasible solution; if there is gimal solution, then there is a basic
optimal solution.

Proof. Chooseanyfeasible solution with the fewest number of positive congida (remember
each component is non-negative). By assumption a feasithlgian exists; the number of
positive components is betweémnd/V, and thus it makes sense to talk about feasible solutions
with as few positive components as possible. For definiensay that the fewest positive
components a feasible solution hag id.etx be a feasible solution with positive components,
sayw;,,..., ;. We must show that the corresponding columys ..., A;, of A are linearly
independent. Assume not. Then there are numbersuch that

fYJiAjl +eee ’ijAjk = 0 (19)

17

without loss of generality we may assumg is non-zero and positive (by relabeling we may
assumey;, # 0, as at least two of theg;,’s are non-zero; by possibly multiplying by1 we
may ensure that;, > 0). Sincex is a feasible solutiondz = b. As the components af that
are zero do not mattedxr = b is the same as

zj Ajy + -+ x5 Ay, = b (20)
We multiply (19) by and subtract this from the previous equation, obtaining
(@jy = M) Aj + -+ (@, — M) 45, = b (21)

If A = 0 then all thexz;, — \v;, are positive, hence by continuity these will still be pasiti
if |A| is small. We take the largest such that (21) holds with all components non-negative.
Such a\ exists, as\ < z; /v;, (which is positive asc;, and~;, are positive). The largest
such results in one of the;;, — \v;, equaling zero. Thus we obtain a feasible solution to the
Linear Programming problem with at mast— 1 positive components (there might be fewer
positive components if two or mote;, — \v;, vanish for the maximal); this contradicts the
minimality of z. Therefore the columng; , ..., A;, arelinearly independent, and the existence
of a feasible solution implies the existence of a basic fasolution.

The proof of the existence of an optimal solution implying #xistence of an optimal so-
lution proceeds similarly. Let be an optimal solution with fewest positive components (say

Zj,.-.,j.). The proofis completed by showing the corresponding cokiry;,, ..., A;, are
linearly independent. As before, we may fikéind~;,’s such that
(@jy = M) Aj + -+ (@, — M) 45, = b (22)

we may assume;, > 0. Thus (in obvious notation) — Ay is a new feasible solution, with cost
o = Mejy v + -+ i (23)

for |A| sufficiently small all components af — \vy are positive. The new cost must equal the
old cost, ast is an optimal solution (if the new cost did not equal the oldtcby choosing the
sign of A appropriately, for smalk we could produce a new feasible solution with lower cost,
contradictingr being an optimal solution). Thus

i1Vt + v, = 0. (24)

As before, we take the largestsuch thatr — Ay has non-negative components (nhote<
xj,/7;,)- The cost of all these solutions are independent,aind equal to the minimum cost.
Thus we have found a new optimal solution with at miost1 positive components, contradict-
ing the minimality ofz; thus the columnsi;,,..., A;, are linearly independent and there is a
basic optimal solution. O

Note the above proof is non-constructive proof by contriatié: there are basic feasible

2For another example of a non-constructive proof by conttati, recall Euclid’s proof of the infinitude of
primes. Assume there are only finitely many primes,say . ., py. Consider the number; - - - py + 1. If this is
prime, our list is incomplete and we are done. If it is compmst must be divisible by a prime; however, as it has
remainderl upon division byp1, p2, .. ., pn, it must be divisible by a prime not in our list, and again weadtthat
our list is incomplete. Therefore there are infinitely mamynes, though we have not constructed infinitely many
primes.

18

and basic optimal solutions, but we do not know what they drater we shall see how to
(efficiently!) find them.

2.4 Solving the Canonical Linear Programming Problem: The 8nplex Method

Our arguments above show that it suffices to check finitelyynparential solutions to find the
optimal solution (if one exists!) of a canonical Linear Pramgming problem. We now describe
the Simplex Method, which is an efficient way to find optimdusions. See [Da, Fr] for more
details.

We assume we are studying a non-degenerate canonical Linerogramming problem,
and we make the following assumptions from here on:

e If A hasM rows andN columns, thenM/ < N. This implies that there are more un-
knowns then equations, so the systdm = b is undetermined and can have infinitely
many solutions; ifM < N there is at most one solution.

e The M rows of A are linearly independent. If the rows are not linearly iretegent, then
either we cannot solvdx = b, or if we can then at least one of the rows is unnecessary.

e We assuméis not a linear combination of fewer thad columns ofA. If b is a combina-
tion of fewer than\/ columns, this will create a technical difficulty in the sirapimethod.
Fortunately this is a very weak condition: if we change soinid® entries ob by small
amounts (less thatD~1, for examplé), this should suffice to break the degeneracy.

