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Chapter One

From Nuclear Physics to L-Functions

In attempting to describe the energy levels of heavy nuclei ([Wig1, Wig3, Po,
BFFMPW]), researchers were confronted with daunting calculations for a many
bodied system with extremely complicated interaction forces. Unable to explicitly
calculate the energy levels, physicists developed Random Matrix Theory to predict
general properties of the systems. Surprisingly, similar behavior is seen in studying
the zeros ofL-functions!

In this chapter we give a brief introduction to classical Random Matrix Theory,
Random Graphs andL-Functions. Our goal is to show how diverse systems ex-
hibit similar universal behaviors, and introduce the techniques used in the proofs.
In some sense, this is a continuation of the Poissonian behavior investigations of
Chapter??. The survey below is meant to only show the broad brush strokes of this
rich landscape; detailed proofs will follow in later chapters. We assume familiarity
with the basic concepts ofL-functions (Chapter??), probability theory (Chapter
??) and linear algebra (a quick review of the needed background is provided in
Appendix??).

While we assume the reader has some familiarity with the basic concepts in
physics for the historical introduction in §1.1, no knowledge of physics is required
for the detailed expositions. After describing the physics problems, we describe
several statistics of eigenvalues of sets of matrices. It turns out that the spacing
properties of these eigenvalues is a good model for the spacings between energy
levels of heavy nuclei and zeros ofL-functions; exactly why this is so is still an
open question. For those interested in learning more (as well as a review of recent
developments), we conclude this chapter with a brief summary of the literature.

1.1 HISTORICAL INTRODUCTION

A central question in mathematical physics is the following: given some system
with observablest1 ≤ t2 ≤ t3 ≤ . . . , describe how theti are spaced. For example,
we could take theti to be the energy levels of a heavy nuclei, or the prime numbers,
or zeros ofL-functions, or eigenvalues of real symmetric or complex Hermitian
matrices (or as in Chapter?? the fractional parts{nkα} arranged in increasing
order). If we completely understood the system, we would know exactly where all
the ti are; in practice we try and go from knowledge of how theti are spaced to
knowledge of the underlying system.
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1.1.1 Nuclear Physics

In classical mechanics it is possible to write down closed form solutions to the two
body problem: given two points with massesm1 andm2 and initial velocities~v1

and~v2 and located at~r1 and~r2, describe how the system evolves in time given
that gravity is the only force in play. The three body problem, however, defies
closed form solutions (though there are known solutions for special arrangements
of special masses, three bodies in general position is still open; see [Wh] for more
details). From physical grounds we know of course a solution must exist; how-
ever, for our solar system we cannot analyze the solution well enough to determine
whether or not billions of years from now Pluto will escape from the sun’s influ-
ence! In some sense this is similar to the problems with the formula for counting
primes in Exercise??.

Imagine how much harder the problems are in understanding the behavior of
heavy nuclei. Uranium, for instance, has over200 protons and neutrons in its nu-
cleus, each subject to and contributing to complex forces. If the nucleus were com-
pletely understood, one would know the energy levels of the nucleus. Physicists
were able to gain some insights into the nuclear structure by shooting high-energy
neutrons into the nucleus, and analyzing the results; however, a complete under-
standing of the nucleus was, and still is, lacking. Later, when we study zeros of
L-functions from number theory, we will find analogues of high-energy neutrons!

One powerful formulation of physics is through infinite dimensional linear alge-
bra. The fundamental equation for a system becomes

Hψn = Enψn, (1.1)

whereH is an operator (called theHamiltonian ) whose entries depend on the
physical system and theψn are the energy eigenfunctions with eigenvaluesEn.
Unfortunately for nuclear physics,H is too complicated to write down and solve;
however, a powerful analogy with Statistical Mechanics leads to great insights.

1.1.2 Statistical Mechanics

For simplicity considerN particles in a box where the particles can only move left
or right and each particle’s speed isv; see Figure 1.1.

If we want to calculate the pressure on the left wall, we need to know how many
particles strike the wall in an infinitesimal time. Thus we need to know how many
particles are close to the left wall and moving towards it. Without going into all
of the physics (see for example [Re]), we can get a rough idea of what is happen-
ing. The complexity, the enormous number of configurations of positions of the
molecules, actually helps us. For each configuration we can calculate the pressure
due to that configuration. We thenaverageover all configurations, and hope that a
generic configuration is, in some sense, close to the system average.

Wigner’s great insight for nuclear physics was that similar tools could yield use-
ful predictions for heavy nuclei. He modeled the nuclear systems as follows: in-
stead of the infinite dimensional operatorH whose entries are given by the physical
laws, he considered collections ofN ×N matrices where the entries were indepen-
dently chosen from some probability distributionp. The eigenvalues of these matri-
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Figure 1.1 Molecules in a box

ces correspond to the energy levels of the physical system. Depending on physical
symmetries, we consider different collections of matrices (real symmetric, complex
Hermitian). For any given finite matrix we can calculate statistics of the eigenval-
ues. We then average over all such matrices, and look at the limits asN →∞. The
main result is thatthe behavior of the eigenvalues of an arbitrary matrix is often
well approximated by the behavior obtained by averaging over all matrices, and
this is a good model for the energy levels of heavy nuclei. This is reminiscent of
the Central Limit Theorem (§??). For example, if we average over all sequences of
tossing a fair coin2N times, we obtainN heads, andmostsequences of2N tosses
will have approximatelyN heads.

Exercise 1.1.1.Consider2N identical, indistinguishable particles, which are in
the left (resp., right) half of the box with probability12 . What is the expected number

of particles in each half? What is the probability that one half has more than(2N)
3
4

particles than the other half? As(2N)
3
4 ¿ N , most systems will have similar

behavior although of course some will not. The point is that atypical system will
be close to the system average.

Exercise 1.1.2.Consider4N identical, indistinguishable particles, which are in
the left (resp., right) half of the box with probability12 ; each particle is moving left
(resp., right) with probability1

2 . Thus there are four possibilities for each particle,
and each of the44N configurations of the4N particles is equally likely. What is the
expected number of particles in each possibility (left-left, left-right, right-left, right-
right)? What is the probability that one possibility has more than(4N)

3
4 particles

than the others? As(4N)
3
4 ¿ N , most systems will have similar behavior.

1.1.3 Random Matrix Ensembles

The first collection of matrices we study areN ×N real symmetric matrices, with
the entries independently chosen from a fixed probability distributionp onR. Given
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such a matrixA,

A =




a11 a12 a13 · · · a1N

a21 a22 a23 · · · a2N

...
...

...
. . .

...
aN1 aN2 aN3 · · · aNN


 = AT (1.2)

(soaij = aji), the probability density of observingA is

Prob(A)dA =
∏

1≤i≤j≤N

p(aij)daij . (1.3)

We may interpret this as giving the probability of observing a real symmetric matrix
where the probability of theijth entry lying in[aij , aij + daij ] is p(aij)daij . More
explicitly,

Prob(A : aij ∈ [αij , βij ]) =
∏

1≤i≤j≤N

∫ βij

αij

p(aij)daij . (1.4)

Example 1.1.3.For a 2× 2 real symmetric matrix we would have

A =
(

a11 a12

a12 a22

)
, Prob(A)dA = p(a11)p(a12)p(a22)da11da12da22.

(1.5)

An N × N real symmetric matrix is determined by specifyingN(N+1)
2 entries:

there areN entries on the main diagonal, andN2 − N off-diagonal entries (for
these entries, only half are needed, as the other half are determined by symmetry).
We say such a matrix hasN(N+1)

2 degrees of freedom. Becausep is a probability
density, it integrates to 1. Thus∫

Prob(A)dA =
∏

1≤i≤j≤N

∫ ∞

aij=−∞
p(aij)daij = 1; (1.6)

this corresponds to the fact that we must choose some matrix.
For convergence reasons we often assume that the moments ofp are finite. We

mostly studyp(x) satisfying
p(x) ≥ 0∫ ∞

−∞
p(x)dx = 1

∫ ∞

−∞
|x|kp(x)dx < ∞. (1.7)

The last condition ensures that the probability distribution is not too spread out (i.e.,
there is not too much probability near infinity). Many times we normalizep so that
the mean (first moment) is 0 and the variance (second moment if the mean is zero)
is 1.

Exercise 1.1.4.For thekth moment
∫
R xkp(x)dx to exist, we require

∫
R |x|kp(x)dx

< ∞; if this does not hold, the value of the integral could depend on how we
approach infinity. Find a probability functionp(x) and an integerk such that

lim
A→∞

∫ A

−A

xkp(x)dx = 0 but lim
A→∞

∫ 2A

−A

xkp(x)dx = ∞. (1.8)
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Exercise 1.1.5.Let p be a probability density such that all of its moments exist. If
p is an even function (p(−x) = p(x)), show all the odd moments vanish.

Exercise 1.1.6.Let p be a continuous probability density onR. Show there exist
constantsa, b such thatq(x) = a · p(ax + b) has mean 0 and variance 1. Thus
in some sense the third and the fourth moments are the first “free” moments as the
above transformation is equivalent to translating and rescaling the initial scale.

Exercise 1.1.7.It is not necessary to choose each entry from the same probability
distribution. Let theijth entry be chosen from a probability distributionpij . What
is the probability density of observingA? Show this also integrates to1.

Definition 1.1.8 (Ensembles). A collection of matrices, along with a probability
density describing how likely it is to observe a given matrix, is called anensemble
of matrices (or arandom matrix ensemble).

Example 1.1.9. Consider the ensemble of2× 2 real symmetric matricesA where
for a matrixA =

(
x y
y z

)
,

p(A) =

{
3
4π if x2 + y2 + z2 ≤ 1
0 otherwise.

(1.9)

Note the entries are not independent. We can parametrize these matrices by using
spherical coordinates. For a sphere of radiusr we have

x = x(r, θ, φ) = r cos(θ) sin(φ)
y = y(r, θ, φ) = r sin(θ) sin(φ)
z = z(r, θ, φ) = r cos(φ), (1.10)

whereθ ∈ [0, 2π] is the azimuthal angle,φ ∈ [0, π] is the polar angle and the
volume of the sphere is43πr3.

In this introduction we confine ourselves to real symmetric matrices, although
many other ensembles of matrices are important. Complex Hermitian matrices
(the generalization of real symmetric matrices) also play a fundamental role in
the theory. Both of these types of matrices have a very important property:their
eigenvalues are real; this is what allows us to ask questions such as how are the
spacings between eigenvalues distributed.

In constructing our real symmetric matrices, we have not said much about the
probability densityp. In Chapter?? we show for that some physical problems,
additional assumptions about the physical systems forcep to be a Gaussian. For
many of the statistics we investigate, it is either known or conjectured that the
answers should be independent of the specific choice ofp; however, in this method
of constructing random matrix ensembles, there is often no unique choice ofp.
Thus, for this method, there is no unique answer to what it means to choose a
matrixat random.

Remark 1.1.10(Advanced). We would be remiss if we did not mention another
notion of randomness, which leads to a more natural method of choosing a ma-
trix at random. LetU(N) be the space ofN × N unitary matrices, and consider
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its compact subgroups (for example, theN × N orthogonal matrices). There is a
natural (canonical) measure, called theHaar measure, attached to each of these
compact groups, and we can use this measure to choose matricesat random. Fur-
ther, the eigenvalues of unitary matrices have modulus1. They can be written as
eiθj , with theθj real. We again obtain a sequence of real numbers, and can again
ask many questions about spacings and distributions. This is the notion of random
matrix ensemble which has proven the most useful for number theory.

Exercise 1.1.11.Prove the eigenvalues of real symmetric and complex Hermitian
matrices are real.

Exercise 1.1.12.How many degrees of freedom does a complex Hermitian matrix
have?

1.2 EIGENVALUE PRELIMINARIES

1.2.1 Eigenvalue Trace Formula

Our main tool to investigate the eigenvalues of matrices will be the Eigenvalue
Trace Formula. Recall the trace of a matrix is the sum of its diagonal entries:

Trace(A) = a11 + · · ·+ aNN . (1.11)

We will also need the trace of powers of matrices. For example, a2× 2 matrix

A =
(

a11 a12

a21 a22

)
(1.12)

has

Trace(A2) = a11a11 + a12a21 + a12a21 + a22a22 =
2∑

i=1

2∑

j=1

aijaji.

(1.13)

In general we have

Theorem 1.2.1.LetA be anN ×N matrix. Then

Trace(Ak) =
N∑

i1=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · · aik−1ik
aiki1 . (1.14)

For small values ofk, instead of usingi1, i2, i3, . . . we often usei, j, k, . . . . For
example,Trace(A3) =

∑
i

∑
j

∑
k aijajkaki.

Exercise 1.2.2.Show(1.13)is consistent with Theorem 1.2.1.

Exercise 1.2.3.Prove Theorem 1.2.1.

Theorem 1.2.4(Eigenvalue Trace Formula). For any non-negative integerk, if A
is anN ×N matrix with eigenvaluesλi(A), then

Trace(Ak) =
N∑

i=1

λi(A)k. (1.15)
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The importance of this formula is that it relates theeigenvaluesof a matrix
(which is what wewant to study) to theentriesof A (which is what wechoose
at random). The importance of this formula cannot be understated – it is what
makes the whole subject possible.

Sketch of the proof.The casek = 1 follows from looking at the characteristic poly-
nomialdet(A− λI) = 0. For higherk, note any matrixA can be conjugated to an
upper triangular matrix:U−1AU = T whereT is upper triangular andU is uni-
tary. The eigenvalues ofA equal those ofT and are given by the diagonal entries
of T . Further the eigenvalues ofAk equal those ofT k. If λi(A) andλi(Ak) are
the eigenvalues ofA andAk, noteλi(Ak) = λi(A)k. The claim now follows by
applying thek = 1 result to the matrixAk:

Trace(Ak) =
N∑

i=1

λi(Ak) =
N∑

i=1

λi(A)k. (1.16)

Exercise 1.2.5.Prove all the claims used in the proof of the Eigenvalue Trace For-
mula. IfA is real symmetric, one can use the diagonalizability ofA. To show any
matrix can be triangularized, start with every matrix has at least one eigenvalue-
eigenvector pair. Letting−→v1 be the eigenvector, using Gram-Schmidt one can find
an orthonormal basis. Let these be the columns ofU1, which will be a unitary
matrix. Continue by induction.

1.2.2 Normalizations

Before we can begin to study fine properties of the eigenvalues, we first need to
figure out what is the correct scale to use in our investigations. For example, the
celebrated Prime Number Theorem (see Theorem?? for an exact statement of the
error term) states thatπ(x), the number of primes less thanx, satisfies

π(x) =
x

log x
+ lower order terms. (1.17)

Remark 1.2.6. If we do not specify exactly how much smaller the error terms
are, we do not need the full strength of the Prime Number Theorem; Chebyshev’s
arguments (Theorem??) are sufficient to get the order of magnitude of the scale.

The average spacing between primes less thanx is about x
x/ log x = log x, which

tends to infinity asx → ∞. Asking for primes that differ by 2 is a very hard
question: asx → ∞, this becomes insignificant on the “natural” scale. Instead,
a more natural question is to inquire how often two primes are twice the average
spacing apart. This is similar to our investigations in Chapter?? where we needed
to find the correct scale.

If we fix a probability densityp, how do we expect the sizes of the eigenvalues
λi(A) to depend onN as we varyA? A good estimate falls out immediately from
the Eigenvalue Trace Formula; this formula will be exploited numerous times in
the arguments below, and is essential for all investigations in the subject.
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We give a heuristic for the eigenvalues of ourN×N ensembles of matrices being
roughly of size

√
N . Fix a matrixA whose entriesaij are randomly and indepen-

dently chosen from a fixed probability distributionp with mean 0 and variance 1.
By Theorem 1.2.1, forA = AT we have that

Trace(A2) =
N∑

i=1

N∑

j=1

aijaji =
N∑

i=1

N∑

j=1

a2
ij . (1.18)

From our assumptions onp, we expect eacha2
ij to be of size1. By the Central

Limit Theorem (Theorem??) or Chebyshev’s inequality (Exercise??), we expect
with high probability

N∑

i=1

N∑

j=1

a2
ij ∼ N2 · 1, (1.19)

with an error of size
√

N2 = N (as eacha2
ij is approximately of size1 and there

areN2 of them, with high probability their sum should be approximately of size
N2). Thus

N∑

i=1

λi(A)2 ∼ N2, (1.20)

which yields

N · Ave(λi(A)2) ∼ N2. (1.21)

For heuristic purposes we shall pass the square root through to get

|Ave(λi(A))| ∼
√

N. (1.22)

In general the square root of an average need not be the same as the average of the
square root; however, our purpose here is merely to give a heuristic as to the correct
scale. Later in our investigations we shall see that

√
N is the correct normalization.

Thus it is natural to guess that the correct scale to study the eigenvalues of an
N × N real symmetric matrix isc

√
N , wherec is some constant independent of

N . This yields normalized eigenvaluesλ̃1(A) = λi(A)

c
√

N
; choosingc = 2 leads to

clean formulas. One could of course normalize the eigenvalues byf(N), with f
an undetermined function, and see which choices off give good results; eventually
one would findf(N) = c

√
N .

Exercise 1.2.7.Consider realN ×N matrices with entries independently chosen
from a probability distribution with mean 0 and variance 1. How large do you
expect the average eigenvalue to be?

Exercise 1.2.8.Use Chebyshev’s inequality (Exercise??) to bound the probability
that |∑i

∑
j a2

ij − N2| ≥ N log N . Conclude that with high probability that the
sum of the squares of the eigenvalues is of sizeN2 for largeN .
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1.2.3 Eigenvalue Distribution

We quickly review the theory of point masses and induced probability distributions
(see §?? and §??). Let δx0 represent a unit point mass atx0. We define its action
on functions by

δx0(f) :=
∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0). (1.23)

δx0 , called theDirac delta functional at x0, is similar to our approximations to
the identity. There is finite mass (its integral is 1), the density is 0 outsidex0 and
infinite at x0. As its argument is a function and not a complex number,δx0 is a
functional and not a function. To eachA, we attach a probability measure (the
eigenvalue probability distribution ):

µA,N (x)dx =
1
N

N∑

i=1

δ

(
x− λi(A)

2
√

N

)
dx. (1.24)

At each normalized eigenvalueλi(A)

2
√

N
we have placed a mass of weight1

N ; there
are N masses, thus we have a probability distribution. Ifp(x) is a probability
distribution then

∫ b

a
p(x)dx is the probability of observing a value in[a, b]. For us,∫ b

a
µA,N (x)dx is the fraction of normalized eigenvalues in[a, b]:

∫ b

a

µA,N (x)dx =
#{i : λi(A)

2
√

N
∈ [a, b]}

N
. (1.25)

We can calculate the moments ofµA,N (x).

Definition 1.2.9. LetE[xk]A denote thekth moment ofµA,N (x). We often denote
thisMN,k(A).

The following corollary of the Eigenvalue Trace Formula is the starting point of
many of our investigations; we see in Remark 1.3.15 why it is so useful.

Lemma 1.2.10.MN,k(A) = Trace(Ak)

2kN
k
2 +1

.

Proof. As Trace(Ak) =
∑

i λi(A)k we have

MN,k(A) = E[xk]A =
∫

xkµA,N (x)dx

=
1
N

N∑

i=1

∫

R
xkδ

(
x− λi(A)

2
√

N

)
dx

=
1
N

N∑

i=1

λi(A)k

(2
√

N)k

=
Trace(Ak)

2kN
k
2 +1

. (1.26)

2

Exercise 1.2.11.LetA be anN×N real symmetric matrix with|aij | ≤ B. In terms
of B,N andk bound|Trace(Ak)| andMN,k(A). How large canmaxi |λi(A)| be?
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1.3 SEMI-CIRCLE LAW

1.3.1 Statement

A natural question to ask concerning the eigenvalues of a matrix is:What fraction of
the normalized eigenvalues lie in an interval[a, b]? Let µA,N (x) be the eigenvalue
probability distribution. For a givenA, the answer is∫ b

a

µA,N (x)dx. (1.27)

How does the above behave as we varyA? We have the following startling result,
which is almost independent of the underlying probability densityp we used to
choose the entries ofA:

Theorem 1.3.1(Semi-Circle Law). Consider the ensemble ofN × N real sym-
metric matrices with entries independently chosen from a fixed probability density
p(x) with mean 0, variance 1, and finite higher moments. AsN → ∞, for almost
all A, µA,N (x) converges to the semi-circle density2

π

√
1− x2.

Thus the fraction of normalized eigenvalues ofA in [a, b] ⊂ [−1, 1] for a typical
A asN →∞ is ∫ b

a

2
π

√
1− x2dx. (1.28)

Later in §1.3.4 we discuss what happens if the higher moments are infinite.

1.3.2 Moment Problem

We briefly describe a needed result from Probability Theory: the solution to the
Moment Problem. See page110 of [Du] for details; see [ShTa] for a connection
between the moment problem and continued fractions!

Let k be a non-negative integer; below we always assumem0 = 1. We are inter-
ested in when numbersmk determine a unique probability distributionP whosekth

moment ismk. If the mk do not grow too rapidly, there is at most one continuous
probability density with these moments (see [Bi, CaBe, Fe]). A sufficient condition

is Carleman’s Condition that
∑∞

j=1 m
−1/2j
2j = ∞. Another is that

∑∞
j=1

mjtj

j! has
a positive radius of convergence. This implies the moment generating function (see
Exercise 1.3.2) exists in an interval and the distribution is uniquely determined.