The simplex method has two phases:
1. Phase I: Find a basic feasible solution (or prove that morss);

2. Phase II: Given a basic feasible solution, find a basion@tisolution (or prove none
exists). If no optimal solution exists, Pase Il produces gueace of feasible solutions
with cost tending to minus infinity.

We now describe the algorithms for these steps, and then eaom the run-time. Re-
member it is not enough to find an optimal solution — we neednid din optimal solution in a
reasonable amount of time! However, for many complicatestiesys, instead of finding optimal
solutions we must lower our goals and find an almost optimlatiso.

For example, imagine we own a major airline. Contrary to whahy people might believe,
our goal isnot to fly people from one city to another; our goal is to maximizefip (which is
done by flying people, of course). Thus we would be willing yoldéiss people if we can charge
more. We have many planes, and can estimate the demand fay Bgiween cities and what
people will pay for flights. We have numerous constraintagiiag from the obvious (once a

3There might be some problems with changes this small, as@@mgocan have round-off errors and we may need
to worry about numerical precision. In practice, howeueis tondition almost always met, and we shall assume it
holds.

19

plane takes off, we cannot use it for another flight until itda), to ones imposed on us (a flight
crew must rest for a minimum @ hours before they are allowed to fly another plane). We need
to find a schedule each day; further, we must announce thasedes far enough in advance
so that people may purchase tickets. Let us assume we knbothéhmnaximum possible profit
we can make in a month is $150,000,000. After a few hours ofpetation we find a schedule
that would earn us $149,999,982, and we calculate that ildvimke a year to check all the
remaining possible schedules. While this is not an optirolaédule, it is so close (differing by
just $18), that it is not worth waiting a year (and thus flyingplanes and earning no revenue)
to potentially earn at most another $18 for that month.

2.4.1 Phase | of the Simplex Method

We first show how, if we can do Phase Il of the simplex methoeh tlve can do Phase I; in the
next section we will show how to do Phase 2.
Thus our goal is to find a basic feasible solution (or show rexi&s) to the canonical Linear
Programming problem
Ax = b, x>0, m:gn . (25)

We assume we know how to do Phase Il, namely given a basidbfeaslution to a canon-
ical Linear Programming problem, we can find a basic optinma (or prove none exists by
constructing a sequence of feasible solutions with costding to minus infinity).

The constraints of the canonical Linear Programming prakdee

N
> aijry = b, ie{l,..., M}, (26)
j=1

where the variables; are non-negative. Consider now the following canonicaeamProgram-

ming problem (which is clearly related to our initial proivg

1. the variables are; > 0for j € {1,...,N}andz; > 0fori e {1,...,M};

2. the linear constraints are

N

7j=1

which can be written ad’z’ = b with A’ = (A I) a matrix with firstV columns those of
A and finalM columns theM x M identity matrix, andt’ = (x1,..., 2N, 21, ..., 2M)-

3. the linear function to minimize is

214+ 2 (28)
Remember the goal is to find a basic feasible solution to @%) we are assuming we know

how to do Phase Il (given a basic feasible solution, we cardfinasic optimal solution, or prove
one does not exist by constructing a sequence of feasihii@m with costs tending to minus

20

infinity). For the new canonical Linear Programming probléns easy to find a basic feasible
solution: taker; = 0 for eachy, and z; = b; for eachi. This is clearly a feasible solution;
to show that it is a basic solution we must show that the cokiofrthe matrixA’ = (A I)
corresponding to the positive components of the feasibiigien are linearly independent. This
follows immediately from the fact that the only non-zero ganents are among theg, and
the corresponding columns are columns of dnx M identity matrix and therefore linear
independent.
We now perform Phase Il to the basic feasible solution

(1, N, 21y o520m) = (0,...,0,b1,...,bp7). (29)

This problemmus? have an optimal solution, which we denote

(xop,la -« s Lop,N Rop,ls- -+ Zop,M)- (30)
There are two cases for our optimal solution:

1. 1If
mzin(zl +---+ ZM) = Zop,1 +---+ Rop,M = 07 (31)

then we have found a basic feasible solution to the origimad&r Programming problem,
namely the firstV components of (30);

2. If
mzin(zl +o42m) = Zopa+ -+ Zopu > 0 (32)

(it clearly cannot be negative as eagh> 0), there is no basic feasible solution to the
original Linear Programming problem (if there were a basisible solution to the origi-
nal Linear Programming problem, that would lead to a lowest éar the related problem,
as that would allow us to take eaeh= 0 and thus reduce the cost to zero).

We are therefore reduced to showing how to do Phase II.

2.4.2 Phase Il of the Simplex Method

We now describe an algorithm for Phase I, namely how to pass & basic feasible solution to
a basic optimal solution (or prove one does not exist by coaihg a sequence of basic feasible
solutions with costs tending to minus infinity). We first note

Lemma 2.13. Letz be a basic feasible solution; must have exactly/ non-zero entries.

“We must be careful, as eachmust be non-negative. Without loss of generality we mayrasseactb; in the
initial Linear Programming problem is non-negative, asny avere negative we could multiply the corresponding
constraint by—1.

5The cost is jusk; + - - - 4+ zar, andz; > 0. Thus the cost is non-negative. If there were no optimaltimiy
then Phase Il would produce a sequence of solutions withtending to minus infinity; as the cost cannot be less
than zero, this cannot happen. Therefore there is an opsiohation for this Linear Programming problem.

21

Proof. This follows from our assumptionsA(is anM x N matrix with M < N, b is a vector
with M components which cannot be written as a linear combinafiéeveer thanM columns
of A).

We first show thatr has at mosf\/ positive entries. The rank of is at mostM, and the
columns corresponding to the positive entries of the féasblutionx must be independent.
Thusz cannot have more thall positive components.

Further,z must have at least/ positive components; if it did not, thencould be written
as the sum of fewer thal/ columns ofA. O

We continue with the description of how to perform Phase k& May assume that we have
a basic feasible solutiom with exactly A/ non-zero entries. LeB = {j : ; > 0}; note
|B| = M by the above lemma. We calt the basis. Letp = (z;,,...,z;,) be the positive
components of, and letAp denote the matrix of columng; of A wherej € B; we call Ap
the basis matrix. Thus we have
Apxp = b. (33)

Further, Ap is aninvertible matrix (it is anM x M matrix with M linearly independent
columns). Thus we can also study the linear system of equsatio

y'Ap = &, (34)

which has the unique solution
y = chgl. (35)

There are two possibilities for this vectgr either it is a feasible solution to the Dual Problem
(the dual of the original Linear Programming problem), oisihot a feasible solution to the
Dual Problem.

Case 1:y is feasible for the Dual Problem.(See Definition 2.6 for the statement of the Dual
Problem.) Ify is feasiblé€ for the Dual Problem, then from (33) and (34) we have

y'b = yTAgzp = c:ng = Tz (36)

By Lemma 2.8, the fact that’ b = ¢’ « means that is an optimal solution of our Linear Pro-
gramming problem. Ag is a basic feasible solution, this means a basic optimal solution.

Case 2.y is not feasible for the Dual Problem. As y is not a feasible solution for the Dual
Problem, for some we havey” A, > c,; by construction we know ¢ B. The idea is that we
can lower the cost by bringing the colum into the basis matri¥d g.

As the M columns of theM x M matrix Ag are linearly independent, andl, is a vector
with M components, we have

As =) 1A, 37
jEB
or
As = Apt, t = AG'A,. (38)

8It is easy to check and seeyjfis feasible. We need only check that A; < ¢; forall j € {1,...,M}. By
construction this holds fof € B; thus we need only check these conditionsjfet B.

22

From the relations

Y wid; = b, A=) A =0, (39)
JjEB JjE€EB
we find that
Mo+) (x5 — My A; = b (40)
JjEB

for \ sufficiently small and positive, we have a new feasible smfut’ to the original Linear
Programming problem, with

A ifj=s
ai = Qxj—Xt; ifjeB (41)
0 otherwise.