Exercise 1.3.2(Non-uniqueness of moments). For x ∈ [0,∞), consider

f1(x) =
1√
2πx

e−(log x)2/2

f2(x) = f1(x) [1 + sin(2π log x)] . (1.29)

Show that forr ∈ N, the rth moment off1 and f2 is er2/2. The reason for the
non-uniqueness of moments is that themoment generating function

Mf (t) =
∫ ∞

−∞
etxf(x)dx (1.30)

does not converge in a neighborhood of the origin. See [CaBe], Chapter 2. See
also Exercise??.
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For us the numbersmk arise from averaging the momentsMN,k(A) of the
µA,N (x)’s and taking the limit asN →∞. Let

MN,k =
∫

A

MN,k(A)Prob(A)dA, mk = lim
N→∞

MN,k. (1.31)

For eachN the momentsMN,k yield a probability distributionPN , andlimN→∞
MN,k = mk. If the mk grow sufficiently slowly, there is a unique continuous
probability densityP with kth momentmk. It is reasonable to posit that as for each
k, limN→∞MN,k = mk, then “most”µA,N (x) converge (in some sense) to the
probability densityP (x).

Remark 1.3.3 (Warning). For eachN , considerN numbers{an,N}N
n=1 defined

by an,N = 1 if n is even and−1 if n is odd. ForN even, note the average of the
an,N ’s is 0, but each|an,N | = 1; thus, no element is close to the system average.
Therefore, it is not always the case that a typical element is close to the system
average. What is needed in this case is to consider the variance of the moments
(see Exercise 1.3.5).

Remark 1.3.4. While it is not true that every sequence of numbersmk that grow
sufficiently slowly determines a continuous probability density (see Exercise 1.3.8),
as ourmk arise from limits of moments of probability distributions, we do obtain
a unique limiting probability density. This is similar to determining when a Taylor
series converges to a unique function. See also Exercise??.

Exercise 1.3.5.Let {bn,N}N
n=1 be a sequence with meanµ(N) = 1

N

∑N
n=1 bn,N

and varianceσ2(N) = 1
N

∑N
n=1 |bn,N − µ(N)|2. Assume that asN → ∞,

µ(N) → µ and σ2(N) → 0. Prove for anyε > 0 as N → ∞ for a fixedN
at mostε percent ofbn,N are not withinε of µ. Therefore,if the mean of a sequence
convergesandwe have control over the variance,thenwe have control over the
limiting behavior ofmostelements.

In this text we content ourselves with calculating the average momentsmk =
limN→∞

∫
A

MN,k(A)dA. In many cases we derive simple expressions for the
probability densityP with momentsmk; however, we do not discuss the probability
arguments needed to show that asN →∞, a “typical” matrixA hasµA,n(x) close
to P . The interested reader should see [CB, HM] for an application to moment
arguments in random matrix theory.

Some care is needed in formulating what it means for two probability distribu-
tions to be close. For us,µA,N (x) is the sum ofN Dirac delta functionals of mass
1
N . Note|P (x) − µA,N (x)| can be large for individualx. For example, ifP (x) is
the semi-circle distribution, then|P (x)− µA,N (x)| will be of size 1 for almost all
x ∈ [−1, 1]. We need to define what it means for two probability distributions to
be close.

One natural measure is the Kolmogoroff-Smirnov discrepancy. For a probability
distributionf(x) its Cumulative Distribution Function Cf (x) is defined to be the
probability of[−∞, x]:

Cf (x) =
∫ x

−∞
f(x)dx. (1.32)
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If our distribution is continuous, note this is the same as the probability of[−∞, x);
however, for distributions arising from Dirac delta functionals like ourµA,N (x),
there will be finite, non-zero jumps in the cumulative distribution function at the
normalized eigenvalues. For example, forµA,N (x) we have

CµA,N
(x) =

1
N

∑
λi(A)
2
√

N
< x

1, (1.33)

which jumps by at least1N at each normalized eigenvalue. For two probability dis-
tributionsf andg we define theKolmogoroff-Smirnov discrepency off and g
to besupx |Cf (x) − Cg(x)|. Note asN → ∞ each normalized eigenvalue con-
tributes a smaller fraction of the total probability. Using the Kolmogoroff-Smirnov
discrepancy for when two probability distributions are close, one can show that as
N →∞ “most” µA,N (x) are close toP .

Remark 1.3.6. It is not true that all matricesA yield µA,N (x) that are close toP ;
for example, consider multiples of the identity matrix. All the normalized eigenval-
ues are the same, and these real symmetric matrices will clearly not haveµA,N (x)
close toP (x). Of course, asN →∞ the probability ofA being close to a multiple
of the identity matrix is zero.

Exercise 1.3.7.Fix a probability distributionp, and considerN×N real symmetric
matrices with entries independently chosen fromp. What is the probability that a
matrix in this ensemble has all entries withinε of a multiple of theN ×N identity
matrix? What happens asN →∞ for fixedε? How does the answer depend onp?

Exercise 1.3.8. Let mk be thekth moment of a probability densityP . Show
m2m0 − m2

1 ≥ 0. Note this can be interpreted as
∣∣ m0 m1

m1 m2

∣∣ ≥ 0. Thus, if
m2m0 − m2

1 < 0, the mk cannot be the moments of a probability distribution.
Find a similar relation involvingm0,m1,m2,m3 andm4 and a determinant. See
[Chr] and the references therein for more details, as well as [ShTa, Si] (where the
determinant condition is connected to continued fraction expansions!).

Exercise 1.3.9. If p(x) = 0 for |x| > R, show thekth moment satisfiesmk ≤
Rk. Hencelimj→∞m

1/2j
2j < ∞. Therefore, if a probability distribution has

limj→∞m
1/2j
2j = ∞, then for anyR there is a positive probability of observing

|x| > R. Alternatively, we say suchp has unbounded support. Not surprisingly,
the Gaussian moments (see Exercise 1.3.10) grow sufficiently rapidly so that the
Gaussian has unbounded support. Iflimj→∞m

1/2j
2j < ∞ must the distribution

have finite support?

Exercise 1.3.10(Moments of the Gaussian). Calculate the moments of the Gaussian
g(x) = 1√

2π
e−x2/2. Prove the odd moments vanish and the even moments are

m2k = (2k − 1)!!, wheren!! = n(n − 2)(n − 4) · · · . This is also the number of
ways to match2k objects in pairs. Show the moments grow sufficiently slowly to
determine a unique continuous probability density.
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Exercise 1.3.11.Consider two probability distributionsf and g on [0, 1] where
f(x) = 1 for all x and g(x) = 1 for x 6∈ Q and 0 otherwise. Note bothf and
g assign the same probability to any[a, b] with b 6= a. Showsupx∈[0,1] |f(x) −
g(x)| = 1 but the Kolmogoroff-Smirnov discrepancy is zero. Thus looking at the
pointwise difference could incorrectly cause us to conclude thatf andg are very
different.

Exercise 1.3.12.Do there exist two probability distributions that have a large
Kolmogoroff-Smirnov discrepancy but are close pointwise?

1.3.3 Idea of the Proof of the Semi-Circle Law

We give a glimpse of the proof of the Semi-Circle Law below; a more detailed
sketch will be provided in Chapter 2. We use Moment Method from §1.3.2.

For eachµA,N (x), we calculate itskth-moment,MN,k(A) = E[xk]A. Let MN,k

be the average ofMN,k(A) over allA. We must show asN →∞, MN,k converges
to thekth moment of the semi-circle. We content ourselves with just the second
moment below, and save the rest for §2.1. By Lemma 1.2.10,

MN,2 =
∫

A

MN,k(A)Prob(A)dA

=
1

22N
2
2+1

∫

A

Trace(A2)Prob(A)dA. (1.34)

We use Theorem 1.2.1 to expandTrace(A2) and find

MN,2 =
1

22N2

∫

A

N∑

i=1

N∑

j=1

a2
ij Prob(A)dA. (1.35)

We now expandProb(A)dA by (1.3):

MN,2

=
1

22N2

∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞

N∑

i=1

N∑

j=1

a2
ij · p(a11)da11 · · · p(aNN )daNN

=
1

22N2

N∑

i=1

N∑

j=1

∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
a2

ij · p(a11)da11 · · · p(aNN )daNN ;

(1.36)

we may interchange the summations and the integrations as there are finitely many
sums. For each of theN2 pairs(i, j), we have terms like∫ ∞

aij=−∞
a2

ijp(aij)daij ·
∏

(k,l) 6=(ij)
k≤l

∫ ∞

akl=−∞
p(akl)dakl. (1.37)

The above equals1. The first factor is 1 because it is the variance ofaij , which
was assumed to be 1. The second factor is a product of integrals where each integral
is 1 (becausep is a probability density). As there areN2 summands in (1.36), we
find MN,2 = 1

4 (so limN→∞MN,2 = 1
4 ), which is the second moment of the

semi-circle.



IntroRMT_Math54 April 13, 2007

18 CHAPTER 1

−1.5 −1.0 −0.5 0 0.5 1.0 1.5

0.005

0.010

0.015

0.020

0.025

Figure 1.2 Distribution of eigenvalues: 500 Gaussian matrices (400× 400)

Exercise 1.3.13.Show the second moment of the semi-circle is1
4 .

Exercise 1.3.14.Calculate the third and fourth moments, and compare them to
those of the semi-circle.

Remark 1.3.15(Important). Two features of the above proof are worth highlight-
ing, as they appear again and again below. First, note that we want to answer a
question about theeigenvaluesof A; however, our notion of randomness gives us
information on theentriesof A. The key to converting information on the entries
to knowledge about the eigenvalues is having some type of Trace Formula, like
Theorem 1.2.4.

The second point is the Trace Formula would be useless, merely converting us
from one hard problem to another, if we did not have a good Averaging Formula,
some way to average over all randomA. In this problem, the averaging is easy
because of how we defined randomness.

Remark 1.3.16. While the higher moments ofp are not needed for calculating
MN,2 = E[x2], their finiteness comes into play when we study higher moments.

1.3.4 Examples of the Semi-Circle Law

First we look at the density of eigenvalues whenp is the standard Gaussian,p(x) =
1√
2π

e−x2/2. In Figure 1.2 we calculate the density of eigenvalues for 500 such
matrices (400× 400), and note a great agreement with the semi-circle.

What about a density where the higher moments are infinite? Consider the
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Figure 1.3 Distribution of eigenvalues: 5000 Cauchy matrices (300× 300)

Cauchy distribution,

p(x) =
1

π(1 + x2)
. (1.38)

The behavior is clearly not semi-circular (see Figure 1.3). The eigenvalues are
unbounded; for graphing purposes, we have put all eigenvalues greater than 300 in
the last bin, and less than -300 in the first bin.

Exercise 1.3.17.Prove the Cauchy distribution is a probability distribution by
showing it integrates to 1. While the distribution is symmetric, one cannot say
the mean is 0, as the integral

∫ |x|p(x)dx = ∞. Regardless, show the second
moment is infinite.

1.3.5 Summary

Note the universal behavior: though the proof is not given here, the Semi-Circle
Law holds for all mean zero, finite moment distributions. The independence of the
behavior on the exact nature of the underlying probability densityp is a common
feature of Random Matrix Theory statements, as is the fact that asN → ∞ most
A yield µA,N (x) that are close (in the sense of the Kolmogoroff-Smirnov discrep-
ancy) toP (whereP is determined by the limit of the average of the moments
MN,k(A)). For more on the Semi-Circle Law, see [Bai, BK].
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1.4 ADJACENT NEIGHBOR SPACINGS

1.4.1 GOEDistribution

The Semi-Circle Law (when the conditions are met) tells us about the density of
eigenvalues. We now ask a more refined question:

Question 1.4.1.How are the spacings between adjacent eigenvalues distributed?

For example, let us write the eigenvalues ofA in increasing order; asA is real
symmetric, the eigenvalues will be real:

λ1(A) ≤ λ2(A) ≤ · · · ≤ λN (A). (1.39)

The spacings between adjacent eigenvalues are theN − 1 numbers

λ2(A)− λ1(A), λ3(A)− λ2(A), . . . , λN (A)− λN−1(A). (1.40)

As before (see Chapter??), it is more natural to study the spacings between adja-
cent normalized eigenvalues; thus, we have

λ2(A)
2
√

N
− λ1(A)

2
√

N
, . . . ,

λN (A)
2
√

N
− λN−1(A)

2
√

N
. (1.41)

Similar to the probability distributionµA,N (x), we can form another probability
distributionνA,N (s) to measure spacings between adjacent normalized eigenval-
ues.

Definition 1.4.2.

νA,N (s)ds =
1

N − 1

N∑

i=2

δ

(
s− λi(A)− λi−1(A)

2
√

N

)
ds. (1.42)

Based on experimental evidence and some heuristical arguments, it was con-
jectured that asN → ∞, the limiting behavior ofνA,N (s) is independent of the
probability densityp used in randomly choosing theN ×N matricesA.

Conjecture 1.4.3(GOE Conjecture:). AsN →∞, νA,N (s) approaches a univer-
sal distribution that is independent ofp.

Remark 1.4.4. GOE stands for Gaussian Orthogonal Ensemble; the conjecture is
known if p is (basically) a Gaussian. We explain the nomenclature in Chapter??.

Remark 1.4.5 (Advanced). The universal distribution isπ
2

4
d2Ψ
dt2 , whereΨ(t) is

(up to constants) the Fredholm determinant of the operatorf → ∫ t

−t
K ∗ f with

kernelK = 1
2π

(
sin(ξ−η)

ξ−η + sin(ξ+η)
ξ+η

)
. This distribution is well approximated by

pW (s) = π
2 s exp

(
−πs2

4

)
.

Exercise 1.4.6.ProvepW (s) = π
2 s exp

(
−πs2

4

)
is a probability distribution with

mean 1. What is its variance?
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We study the case ofN = 2 andp a Gaussian in detail in Chapter??.

Exercise(hr) 1.4.7(Wigner’s surmise). In 1957 Wigner conjectured that asN →∞
the spacing between adjacent normalized eigenvalues is given by

pW (s) =
π

2
s exp

(
−πs2

4

)
. (1.43)

He was led to this formula from the following assumptions:

• Given an eigenvalue atx, the probability that another one liess units to its
right is proportional tos.

• Given an eigenvalue atx andI1, I2, I3, . . . any disjoint intervals to the right
of x, then the events of observing an eigenvalue inIj are independent for all
j.

• The mean spacing between consecutive eigenvalues is1.

Show these assumptions imply(1.43).

1.4.2 Numerical Evidence

We provide some numerical support for the GOE Conjecture. In all the experiments
below, we consider a large number ofN × N matrices, where for each matrix we
look at a small (small relative toN ) number of eigenvalues in thebulk of the
eigenvalue spectrum(eigenvalues near0), not near theedge(for the semi-circle,
eigenvalues near±1). We do not look at all the eigenvalues, as the average spac-
ing changes over such a large range, nor do we consider the interesting case of the
largest or smallest eigenvalues. We study a region where the average spacing is ap-
proximately constant, and as we are in the middle of the eigenvalue spectrum, there
are no edge effects. These edge effects lead to fascinating questions (for random
graphs, the distribution of eigenvalues near the edge is related to constructing good
networks to rapidly transmit information; see for example [DSV, Sar]).

First we consider5000 300 × 300 matrices with entries independently chosen
from the uniform distribution on[−1, 1] (see Figure 1.4). Notice that even withN
as low as 300, we are seeing a good fit between conjecture and experiment.

What if we takep to be the Cauchy distribution? In this case, the second moment
of p is infinite, and the alluded to argument for semi-circle behavior is not applica-
ble. Simulations showed the density of eigenvalues did not follow the Semi-Circle
Law, which does not contradict the theory as the conditions of the theorem were
not met. What about the spacings between adjacent normalized eigenvalues of real
symmetric matrices, with the entries drawn from the Cauchy distribution?

We study5000 100×100 and then5000 300×300 Cauchy matrices (see Figures
1.5 and 1.6. We note good agreement with the conjecture, and asN increases the
fit improves.

We give one last example. Instead of using continuous probability distribution,
we investigate a discrete case. Consider the Poisson Distribution:

p(n) =
λn

n!
e−λ. (1.44)
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Figure 1.4 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300× 300) whose entries are drawn from the Uniform distribution on[−1, 1]
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Figure 1.5 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(100× 100) whose entries are drawn from the Cauchy distribution
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Figure 1.6 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300× 300) whose entries are drawn from the Cauchy distribution

We investigate 5000300 × 300 such matrices, first withλ = 5, and then with
λ = 20, noting again excellent agreement with the GOE Conjecture (see Figures
1.7 and 1.8):

1.5 THIN SUB-FAMILIES

Before moving on to connections with number theory, we mention some very im-
portant subsets of real symmetric matrices. The subsets will be large enough so
that there are averaging formulas at our disposal, but thin enough so that sometimes
we see new behavior. Similar phenomena will resurface when we study zeros of
Dirichlet L-functions.

As motivation, consider as our initial set all even integers. LetN2(x) denote the
number of even integers at mostx. We seeN2(x) ∼ x

2 , and the spacing between
adjacent integers is2. If we look at normalizedeven integers, we would have
yi = 2i

2 , and now the spacing between adjacent normalized even integers is 1.
Now consider the subset of even squares. IfN2(x) is the number of even squares

at mostx, thenN2(x) ∼
√

x
2 . For even squares of sizex, sayx = (2m)2, the next

even square is at(2m + 2)2 = x + 8m + 4. Note the spacing between adjacent
even squares is about8m ∼ 4

√
x for m large.

Exercise 1.5.1.By appropriately normalizing the even squares, show we obtain a
new sequence with a similar distribution of spacings between adjacent elements as
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Figure 1.7 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300× 300) whose entries are drawn from the Poisson distribution (λ = 5)
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Figure 1.8 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300× 300) whose entries are drawn from the Poisson distribution (λ = 20)
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Figure 1.9 A typical graph

in the case of normalized even integers. Explicitly, look at the spacings betweenN
consecutive even squares with each square of sizex andN ¿ x.

Remark 1.5.2. A far more interesting example concerns prime numbers. For the
first set, consider all prime numbers. For the subset, fix an integerm and consider
all prime numbersp such thatp + 2m is also prime; ifm = 1 we sayp andp + 2
are a twin prime pair. It is unknown if there are infinitely many elements in the
second set for anym, though there are conjectural formulas (using the techniques
of Chapter??). It is fascinating to compare these two sets; for example, what is the
spacing distribution between adjacent (normalized) primes look like, and is that the
same for normalized twin prime pairs? See Research Project??.

1.5.1 Random Graphs: Theory

A graph G is a collection of points (theverticesV ) and lines connecting pairs of
points (theedgesE). While it is possible to have an edge from a vertex to itself
(called aself-loop), we study the subset of graphs where this does not occur. We
will allow multiple edges to connect the same two vertices (if there are no multiple
edges, the graph issimple). Thedegree of a vertexis the number of edges leaving
(or arriving at) that vertex. A graph isd-regular if every vertex has exactlyd edges
leaving (or arriving).

For example, consider the graph in Figure 1.9: The degrees of vertices are 2, 1,
4 and 3, and vertices 3 and 4 are connected with two edges.

To each graph withN vertices we can associate anN×N real symmetric matrix,
called theadjacency matrix, as follows: First, label the vertices of the graph from
1 to N (see Exercise 1.5.3). Letaij be the number of edges from vertexi to vertex
j. For the graph above, we have

A =




0 0 1 1
0 0 1 0
1 1 0 2
1 0 2 0


 . (1.45)

For eachN , consider the space of alld-regular graphs. To each graphG we
associate its adjacency matrixA(G). We can build the eigenvalue probability dis-
tributions (see §1.2.3) as before. We can investigate the density of the eigenvalues
and spacings between adjacent eigenvalues. We are no longer choosing the matrix
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elements at random; once we have chosen a graph, the entries are determined. Thus
we have a more combinatorial type of averaging to perform: we average over all
graphs, not over matrix elements. Even though these matrices are all real symmet-
ric and hence a subset of the earlier ensembles, the probability density for these
matrices are very different, and lead to different behavior (see also Remark 2.2.13
and §??).

One application of knowledge of eigenvalues of graphs is to network theory. For
example, let the vertices of a graph represent various computers. We can transmit
information between any two vertices that are connected by an edge. We desire a
well connected graph so that we can transmit information rapidly through the sys-
tem. One solution, of course, is to connect all the vertices and obtain thecomplete
graph. In general, there is a cost for each edge; if there areN vertices in a simple
graph, there areN(N−1)

2 possible edges; thus the complete graph quickly becomes
very expensive. ForN vertices,d-regular graphs have onlydN

2 edges; now the cost
is linear in the number of vertices. The distribution of eigenvalues (actually, the
second largest eigenvalue) of such graphs provide information on how well con-
nected it is. For more information, as well as specific constructions of such well
connected graphs, see [DSV, Sar].

Exercise 1.5.3.For a graph withN vertices, show there areN ! ways to label
the vertices. Each labeling gives rise to an adjacency matrix. While a graph could
potentially haveN ! different adjacency matrices, show all adjacency matrices have
the same eigenvalues, and therefore the same eigenvalue probability distribution.

Remark 1.5.4. Fundamental quantities should not depend on presentation. Exer-
cise 1.5.3 shows that the eigenvalues of a graph do not depend on how we label
the graph. This is similar to the eigenvalues of an operatorT : Cn → Cn do not
depend on the basis used to representT . Of course, the eigenvectorswill depend
on the basis.