The original cost (associated to the feasible solutiprs

Z xjcy; (42)

j€B
the new cost (associated to the feasible solutiQrs

Aes + > (x5 — Mj)ey. (43)
JjEB

We now show that the new cost is less than the old cost. The astindnus the old cost is

Mes=D tie | s (44)

jEB

asA > 0, we need only show that < 3. t;c; to show the new cost is less than the old cost.
From (34) we have” Ap = cg, and from (38) we havel, = Apt. These relations imply

thcj = yTApt = yTA, > ¢, (45)
JjEB

where the last inequality follows from our assumption thhé not feasible for the Dual Prob-
lem’.
There are two possibilities: either all < 0, or at least one is positive.

1. Case 2: Subcase (i))Assume allt; < 0in (38). Then we may taka to beany positive
number in (40), and each positivegives us another feasible solution. Therefore the
cost in (44) tends to minus infinity astends to infinity. This implies we can construct
a sequence of feasible solutions to the original Linear Rrogning problem with costs
tending to minus infinity, and therefore the original Linéaogramming problem does
not have an optimal solution.

"The assumption thatis not feasible for the Dual Problem means thatd, > c,.

23

2. Case 2: Subcase (ii):Suppose now at least omg > 0. The largest positives we may
take and still have a feasible solution is

A* = min (ﬁ ity > 0> . (46)
jEB tj

We may assume the minimum for occurs forj = p. Note thatp is unique; if not,
we would find thatb is a linear combination of fewer thal/ columns, contradicting
our assumption oh (we are basically swapping thd' column for thes™ column). We
have thus found a new feasible basic solution (we leave hdad¢ader to check that our
solution, in addition to being feasible, is also basic) vedactly A/ non-zero entries. We
now restart Phase Il with our new basic feasible solutionuasbasic feasible solution,
and continue the search for a basic optimal solution.

We have described the algorithm for Phase Il of the simplethaote we show that it must
terminate either in an optimal solution, or by constructngequence of basic feasible solutions
with costs tending to minus infinity. When we start Phasehile¢ things can happen: (1) we
end up in Case 1: if this happens, then we have found an opsiohaion; (2) we end up in Case
2, Subcase (i): if this happens, there is no optimal soluf@md we have a sequence of basic
feasible solutions with costs tending to minus infinity)} (& end up in Case 2, Subcase (ii): if
this happens, we restart Phase Il with the new basic feasitlgion.

The only way Phase Il would not terminate is if we always endru@ase 2, Subcase (ii)
each time we apply it. Fortunately, we can see this cannatirocd is an M/ x N matrix
(M < N). There are only finitely many sets af linearly independent columns of (there
are at most(]\]\;)). Each time we enter Case 2, Subcase (ii) we obtain a newbfeaslution
with coststrictly less than the previous cost. This implies, in particulaat #il the solutions
from Case 2, Subcase (i) are distinct. As there are onlyefininany possibilities, eventually
Phase Il must terminate with either a basic optimal solutiotne original Linear Programming
problem, or with a sequence of feasible solutions with ctetsling to minus infinity. This
completes our analysis of the simplex method.

Exercise 2.14.Consider the following Linear Programming problem; > 0,

1
1 4 5 8 1 T9 311
2 2 3 80 T3 = 389 |, 47
32160 Ty 989
€5
and we want to minimize
521 + 8o + 923 + 224 + 11x5. (48)

Find (or prove one does not exist) an optimal solution.

2.4.3 Summary of the Simplex Method

While we have shown that the simplex method will terminatéh{(\ither a basic optimal solu-
tion or a sequence of feasible solutions with cost tendingitas infinity), we havenot shown

24

that it will terminate in a reasonable amount of time! It ioenative we show this if we are in-

terested in using the simplex method as a practical toolpahcherely to note it as a theoretical
curiosity. We encourage the interested reader to peru$arfrthe references therein for more
details, especially proofs of the efficiency of these meshod

2.5 Binary Integer Linear Programming

We have merely scratched the surface of a rich and very uiegory. Below we describe
another type of Linear Programming problem, Binary Intdgeear Programming.

For these problems, we have the additional restrictiongheh variable:; € {0,1}. There
are many situations where we would like to use binary vaembFor example, we might take
as our binary variables; = ;. ..,, Which arel if at time ¢ planep leaves from cityc,, to
city ¢, and0 otherwise. Assigning values to the, ., ., is equivalent to designing an airline
schedule; we would then maximize revenue, which would beetion of the routes flown and
demand and ticket costs for those routes.