Exercise 1.5.5.If a graph hasN labeled vertices andE labeled edges, how many
ways are there to place theE edges so that each edge connects two distinct ver-
tices? What if the edges are not labeled?

Exercise 1.5.6(Bipartite graphs). A graph is bipartite if the verticesV can be split
into two distinct sets,A1 andA2, such that no vertices in anAi are connected by
an edge. We can construct ad-regular bipartite graph with#A1 = #A2 = N .
Let A1 be vertices1, . . . , N and A2 be verticesN + 1, . . . , 2N . Let σ1, . . . , σd

be permutations of{1, . . . , N}. For eachσj and i ∈ {1, . . . , N}, connect vertex
i ∈ A1 to vertexN + σj(i) ∈ A2. Prove this graph is bipartite andd-regular. If
d = 3, what is the probability (asN → ∞) that two vertices have two or more
edges connecting them? What is the probability ifd = 4?

Remark 1.5.7. Exercise 1.5.6 provides a method for sampling the space of bipartite
d-regular graphs, but does this construction sample the space uniformly (i.e., is
everyd-regular bipartite graph equally likely to be chosen by this method)? Further,
is the behavior of eigenvalues ofd-regular bipartite graphs the same as the behavior
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of eigenvalues ofd-regular graphs? See [Bol], pages 50–57 for methods to sample
spaces of graphs uniformly.

Exercise 1.5.8.Thecoloring numberof a graph is the minimum number of colors
needed so that no two vertices connected by an edge are colored the same. What is
the coloring number for the complete graph onN? For a bipartite graph withN
vertices in each set?

Consider now the following graphs. For any integerN let GN be the graph with
vertices the integers2, 3, . . . , N , and two vertices are joined if and only if they have
a common divisor greater than1. Prove the coloring number ofG10000 is at least
13. Give good upper and lower bounds as functions ofN for the coloring number
of GN .

1.5.2 Random Graphs: Results

The first result, due to McKay [McK], is that while the density of states isnot the
semi-circle there is a universal density for eachd.

Theorem 1.5.9(McKay’s Law). Consider the ensemble of alld-regular graphs
with N vertices. AsN →∞, for almost all such graphsG, µA(G),N (x) converges
to Kesten’s measure

f(x) =

{
d

2π(d2−x2)

√
4(d− 1)− x2, |x| ≤ 2

√
d− 1

0 otherwise.
(1.46)

Exercise 1.5.10.Show that asd → ∞, by changing the scale ofx, Kesten’s mea-
sure converges to the semi-circle distribution.

Below (Figures 1.10 and 1.11) we see excellent agreement between theory and
experiment ford = 3 and6; the data is taken from [QS2].

The idea of the proof is that locally almost all of the graphs almost always look
like trees (connected graphs with no loops), and for trees it is easy to calculate the
eigenvalues. One then does a careful book-keeping. Thus, this sub-family is thin
enough so that a new, universal answer arises. Even though all of these adjacency
matrices are real symmetric, it is a very thin subset. It isbecauseit is such a thin
subset that we are able to see new behavior.

Exercise 1.5.11.Show a general real symmetric matrix hasN(N+1)
2 independent

entries, while ad-regular graph’s adjacency matrix hasdN
2 non-zero entries.

What about spacings between normalized eigenvalues? Figure 1.12 shows that,
surprisingly, the resultdoesappear to be the same as that from all real symmetric
matrices. See [JMRR] for more details.

1.6 NUMBER THEORY

We assume the reader is familiar with the material and notation from Chapter??.
For us anL-function is given by aDirichlet series (which converges if<s is suffi-
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Figure 1.10 Comparison between theory (solid line) and experiment (dots) for1000 eigen-
values of3-regular graphs (120 bins in the histogram)
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Figure 1.11 Comparison between theory (solid line) and experiment (dots) for1000 eigen-
values of6-regular graphs (240 bins in the histogram)
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Figure 1.123-regular, 2000 vertices (graph courtesy of [JMRR])

ciently large), has anEuler product , and the coefficients have arithmetic meaning:

L(s, f) =
∞∑

n=1

an(f)
ns

=
∏
p

Lp(p−s, f)−1, <s > s0. (1.47)

TheGeneralized Riemann Hypothesisasserts that all non-trivial zeros have<s =
1
2 ; i.e., they are on thecritical line <s = 1

2 and can be written as12 + iγ, γ ∈ R.
The simplest example isζ(s), wherean(ζ) = 1 for all n; in Chapter?? we saw

how information about the distribution of zeros ofζ(s) yielded insights into the be-
havior of primes. The next example we considered were DirichletL-functions, the
L-functions from Dirichlet charactersχ of some conductorm. Herean(χ) = χ(n),
and these functions were useful in studying primes in arithmetic progressions.

For a fixedm, there areφ(m) DirichletL-functions modulom. This provides our
first example of afamily of L-functions. We will not rigorously define a family, but
content ourselves with saying a family ofL-functions is a collection of “similar”
L-functions.

The following examples will be considered families: (1) all DirichletL-functions
with conductorm; (2) all Dirichlet L-functions with conductorm ∈ [N, 2N ]; (3)
all Dirichlet L-functions arising from quadratic characters with prime conductor
p ∈ [N, 2N ]. In each of the cases, eachL-function has the same conductor, similar
functional equations, and so on. It is not unreasonable to think they might share
other properties.

Another example comes from elliptic curves. We commented in §?? that given a
cubic equationy2 = x3 + Afx + Bf , if ap(f) = p−Np (whereNp is the number
of solutions toy2 ≡ x3 +Afx+Bf mod p), we can construct anL-function using
the ap(f)’s. We construct a family as follows. LetA(T ), B(T ) be polynomials
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with integer coefficients inT . For eacht ∈ Z, we get an elliptic curveEt (given
by y2 = x3 + A(t)x + B(t)), and can construct anL-functionL(s, Et). We can
consider the family wheret ∈ [N, 2N ].

Remark 1.6.1. Why are we considering “restricted” families, for example Dirich-
let L-functions with a fixed conductorm, or m ∈ [N, 2N ], or elliptic curves with
t ∈ [N, 2N ]? The reason is similar to our random matrix ensembles: we do not
consider infinite dimensional matrices: we studyN × N matrices, and take the
limit as N → ∞. Similarly in number theory, it is easier to study finite sets, and
then investigate the limiting behavior.

Assuming the zeros all lie on the line<s = 1
2 , similar to the case of real sym-

metric or complex Hermitian matrices, we can study spacings between zeros. We
now describe some results about the distribution of zeros ofL-functions. Two clas-
sical ensembles of random matrices play a central role: the Gaussian Orthogonal
EnsembleGOE (resp., Gaussian Unitary EnsembleGUE), the space of real sym-
metric (complex Hermitian) matrices where the entries are chosen independently
from Gaussians; see Chapter??. It was observed that the spacings of energy levels
of heavy nuclei are in excellent agreement with those of eigenvalues of real sym-
metric matrices; thus, the GOE became a common model for the energy levels.
In §1.6.1 we see there is excellent agreement between the spacings of normalized
zeros ofL-functions and those of eigenvalues of complex Hermitian matrices; this
led to the belief that the GUE is a good model for these zeros.

1.6.1 n-Level Correlations

In an amazing set of computations starting at the1020th zero, Odlyzko [Od1, Od2]
observed phenomenal agreement between the spacings between adjacent normal-
ized zeros ofζ(s) and spacings between adjacent normalized eigenvalues of com-
plex Hermitian matrices. Specifically, consider the set ofN×N random Hermitian
matrices with entries chosen from the Gaussian distribution (the GUE). AsN →∞
the limiting distribution of spacings between adjacent eigenvalues is indistinguish-
able from what Odlyzko observed in zeros ofζ(s)!

His work was inspired by Montgomery [Mon2], who showed that for suitable
test functions the pair correlation of the normalized zeros ofζ(s) agree with that of
normalized eigenvalues of complex Hermitian matrices. Let{αj} be an increasing
sequence of real numbers,B ⊂ Rn−1 a compact box. Define then-level correla-
tion by

lim
N→∞

#
{(

αj1 − αj2 , . . . , αjn−1 − αjn

) ∈ B, ji ≤ N ; ji 6= jk

}

N
. (1.48)

For example, the2-level (or pair) correlation provides information on how often
two normalized zeros (not necessarily adjacent zeros) have a difference in a given
interval. One can show that if all then-level correlations could be computed, then
we would know the spacings between adjacent zeros.

We can regard the boxB as a product ofn−1 characteristic functions of intervals
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(or binary indicator variables). Let

Iai,bi
(x) =

{
1 if x ∈ [ai, bi],
0 otherwise.

(1.49)

We can represent the conditionx ∈ B by IB(x) =
∏n

i=1 Iai,bi
(xi). Instead of

using a boxB and its functionIB , it is more convenient to use an infinitely differ-
entiable test function (see [RS] for details). In addition to the pair correlation and
the numerics on adjacent spacings, Hejhal [Hej] showed for suitable test functions
the 3-level (or triple) correlation forζ(s) agrees with that of complex Hermitian
matrices, and Rudnick-Sarnak [RS] proved (again for suitable test functions) that
then-level correlations ofany“nice” L-function agree with those of complex Her-
mitian matrices.

The above work leads to theGUE conjecture: in the limit (as one looks at zeros
with larger and larger imaginary part, orN×N matrices with larger and largerN ),
the spacing between zeros ofL-functions is the same as that between eigenvalues
of complex Hermitian matrices. In other words, the GUE is a good model of zeros
of L-functions.

Even if true, however, the above cannot be the complete story.

Exercise 1.6.2.Assume that the imaginary parts of the zeros ofζ(s) are unbounded.
Show that if one removes any finite set of zeros, then-level correlations are un-
changed. Thus this statistic is insensitive to finitely many zeros.

The above exercise shows that then-level correlations are not sufficient to cap-
ture all of number theory. For manyL-functions, there is reason to believe that
there is different behavior near the central points = 1

2 (the center of the critical
strip) than higher up. For example, theBirch and Swinnerton-Dyer conjecture
(see §??) says that ifE(Q) (the group of rational solutions for an elliptic curveE;
see §??) has rankr, then there arer zeros at the central point, and we might expect
different behavior if there are more zeros.

Katz and Sarnak [KS1, KS2] proved that then-level correlations of complex
Hermitian matrices are also equal to then-level correlations of theclassical com-
pact groups: unitary matrices (and its subgroups of symplectic and orthogonal
matrices) with respect to Haar measure. Haar measure is the analogue of fixing a
probability distributionp and choosing the entries of our matrices randomly from
p; it should be thought of as specifying how we “randomly” chose a matrix from
these groups. As a unitary matrixU satisfiesU∗U = I (whereU∗ is the complex
conjugate transpose ofU ), we see each entry ofU is at most1 in absolute value,
which shows unitary matrices are a compact group. A similar argument shows the
set of orthogonal matricesQ such thatQT Q = I is compact.

What this means is thatmanydifferent ensembles of matrices have the same
n-level correlations – there is not one unique ensemble with these values. This
led to a new statistic which is different for different ensembles, and allows us to
“determine” which matrix ensemble the zeros follow.

Remark 1.6.3(Advanced). Consider the following classical compact groups:U(N),
USp(2N), SO, SO(even) andSO(odd) with their Haar measure. Fix a group and
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choose a generic matrix element. Calculating then-level correlations of its eigen-
values, integrating over the group, and taking the limit asN → ∞, Katz and
Sarnak prove the resulting answer is universal, independent of the particular group
chosen. In particular, we cannot use then-level correlations to distinguish the other
classical compact groups from each other.

1.6.2 1-Level Density

In the n-level correlations, given anL-function we studied differences between
zeros. It can be shown that any “nice”L-function has infinitely many zeros on the
line<s = 1

2 ; thus, if we want to study “high” zeros (zeros very far above the central
points = 1

2 ), eachL-function has enough zeros to average over.
The situation is completely different if we study “low” zeros, zeros near the cen-

tral point. Now eachL-function only has a few zeros nearby, and there is nothing
to average: wherever the zeros are, that’s where they are! This led to the introduc-
tion of families ofL-functions. For example, consider DirichletL-functions with
characters of conductorm. There areφ(m) suchL-functions. For eachL-function
we can calculate properties of zeros near the central point and then we canaverage
over theφ(m) L-functions, taking the limit asm →∞.

Explicitly, let h(x) be a continuous function of rapid decay. For anL-function
L(s, f) with non-trivial zeros1

2 + iγf (assuming GRH, eachγf ∈ R), consider

Df (h) =
∑

j

h

(
γf

log cf

2π

)
. (1.50)

Herecf is theanalytic conductor; basically, it rescales the zeros near the central
point. Ash is of rapid decay, almost all of the contribution to (1.50) will come
from zeros very close to the central point. We then average over allf in a family
F . We call this statistic the1-level density:

DF (h) =
1
|F|

∑

f∈F
Df (h). (1.51)

Katz and Sarnak conjecture that the distribution of zeros near thecentral point
s = 1

2 in a family ofL-functions should agree (in the limit) with the distribution of
eigenvalues near1 of a classical compact group (unitary, symplectic, orthogonal);
whichgroup depends on underlying symmetries of the family. The important point
to note is that the GUE is not the entire story: other ensembles of matrices naturally
arise. These conjectures, for suitable test functions, have been verified for a variety
of families: we sketch the proof for DirichletL-functions in Chapter?? and give
an application as well.

Remark 1.6.4. Why does the central points = 1
2 correspond to the eigenvalue1?

As the classical compact groups are subsets of the unitary matrices, their eigenval-
ues can be writteneiθ, θ ∈ (−π, π]. Hereθ = 0 (corresponding to an eigenvalue
of 1) is the center of the “critical line.” Note certain such matrices have a forced
eigenvalue at1 (for example, anyN × N orthogonal matrix withN odd); this is
expected to be similar toL-functions with a forced zeros at the central point. The



IntroRMT_Math54 April 13, 2007

FROM NUCLEAR PHYSICS TO L-FUNCTIONS 33

situation with multiple forced zeros at the central point is very interesting; while
in some cases the corresponding random matrix models are known, other cases are
still very much open. See [Mil6, Sn] for more details.

Exercise(h) 1.6.5. U is a unitary matrix ifU∗U = I, whereU∗ is the complex
conjugate transpose ofU . Prove the eigenvalues of unitary matrices can be written
aseiθj for θj ∈ R. An orthogonal matrix is a real unitary matrix; thusQT Q = I
whereQT is the transpose ofQ. Must the eigenvalues of an orthogonal matrix be
real?

Remark 1.6.6 (Advanced). In practice, one takesh in (1.50) to be a Schwartz
function whose Fourier transform has finite support (see §??). Similar to then-
level correlations, one can generalize the above and studyn-level densities. The
determination of which classical compact group can sometimes be calculated by
studying the monodromy groups of function field analogues.

We sketch an interpretation of the 1-level density. Again, the philosophy is that
to each family ofL-functionsF there is an ensemble of random matricesG(F)
(whereG(F) is one of the classical compact groups), and to eachG(F) is attached
a density functionWG(F). Explicitly, consider the family of all non-trivial Dirichlet
L-functions with prime conductorm, denoted byFm. We study this family in detail
in Chapter??. Then for suitable test functionsh, we prove

lim
m→∞

DFm(h) = lim
m→∞

1
|Fm|

∑

χ∈Fm

∑
γχ

h

(
γχ

log cχ

2π

)

=
∫ ∞

−∞
h(x)WG(F)(x)dx. (1.52)

We see that summing a test function of rapid decay over the scaled zeros is equiv-
alent to integrating that test function against a family-dependent density function.
We can see a similar phenomenon if we study sums of test functions at primes.
For simplicity of presentation, we assume the Riemann Hypothesis to obtain better
error estimates, though it is not needed (see Exercise 1.6.8).

Theorem 1.6.7. Let F and its derivativeF ′ be continuously differentiable func-
tions of rapid decay; it suffices to assume

∫ |F (x)|dx and
∫ |F ′(x)|dx are finite.

Then
∑

p

log p

p log N
F

(
log p

log N

)
=

∫ ∞

0

F (x)dx + O

(
1

log N

)
. (1.53)

Sketch of the proof.By the Riemann Hypothesis and partial summation (Theorem
??), we have ∑

p≤x

log p = x + O(x
1
2 log2(x)). (1.54)

See [Da2] for how this bound follows from RH. We apply the integral version of
partial summation (Theorem??) to

∑

p≤x

log p · 1
p
. (1.55)
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In the notation of Theorem??, an = log p if p is prime and0 otherwise, and
h(x) = 1

x . We find

∑

p≤x

log p

p
= O(1)−

∫ x

2

(u + O(u
1
2 log2 u))

−1
u2

du = log x + O(1). (1.56)

We again use the integral version of partial summation, but now onlog p
p ·F

(
log p
log N

)

wherean = log p
p for p prime andh(x) = F

(
log x
log N

)
. Let u0 = log 2

log N . Then

∑

p≥2

log p

p
F

(
log p

log N

)
= −

∫ ∞

2

(log x + O(1))
d

dx
F

(
log x

log N

)
dx

=
∫ ∞

2

[
1
x

F

(
log x

log N

)
+ O

(
1

x log N

∣∣∣∣F ′
(

log x

log N

)∣∣∣∣
)]

dx

= log N

∫ ∞

u0

[
F (u) + O

(
1

log N
|F ′(u)|

)]
du

= log N

∫ ∞

0

[
F (u) + O

( |F ′(u)|
log N

)]
du + O(u0 log N max

t∈[0,u0]
F (t))

= log N

∫ ∞

0

F (u)du + O

(∫ ∞

0

|F ′(u)|du

)
+ O

(
u0 log N max

t∈[0,u0]
F (t)

)

= log N

∫ ∞

0

F (u)du + O(1), (1.57)

asu0 = log 2
log N and our assumption thatF ′ is of rapid decay ensures that theF ′

integral isO(1). Dividing by log N yields the theorem. Using the Prime Number
Theorem instead of RH yields the same result, but with a worse error term.

Exercise 1.6.8.Redo the above arguments using the bounds from §??, which elim-
inate the need to assume the Riemann Hypothesis.

The above shows that summing a nice test function at the primes is related to
integrating that function against a density; here the density is just1. The1-level
density is a generalization of this to summing weighted zeros ofL-functions, and
the density we integrate against depends on properties of the family ofL-functions.
See §?? for more on distribution of points.

Exercise 1.6.9.How rapidly mustF decay asx → ∞ to justify the arguments
above? Clearly ifF has compact support (i.e., ifF (x) is zero if|x| > R for some
R), F decays sufficiently rapidly, and this is often the case of interest.

Exercise 1.6.10.Why is the natural scale for Theorem 1.6.7log N (i.e., why is it
natural to evaluate the test function atlog p

log N and notp)?

Exercise 1.6.11.Instead of studying all primes, fixm and b with (b,m) = 1,
and consider the set of primesp ≡ b mod m (recall suchp are calledprimes in an
arithmetic progression); see §??. Modify the statement and proof of Theorem 1.6.7
to calculate the density for primes in arithmetic progression. If instead we consider
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twin primes, and we assume the number of twin primes at mostx satisfiesπ2(x) =
T2

x
log2 x

+ O(x
1
2+ε) for some constantT2, what is the appropriate normalization

and density? See Definition?? for the conjectured value ofT2.

1.7 SIMILARITIES BETWEEN RANDOM MATRIX THEORY AND L-FUNCTIONS

The following (conjectural) correspondence has led to many fruitful predictions: in
some sense, the zeros ofL-functions behave like the eigenvalues of matrices which
in turn behave like the energy levels of heavy nuclei. To study the energy levels
of heavy nuclei, physicists bombard them with neutrons and study what happens;
however, physical constraints prevent them from using neutrons of arbitrary en-
ergy. Similarly, we want to study zeros ofL-functions. We “bombard” the zeros
with a test function, but not an arbitrary one (advanced:the technical condition
is the support of the Fourier transform of the test function must be small; the test
function’s support corresponds to the neutron’s energy). To evaluate the sums of
the test function at the zeros, similar to physicists restricting the neutrons they can
use, number theorists can evaluate the sums for only a small class of test functions.

Similar to our proofs of the Semi-Circle Law, we again have three key ingre-
dients. The first is we average over a collection of objects. Before it was the
probability measures built from the normalized eigenvalues, now it is theDf (h)
for eachL-function f in the family for a fixed test functionh. Second, we need
some type of Trace Formula, which tells us what the correct scale is to study our
problem and allows us to pass from knowledge of what we can sum to knowledge
about what we want to understand. For matrices, we passed from sums over eigen-
values (which we wanted to understand) to sums over the matrix elements (which
we were given and could execute). For number theory, using what are known as
Explicit Formulas (see §??), we pass from sums over zeros in (1.50) to sums over
the coefficientsan(f) in theL-functions. Finally, the Trace Formula is useless if
we do not have some type of Averaging Formula. For matrices, because of how we
generated matrices at random, we were able to average over the matrix elements;
for number theory, one needs powerful theorem concerning averages ofan(f) as
f ranges over a family. We have already seen a special case where there is an av-
eraging relation: the orthogonality relations for Dirichlet characters (see Lemma
??). In §?? we summarize the similarities between Random Matrix Theory and
Number Theory calculations. We give an application of the1-level density to num-
ber theory in Theorem??, namely bounding the number of charactersχ such that
L(s, χ) is non-zero at the central point. See [IS1, IS2] for more on non-vanishing
of L-functions at the central point and applications of such results.