Binary Integer Linear Programming is, of course, a specif@ngle of a more general
problem, namely Integer Linear Programming. Much of thédalifty of the subject stems from
the fact that a problem may have optimal real solutions ariinap integer solutions, but the
optimal integer solutions need not be close to the optinell selutions. To see this, consider
the knapsack problem (we follow the presentation in [Frigsml127-128).

Imagine we have a knapsack that can hold at most 100 kilograrhere are three items
we can pack. The first weighs 51 kilograms and is worth $15Qpd#r the second weights 50
kilograms and is worth $100 per unit; the third weighs 50dgiams and is worth $99 per unit.
The goal is to pack as much as we can in the knapsack and maxih@zvalue. Thus if; is
the amount of thg™ item, we have the constraint

51z1 + 50z + 50z < 100, z; >0 (49)

and we want to maximize
15021 + 100x2 + 99z5. (50)

If we allow thez;'s to be real numbers, the optimal answet{s= 100/51 andzy = z3 = 0;
the value of the knapsack is about $294.12. The solution eamberstood as the first product is
the best value per kilogram, and as we are free to take negraitamounts, we just take the first
product. If we require the; to be integers, the optimal solutionis = 2 andz; = x3 = 0; the
value of the knapsack is $200. Thus not only is the optimalevaignificantly different when
thex;’s are integers, but the answer is very different (rathen gilenost 2 units of the first item
and none of the second, we have 2 units of the second and ntime athers).

We give an example of the type of problems amenable to Binagger Linear Program-
ming. Imagine that we are the manager of an Activity Hall om@aunity Center. There are
various activities that we can schedule, and many congéréive shall only give a few con-
straints, and leave it as an exercise to the reader to depaeadditional constraints which we,
as the manager, may want to impose).

We shall consider binary random variables= z,,., where

(51)

1 if attimet we start activitya in roomr
Ttar = .
0 otherwise.

25

We assume

t e {0,...,T}
a € {1,...,A}
r € A{l,...,R}. (52)

Thus we assume the activity hall opens at tilvand closes at tim&’; perhaps each time period
represents 5 minutes or 10 minutes. We assume therd different activities that could be
scheduled (perhaps they are bridge, chess, a movie, adeahd so on); note different activities
might run for different amounts of time. Finally, we assuinere arek rooms.

We need certain inputs:

1. Let Dy, be the number of people who would go to actiwityf it starts in roomr at time
t. Itis likely that for some activities the demand might benromdependent; however,
even in this case it is likely that it would depend on the timé&urther (we will not get
into this now), it is natural to ask whether or not the demahdne activity depends on
what other activities are occurring at the same time.

2. Let fi,, be the fee someone must pay to start activitgt timet in roomyr. It is likely
that f;., does not depend on the room, but it is easy to keep the addduailitex

3. Letey,, be the capacity of roombeing used for activity, starting at time. It is possible
that the capacity depends on the activity (if we use a rooma frasketball game we would
probably have fewer people than if we used it for a chess &uemt).

4. Let L;,, be the number of time units that it takes for activityto finish, given that it
started at time in roomr.

Our goal is to maximize revenue:

T A R

max Z Z Z min(Dtara Ctar)ftarwtar- (53)

t=0 a=1r=1
The above formula is fairly obvious; the only thing we mustcheeful about is that we cannot
have more people in a room than it is capable of handling @émemin(Dy,,, c¢iq) factor).
There are many possible constraints which we, as the managgrwant to impose. We list
merely a few.
e At any time, in any room, at most one activity is running:
A t

Vi, r: Tpar < 1. (54)
> X

a=1 t’=max(t—Ltqr+1,0)

e At any time, each activity is running in at most one room:
R t

Vi, a: Tyar < 1. (55)
> X

r=1 ¢'=max(t—Ltar+1,0)

If necessary, we might want to label activities such as ledtigbridge-2.

26

e We cannot have any activities running after the activity tlalses at timel™:

T

A
Z Z Z Zprgr = 0. (56)

a=1 r=1t=max(T—Ltar+1,0)

e Everyb time blocks fromI’; to T, some activity starts in some room:

max(b—1+t"4+Ts,T) A R

vi" € {0,...,T. — T} : > Z Tyar > 1. (57)
1

t'=t"+Ts a=1 r=

The last constraint is of a different nature than the previdthe first three must be true for
a schedule to be valid; the last is a natural constraint tham@ager might wish to impose, but is
not needed for a schedule to be realistic. The last consegasure that, if someone walks into
the activity hall, they need not wait more thatime units before an activity will start.