1.8 SUGGESTIONS FOR FURTHER READING

In addition to the references in this and subsequent chapters, we provide a few
starting points to the vast literature; the interested reader should consult the bibli-
ographies of the references for additional reading.
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A terrific introduction to classical random matrix theory is [Meh2], whose expo-
sition has motivated our approach and many others; see also [For]. We recommend
reading at least some of the original papers of Wigner [Wig1, Wig2, Wig3, Wig4,
Wig5] and Dyson [Dy1, Dy2]. For a more modern treatment via Haar measure,
see [KS2]. Many of the properties of the classical compact groups can be found in
[Weyl]. See [Ha2] for an entertaining account of the first meeting of Random Ma-
trix Theory and Number Theory, and [Roc] for an accessible tour of connections
betweenζ(s) and much of mathematics.

In Chapter 2 we sketch a proof of the Semi-Circle Law. See [CB] for a rigorous
treatment (including convergence issues and weaker conditions on the distribution
p). For more information, we refer the reader to [Bai, BK]. In Chapter?? we
investigate the spacings of eigenvalues of2× 2 matrices. See [Gau, Meh1, Meh2]
for the spacings ofN ×N matrices asN →∞.

In Chapter?? we study the1-level density for all Dirichlet characters with con-
ductor m, and state that asm → ∞ the answer agrees with the similar statis-
tic for unitary matrices (see [HuRu, Mil2]). If we look just at quadratic Dirich-
let characters (Legendre symbols), then instead of seeing unitary symmetry one
finds agreement with eigenvalues of symplectic matrices (see [Rub2]). This is
similar to the behavior of eigenvalues of adjacency matrices ofd-regular graphs,
which are a very special subset of real symmetry matrices but have different be-
havior. For more on connections between random graphs and number theory, see
[DSV] and Chapter 3 of [Sar]; see [Bol, McK, McW, Wor] and the student reports
[Cha, Gold, Nov, Ric, QS2] for more on random graphs.

The1-level density (see also [ILS, Mil1]) andn-level correlations [Hej, Mon2,
RS] are but two of many statistics where random matrices behave similarly asL-
functions. We refer the reader to the survey articles [Con1, Dia, FSV, KS2, KeSn],
Chapter25 of [IK] and to the research works [CFKRS, DM, FSV, KS1, Mil6, Od1,
Od2, Sn, TrWi] for more information.
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Chapter Two

Random Matrix Theory: Eigenvalue Densities

In this chapter we study the eigenvalue densities for many collections of random
matrices. We concentrate on the density of normalized eigenvalues, though we
mention a few questions regarding the spacings between normalized eigenvalues
(which we investigate further in Chapter??). We use the notation of Chapter 1.

2.1 SEMI-CIRCLE LAW

Consider an ensemble ofN × N real symmetric matrices, where for simplicity
we choose the entries independently from some fixed probability distributionp.
One very important question we can ask is: given an interval[a, b], how many
eigenvalues do we expect to lie in this interval? We must be careful, however,
in phrasing such questions. We have seen in §1.2.2 that the average size of the
eigenvalues grows like

√
N . Hence it is natural to look at the density of normalized

eigenvalues.
For example, the Prime Number Theorem states that the number of primesp ≤ x

is x
log x plus lower order terms; see Theorem?? for an exact statement. Thus the

average spacing between primesp ≤ x is x
x/ log x = log x. Consider two intervals

[105, 105 + 1000] and[10200, 10200 + 1000]. The average spacing between primes
in the first is about11.5; the average spacing between primes in the second is about
460.5. We expect to find about87 primes in the first interval, and about2 in the
second. In order to obtain a universal answer, we instead look at the density of
normalized primes.

The appropriate question to ask is not what is the density of eigenvalues or primes
in an interval[a, b], but rather in an interval[a · (Ave Spacing), b · (Ave Spacing)].

Exercise 2.1.1.As x → ∞ how many numbers at mostx are square-free (m
is square-freeif n2|m impliesn = ±1)? What is the average spacing between
square-free numbers?

2.1.1 Moments of the Semi-Circle Density

Consider

P (x) =

{
2
π

√
1− x2 if |x| ≤ 1

0 otherwise.
(2.1)

Exercise 2.1.2.Show thatP (x) is a probability density (show that it is non-negative
and integrates to1). GraphP (x).
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We call P (x) the semi-circle density. We calculate the moments of the semi-
circle. We prove that fork ≤ 3, thekth moment of the semi-circleC(k) equals
the expectedkth moment ofµA,N (x) asN → ∞, and sketch the proof for higher
moments; see §1.2.3 for the definition ofµA,N (x). We have

C(k) =
∫ ∞

−∞
xkP (x)dx =

2
π

∫ 1

−1

xk
√

1− x2dx. (2.2)

We note that, by symmetry,C(k) = 0 for k odd, andC(0) = 1 asP (x) is a
probability density. Fork = 2m even, we change variables. Lettingx = sin θ,

C(2m) =
2
π

∫ π
2

−π
2

sin2m(θ) · cos2(θ)dθ. (2.3)

Usingsin2(θ) = 1− cos2(θ) gives

C(2m) =
2
π

∫ π
2

−π
2

sin2m(θ)dθ − 2
π

∫ π
2

−π
2

sin2m+2(θ)dθ. (2.4)

The above integrals can be evaluated exactly. We repeatedly use

cos2(φ) =
1
2

+
1
2

cos(2φ)

sin2(φ) =
1
2
− 1

2
cos(2φ). (2.5)

Repeated applications of the above allow us to writesin2m(θ) as a linear combina-
tion of 1, cos(2θ), . . . , cos(2mθ). Let

n!! =

{
n · (n− 2) · · · 2 if n is even

n · (n− 2) · · · 1 if n is odd.
(2.6)

We find (either prove directly or by induction) that

2
π

∫ π
2

−π
2

sin2m(θ)dθ = 2
(2m− 1)!!

(2m)!!
. (2.7)

Exercise 2.1.3.CalculateC(2) andC(4) and show that in general

C(2m) = 2
(2m− 1)!!
(2m + 2)!!

. (2.8)

To eachN ×N real symmetric matrixA we associate a probability distribution
µA,N (x) (see §1.2.3). We now sketch the proof that asN → ∞ most of the
µA,N (x) are close toP (x), the semi-circle density.

2.1.2 Moment Preliminaries

Definition 2.1.4. MN,k(A) is thekth moment of the probability measure attached
to µA,N (x):

MN,k(A) =
∫

xkµA,N (x)dx =
1
N

N∑

i=1

(
λi(A)
2
√

N

)k

. (2.9)
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As always, the starting point for our investigations is Theorem 1.2.4, which says∑
λi(A)k = Trace(Ak). By Lemma 1.2.10,

MN,k(A) =
1

2kN1+ k
2

Trace(Ak). (2.10)

We show that asN → ∞ the expected value of the momentsMN,k(A) of the
µA,N (x) converge to the moments of the semi-circle. This does not prove Wigner’s
Semi-Circle Law; we need some results from Probability Theory to complete the
proof (see §1.3.2 for an explanation of the needed technical arguments, and [CB]
for a rigorous derivation of the Semi-Circle Law).

See §1.3.3 for a review of notation. LetMN,k = E[MN,k(A)] be the average
over allA (appropriately weighted by the probability density) ofMN,k(A). Explic-
itly, the probability density of observing a matrixA with entriesaij is P (A)dA =∏

1≤i≤j≤N p(aij)daij , and averaging over all matrices gives the expected value of
MN,k(A) is

MN,k =
∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
MN,k(A)

∏

1≤i≤j≤N

p(aij)daij . (2.11)

From Theorem 1.2.1

Trace(Ak) =
∑

1≤i1,...,ik≤N

ai1i2ai2i3 · · · aiki1 . (2.12)

This and (2.10) yield

MN,k =
1

2kN1+ k
2

∑

1≤i1,...,ik≤N

E[ai1i2ai2i3 · · · aiki1 ], (2.13)

where

E[ai1i2ai2i3 · · · aiki1 ]

=
∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
ai1i2ai2i3 · · · aiki1

∏

1≤i≤j≤N

p(aij)daij . (2.14)

There areNk terms inTrace(Ak), each term is a product ofk factorsaij . We
use the notationE[ai1i2ai2i3 · · · aiki1 ] as we integrate each termai1i2ai2i3 · · · aiki1

againstP (A)dA, and this gives the expected value of the term.
We can write (2.14) in a more useful manner. While the above formula is correct,

by grouping terms together we can rewrite it in such a way that it will be easier to
evaluate. For smallk, by brute force one can determine these integrals; however, as
k increases, the computation becomes significantly harder and good combinatorics
are needed, and the reformulation emphasizes the important parts of the calcula-
tion. Further, writing out the integrals each time leads to long formulas; by using
expectation we have more concise formulas (though of course they convey the same
information).

In the productai1i2ai2i3 · · · aiki1 , groupaij together that have the same sub-
scripts; as the matrices are symmetric,aij = aji and we consider the pairs(i, j)
and(j, i) equal. Say we can write

ai1i2ai2i3 · · · aiki1 = ar1
x1y1

· · · ar`
x`y`

, (2.15)
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where all pairs(xj , yj) are distinct (remember, we consider the pairs(x, y) and
(y, x) equal). For example,

a13a34a45a53a31a14a43a31 = a3
13a

2
34a14a45a35.

As aij = aji, we have chosen to write the lower subscript first, especially as
P (A)dA =

∏
1≤i≤j≤N p(aij)daij hasi ≤ j. We then obtain

E[ai1i2ai2i3 · · · aiki1 ]

=
∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
ar1

x1y1
· · · ar`

x`y`

∏

1≤i≤j≤N

p(aij)daij . (2.16)

As all entries areindependentlydrawn from thesamedistribution, this integral
greatly simplifies. Letpk be thekth moment ofp:

pk =
∫ ∞

a=−∞
akp(a)da. (2.17)

Then (2.16) becomes

Lemma 2.1.5. Let ai1i2ai2i3 · · · aiki1 = ar1
x1y1

· · · ar`
x`y`

, where all pairs(xj , yj)
are distinct, remembering that we consider(i, j) the same as(j, i). Then

E[ai1i2ai2i3 · · · aiki1 ] = pr1 · · · pr`
. (2.18)

Note we could also write
E[ai1i2ai2i3 · · · aiki1 ] = E[ar1

x1y1
] · · ·E[ar`

x`y`
] = pr1 · · · pr`

. (2.19)
As we assumep has mean0, variance1 and finite higher moments, if anyrj = 1
then the above product vanishes. If eachrj = 2 the above product is1.