Again, there are many additional constraints that a marraggwish to impose. We content
ourselves with the above discussion, which hopefully higitts the utility and flexibility of such
models.

Finally, it is not enough to model a program as a Binary Intégeear Program; we need to
be able to solve such modejsickly. We encourage the reader to consult the literature for more
on the subject.

Exercise 2.15.Consider the above scheduling problem for the activity.haksume (i) each
time block is 15 minutes and the hall is open for 10 hours a daythere are 10 different
activities, each activity can be started at any time in thg; &) there are 12 rooms in the hall.
How many binary integer variables,, are there? How many equations?

Exercise 2.16.Assume the activity hall has a concession stand. rkgtbe the amount of
concession revenue the activity hall earns from a personstéus activitya at timet in room

r. What is the new revenue function? Note that, once we stalingdadditional terms to
reflect concession revenue, other issues arise. For exarimgle is now the cost of staffing the
concession stand, and perhaps the amount of help hired iscéidun of the number of customers.

27

3 \Versatility of Linear Programming

In this section we show how linear programming is able to kaadvariety of constraints and
situations. Explicitly, we describe how to handle

¢ Binary Indicator Variables;

Or Statements;

If-Then Statements;

Truncation;

Minimums and Maximums;

Absolute Values.

Throughout this section, we assumevery expressionA, B, . .. is bounded by V.
For definiteness, we might write things such asv, to show the constant depends
on A (A may either be one of our variables, or a linear combination ofvariables).
The fact that A is bounded by Ny, means|A| < Njor —Ny < A < Ny. We
also assume each quantity is discrete, and the smallest noegative unit isé. This
means the possible values attained ar@ +6, +26,

3.1 Binary Indicator Variables

Theorem 3.1.Given a quantity4, the following constraints ensure thatis1if A > 0
andz,4 is 0 otherwise:

1. ZAE{O,l}.
A 0
3. ZA§1+NA;.

Proof. The first condition ensures thajf is a binary indicator variable, taking on the
values 0 or 1. The second condition implies thatlit> 0 thenz, = 1; if A < 0 this
condition provides no information ory. The third condition implies that il < 0 then
z4 = 0;if A > 0 this condition provides no information an. O

3.2 Or Statements

Often we want one of two constraints to hold. There is theuwesieé or (exactly one of
two holds) and the inclusive or (both may hold, but at least looids).

Theorem 3.2(Exclusive Or) The following constraints ensure that = 1if A > 0 or
B > 0 but not both, and. 4 = 0 otherwise:

28

ZAG{O,l}.

A §
N—A—i-mSZA-
ZASI—FNA;

ZB € {0, 1}

B [

N_B+2NA < zp.

o o~ w0 N PF

ZB§1+NA;.
7. z4+ 2z = 1.

Proof. The first three conditions ensutg is 1 if A > 0 and0 otherwise; the next three
ensurezp is 1 if B > 0 and0 otherwise. The last condition ensures that exactly one of
z4 andzg is 1 (and the other i8). For example, it4 = 0 then condition 2 implies that

A <0, and ifzz = 1 then condition 6 implies thaB > 0. O

Theorem 3.3(Inclusive Or) The following constraints ensure that = 1if A > 0 or
B > 0 (and possibly both are greater than or equal to zero), and= 0 otherwise:

1. ZAE{O,l}.
A 6
ZASI‘Fﬁ

3
4. zp € {0,1}.
5
6

B 6
N TN, S 2B

.ZB§1+NA;.
1. 24+ 2z > 1.

Exercise 3.4.Prove the above theorem.

3.3 If-Then Statements

Theorem 3.5(If-Then). The following constraints allow us to program the statement
IF (A <0) THEN(B > 0).

1. € {0,1}.

2. Nyz > A.
3B.A+(1—2)Nay>0.
4. B > —zNp.

29

Proof. If A > 0, the second constraint makes= 1. The third constraint is trivially
satisfied (asd > 0), and the fourth constraint becomBs> — Ny, which is trivially
satisfied (we are assuming| < Np).

If A < 0, the third constraint is satisfied only when= 0. The fourth constraint
now becomes3 > 0.

If A =0, the second and third constraints are always satisfiedngaki 1 we see
the fourth is satisfied. O

Cost: If-Then can be handled by adding one binary variable andethomstraints
(four if you count the binary declaration). We could also #fo(H < Ay) THEN
(B > 0) just as easily.

3.4 Truncation

Given an integer variable or expressidn we show how to add constraints so a vari-
ableY equalsX if X > X,, andY = 0 otherwise. We constantly use the If-Then
constraints.

Letz € {0,1}. IF (X < Xo) THENz = 0. IF (X > X, — %) THEN z = 1. We
can do this: takeB = z — % in the If-Then section. Note theg allows us to re-write
the IF condition asX > X,.

The following three constraints finish the problem.

1. (Y = X)+Nx(1—2)>0
2.Y — Nyz <0
3.0<Y <X

If z =0 (ie, X < X), the first constraint holds. A% is non-negative, the second
constraint force3” = 0, and the third holds.

If z =1 (ie, X > X,), the first forcesy” > X which, combined with the third,
forcesY = X. AsY < X < Ny, the second constraint holds.
3.5 Minimums and Maximums
Theorem 3.6(Minimums). The following constraints ensure thet= min(A, B):

1.Y <A

2. Y <B.

3. Y =AO0RY =B.

Proof. The first condition forces” < A and the second” < B. Without loss of
generality, assumd < B. The third condition says eithé = A orY = B (or both).
If Y = B this contradicts the first condition. Thts< A isimprovedtoY = A. [

30

Theorem 3.7(Maximums) The following constraints ensure thet= max(A, B):
1.V > A
2.Y > B.
3. Y =AO0RY =B.

Exercise 3.8.Prove the above theorem.

3.6 Absolute Values

Theorem 3.9. The following constraints ensure that = | Al:
1. AL X.
2. -A<X.
3. X <AORX < —A.

Proof. The first two constraints forc& to be a non-negative number, of size at least
|A]. We just need to make suré # |A|.

For the third constraint, iA = 0, the two or clauses are the same, and= 0.
If A # 0, asX is non-negative it can only be less than whicheverdchnd — A is
non-negative. 0

One application is

Theorem 3.10.Assumgc’z + b < M for all x that are potential solutions of the
Integer Programming Problem, and assume andb are integral. We may replace a
term|cTz + b| with y by introducing three new variableg,(z; andz,) and the following
constraints:

21,22 € {0, 1}.

=

e+ b<y

—("z+0b) <y

2

3

4. 0 <y, ylis an integer
5. y<M

6. y— (cTo+b) <2y M
7.y+ (c"x+b) <2:M
8. 21+ 2= 1.

Exercise 3.11.Prove the above theorem.

31

4 Removing Quadratic (and Higher Order) Terms

As the name implies, Linear Programming is about linear wairgs and minimiz-
ing (or maximizing) linear objective functions; howevenete are generalizations to
guadratic constraints or objective functions. To desctitese techniques would take
us too far afield; however, we can quickly show how some ofdluesistraints may be
linearized.

4.1 Problem Formulation

For definiteness, we shall consider the following example.afé the owner of a movie
theater, and our goal is to schedule movies. Let us say thediats are in 10 minute
increments (labeled, 1,...,T), there arelM movies (labeled, ..., M) and there are
S screens (labelet . .., S). We let

1 if at timet we start movien on screers
Ttms — (58)

0 otherwise.

This problem is similar to the activity hall where we were thanager (see 8§2.5).
We now allow certain polynomial non-linearities in the atijee function which we are
trying to maximize, and discuss how to linearize them. Alijlo we are concentrat-
ing on non-linearities in the objective function (the rewerfor a given schedule), the
method is identical for removing such non-linearities friéra constraints.

For example, in the case of movies, let’s fix a timand considem = m; + my
movies. For convenience, we assume our two sets of movieharfst; movies
and then the next., movies, though the general case proceeds similarly.

We introduce some new variables:

59
0 otherwise. (59)

y {1 if movie m is playing at timef
tm —
We may have corrections to the objective function, dependim which movies are
being shown. For example, consider the case whgen= m,; = 1. Thus each set
contains just one movie. Imagine these two movieshath action blockbusters. It
is reasonable to assume that the demand for each movie aseaffey whether or not
the other movie is playing. For example, perhaps many pegple a theater without
having already chosen the movie they wish to see; perhapstbgust in the mood to
see an action movie. If only one of these two movies is plaging certain time, then
anyone interested in an action movieistsee that film; however, if both are playing
then the customer has a choice. Thus we want to penalize thargdkfor an action
movie if another action movie is playing at the same time.

Consider the polynomial

32

mi+ma

p(x) = Hytm IT =)

m=m1+1
if at timet moviesm, throughm, are being shown
= and moviesn; + 1 throughm; + my are not being shown;(60)
0 otherwise.

By considering all possible polynomials of this form, we dandle anymn;-tuple
of movies playing andh,-tuple of movies not playing. Note that every variable oscur
to either the zeroth or first power: as, € {0,1}, yj., = v, for any integem > 1.
Thisisan extremely useful consequence of being a binary variables!

Our goal is to replace terms in the Objective Function of trenf—Const- p(z)
with linear terms, possibly at the cost of additional valedand constraints.

In our example, these; +m4, movies compete with each other for demand, and we
must adjust the demand of each movie based on the competitiaurrently screened.

4.2 Linearizing Certain Polynomials

Say we have a terfi]"" | y,, [T/ (1 — yun). This is1 or 0. Hence we can
introduce a new binary variablg equal to the above.

Thusd; = 1 if the firstm, variablesy,,, arel (the firstm; movies are on at timg
and the lastn, variablesy,,, are0 (the nextn, movies are not on at timg, ando; = 0

otherwise. We can replace the product witfas follows:
130k Yem + Zﬁlfn"fil(— Yum) — (M1 +m2)d; > 0
2. 3y Yem + ot (1= Yom) — 8¢ <y +mg — 1.

If the firstm, variablesy,,, arel and the nextn, variablesy,,, are0, then condition
1 doesn’t constrain;, but conditior2 forcesd; = 0 (as desired). If either one of the first
m, variablesy;,, is 0 or one of the lastn, variablesy,,, is 1, the first condition forces
0; = 0 and the second condition doesn’t constr@inTherefore these two conditions
encodej; linearly!

4.3 Example: Applications to Scheduling

Initially, we assumed the demand of a movie was independenhich movies were
concurrently being shown. For simplicity we only partialprry about what screen a
movie is shown on.

33

Let's assume movies compete for demand if they are showrnnnatbertain amount
of time (1) of each other. As always;,,. is 1 if we start showing movien at timet
on screers, and0 otherwise.

We initially have terms likenin(D;,,,, Cs)zy,s in the revenue function, whe@,,,
is the demand for movie: at timet (we assume all movie demands are independent)
andC; is the capacity of screen We want to modify this to allow movies to compete
with each other for demand.

We must subtract off corrections (to the demands) based ahmwbvies are starting
around the same time. One has to be a little careful with varapind time effects, but
this is just meant as a rough sketch. Define

S t+To

Ytm = Z Z Ltms- (61)

s=1 t/'=t

Thusy,,, is 1 if we start movien on any screen betweeérandt + Ty, and0 otherwise.
We then define polynomials

mi mi1+ma
m=1 m=mi+1

as before, and multiply by a suitable constant which willude the loss of revenue
from all the movies. This might not be the best way to go. It might bé&bébd modify
the demands of each individual movie. This would lead to tesoch as

min (Dy,xims — Const: p(x), Csyms) - (63)

Of course, the minimum function isn’t immediately in Integ@near Programming,
but it is trivial to handle (see 83.5):

1. Y < Dypms — Const: p(z)
2.Y S Csxtms
3. Y >0,Y isaninteger

4.4 Summary

As remarked, we have only touched the beginning of a very apb generalization
of Linear Programming. It is important to analyze ttwestof linearizing our problem,
specifically, for real world problems can the linearizedigpemns be solved (or approxi-
mately solved) in a reasonable amount of time?

We are reminded of a quote from Abraham Maslow, who remarkedit all one
has is a hammer, pretty soon all problems look like nails.e3me know how to do and
solve Linear Programming problems, it is tempting to cohgérer problems to Linear
Programming problems. While this will be a reasonable smiuin many situations,
there are additional techniques that are better able to&amahy of these problems.

34

References

[Da] G. B. Dantzig,Linear Programming and ExtensionBrinceton University
Press, 1963.
[Fr] J. Franklin, Mathematical Methods of Economics: Linear and Nonlinear

Programming, Fixed-Point Theorer8pringer-Verlag, New Yorki980.
[St] G. Stigler,The cost of subsistencéhe Journal of Farm Economics, 1945.

35