Instead of proving Lemma 2.1.5, we handle the contribution from one of theNk

terms; the general proof proceeds similarly. Let us calculate the contribution from
the term in (2.16), assumingN > 5. Let

S = {(1, 3), (3, 4), (1, 4), (4, 5), (3, 5)}
T = {(i, j) : 1 ≤ i ≤ j ≤ N, (i, j) 6∈ S}. (2.20)

For each(i, j) ∈ S, let r(i, j) be the exponent ofai,j in (2.16):
r(1, 3) = 3, r(3, 4) = 2, r(1, 4) = r(4, 5) = r(3, 5) = 1. (2.21)

We haveN(N+1)
2 integrals overaij , with 1 ≤ i ≤ j ≤ N . Thus the integral in

(2.16) from the term in (2.16) becomes
∏

(i,j)∈S

∫ ∞

aij=−∞
a

r(i,j)
ij p(aij)daij

∏

(i,j)∈T

∫ ∞

aij=−∞
p(aij)daij . (2.22)

Each integral over an(i, j) ∈ T gives1, and the integrals over(i, j) ∈ S give
pr(i,j). Explicitly,

∏

(i,j)∈S

∫ ∞

aij=−∞
a

r(i,j)
ij p(aij)daij

=
∫ ∞

a13=−∞
a3
13p(a13)da13

∫ ∞

a34=−∞
a2
34p(a34)da34

∫ ∞

a14=−∞
a14p(a14)da14

·
∫ ∞

a45=−∞
a45p(a45)da45

∫ ∞

a35=−∞
a35p(a35)da35

= p3p2p1p1p1. (2.23)
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Therefore, the contribution from the term in (2.16) isp3p2p
3
1 · 1

N(N+1)
2 −5; the ex-

ponent of1 is |T | = N(N+1)
2 − 5. This is zero asp has mean zero, implying

p1 = 0.

Exercise 2.1.6.Prove(2.12), (2.13)and Lemma 2.1.5.

2.1.3 The First Few Moments

We use the expansions from §2.1.2 to calculate the first few moments. See §1.3
for a review of the formulation of Wigner’s Semi-Circle Law. We must show that
limN→∞MN,k = C(k), whereC(k) is thekth moment of the semi-circle distrib-
ution.

Lemma 2.1.7. The expected value ofMN,0(A) = 1, thuslimN→∞MN,0 = C(0).

Proof. We have

MN,0 = E [MN,0(A)] =
1
N
E [Trace(I)] =

1
N
E[N ] =

N

N
E[1] = 1.

(2.24)
2

Lemma 2.1.8. The expected value ofMN,1(A) = 0, thuslimN→∞MN,1 = C(1).

Proof. We have

MN,1 = E [MN,1(A)] =
1

2N3/2
E [Trace(A)]

=
1

2N3/2
E

[
N∑

i=1

aii

]

=
1

2N3/2

N∑

i=1

E[aii]. (2.25)

As eachaij is drawn from a probability distribution with mean zero, eachE[aii] =
0. 2

Lemma 2.1.9.The expected value ofMN,2(A) = 1
4 , thuslimN→∞MN,2 = C(2).

Proof. By Theorem 1.2.1

Trace(A2) =
N∑

i=1

N∑

j=1

aijaji. (2.26)

As A is symmetric,aij = aji. Thus, the trace is
∑

i

∑
j a2

ij . Now

MN,2 = E [MN,2(A)] =
1

4N2
E

[
Trace(A2)

]

=
1

4N2
E




N∑

i=1

N∑

j=1

a2
ij




=
1

4N2

N∑

i=1

N∑

j=1

E[a2
ij ]. (2.27)
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EachE[a2
ij ] = 1 because we have assumedp has mean 0 and variance 1 (which

implies the second moment ofp is 1). There areN2 pairs(i, j). Thus, we have
1

4N2 · (N2 · 1) = 1
4 . 2

Lemma 2.1.10. limN→∞MN,3 = C(3) = 0.

Proof. By Theorem 1.2.1

Trace(A3) =
N∑

i=1

N∑

j=1

N∑

k=1

aijajkaki. (2.28)

Therefore

MN,3 = E [MN,3(A)] =
1

8N2.5
E

[
Trace(A3)

]

=
1

8N2.5
E




N∑

i=1

N∑

j=1

N∑

k=1

aijajkaki




=
1

8N2.5

N∑

i=1

N∑

j=1

N∑

k=1

E[aijajkaki]. (2.29)

There are three cases. If the subscriptsi, j andk are all distinct, thenaij , ajk, and
aki are three independent variables (in other words, these are three distinct pairs).
As p has mean zero, by Lemma 2.1.5

E[aijajkaki] = E[aij ] · E[ajk] · E[aki] = 0. (2.30)

If two of the subscripts are the same (sayi = j) and the third is distinct, by Lemma
2.1.5

E[aiiaikaki] = E[aii] · E[a2
ik] = 0 · 1 = 0 (2.31)

becausep has mean zero and variance 1. If all three subscripts are the same, we
have

E[a3
ii]. (2.32)

This is the third moment ofp. It is the same for all pairs(i, i), equal top3 by
Lemma 2.1.5. This is where we use the assumption that the higher moments ofp
are finite. There areN triples wherei = j = k. Thus,

MN,3 = E [MN,3(A)] =
1

8N2.5
·Np3 =

p3

8N1.5
. (2.33)

Letting N → ∞ we see that the expected value of the third moment is zero in the
limit. 2

Remark 2.1.11. Many of the above calculations are unnecessary. We are dividing
by N2.5. There areN3 triples aijajkaki. If i, j andk are distinct, we showed
by Lemma 2.1.5 the contribution is zero. If the indices arenot distinct, there are at
most3N2 such triples, and as all moments ofp are finite, by Lemma 2.1.5 each such
triple contributes a bounded amount (independent ofN ). As we divide byN2.5,
the total contribution is at most some universal constant times1√

N
, which tends

to zero asN → ∞. This illustrates a general principle: often order of magnitude
calculations are sufficient to show certain terms do not contribute in the limit.
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2.1.4 The Higher Moments

Lemma 2.1.12.For oddk, the expected value ofMN,k(A) asN →∞ is zero.

Exercise(hr) 2.1.13. Prove Lemma 2.1.12.

We are left with calculating the limit of the averages ofMN,k(A) for k = 2m
even.

Lemma 2.1.14. Notation as before, the only tuples which contribute asN → ∞
to the main term of the average ofMN,2m(A) are those where eachrj = 2.

Exercise(hr) 2.1.15. Prove Lemma 2.1.14.

We are reduced to calculating the contributions to the average ofMN,2m(A)
from tuples with eachrj = 2. By Lemma 2.1.5, a tuple

ai1i2 · · · ai2mi1 = a2
x1y1

· · · a2
xmym

(2.34)

contributes1m (because we have a product ofm second moments ofp, and the
second moment ofp is 1). The above arguments and (2.13) yield, up to lower order
terms,

MN,2m = E[MN,2m(A)] =
1

2mN1+m

∑∗

1≤1i,...,i2m≤N

1, (2.35)

where
∑∗

means we restrict to tuples(i1, . . . , i2m) such that the corresponding
rj ’s are all 2. The determination of the limits of the even moments is completed by
showing

1
2mN1+m

∑∗

1≤1i,...,i2m≤N

1 = C(2m) = 2
(2m− 1)!!
(2m + 2)!!

. (2.36)

The solution of this counting problem involves the Catalan number (see [CG])ck =
1

k+1

(
2k
k

)
. See [Leh] for details on these calculations.

Exercise 2.1.16.Compute the fourth and sixth moments directly, and compare them
to C(4) andC(6).

Exercise 2.1.17.For eachm show there exists a constantcm > 0 such that
∑∗

1≤1i,...,i2m≤N

1 ≥ cmN1+m. (2.37)

This implies that the even moments do not vanish.

Exercise 2.1.18.For eachm show there exists a constantdm such that
∑∗

1≤1i,...,i2m≤N

1 ≤ dmN1+M . (2.38)

This implies that the even moments are finite.

Exercise(h) 2.1.19. Prove(2.36).
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2.2 NON-SEMI-CIRCLE BEHAVIOR

In our investigations of randomd-regular graphs, we showed the density of nor-
malized eigenvalues do not converge to the semi-circle (Theorem 1.5.9). We give
several more examples of ensembles of matrices where the density of eigenvalues
is provablynotgiven by the Semi-Circle Law. Thed-regular graphs are combinato-
rial objects, and we are not constructing our matrices by choosing entries at random
from a fixed probability distributionp. Now we give several examples where we do
choose the entries randomly, but with additional structure (otherwise we would of
course just have the ensemble of all real symmetric matrices). A generic real sym-
metric matrix hasN(N+1)

2 independent entries. We now consider subsets with far
fewer independent entries, often of sizeN . The hope is that these thin ensembles
might exhibit new, interesting behavior.

2.2.1 Band Matrices

Definition 2.2.1 (Band Matrix (of widthr)). We say a real symmetric matrix is a
band matrix (of widthr) if aij = 0 whenever|i− j| > r.

A band matrix of width 0 is a diagonal matrix and of width 1 has non-zero entries
only along the main diagonal and the diagonals immediately above and below. In
general the number of independent entries is of size(2r + 1)N .

Exercise 2.2.2.Calculate exactly how many entries can be non-zero if the band
width isr.

While band matrices are a subset of real symmetric matrices, they are a very thin
subset forr ¿ N . Do they obey the Semi-Circle Law? Is the spacing between
adjacent eigenvalues the GOE?

If the band widthr = N − 1, then the matrix is “full”; in other words, every
entry can be non-zero and the density of normalized eigenvalues converges to the
semi-circle. What about the opposite extreme, whenr = 0? ConsiderN ×N real
symmetric band matrices of width0, each entry which can be non-zero is chosen
randomly and independently from some fixed probability distributionp. Forr = 0,
we do not need to assume anything about the moments ofp.

Theorem 2.2.3.The normalized eigenvalue density isnot the semi-circle; it is just
p.

Proof. There is no need to normalize the eigenvalues. As we have a diagonal ma-
trix, the entriesare the eigenvalues! Asking how many eigenvalues are in[a, b]
is equivalent to calculating the probability that anaii ∈ [a, b], which is given by∫ b

a
p(x)dx. 2

Exercise 2.2.4.Let A be anN × N band matrix of width 1 with real entries, but
not necessarily symmetric. Which entries can be non-zero inAT A?
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2.2.2 Toeplitz Matrices

We consider another ensemble of random matrices with far fewer independent en-
tries than the ensemble of all real symmetric matrices.

Definition 2.2.5. A Toeplitz matrixA is of the form

A =




b0 b1 b2 b3 · · ·
b−1 b0 b1 b2 · · ·
b−2 b−1 b0 b1 · · ·
b−3 b−2 b−1 b0 · · ·

...
...

...
...

.. .




. (2.39)

That is,A is constant along its diagonals. Noteaij = bj−i.

We consider real symmetric Toeplitz matrices whose entries are chosen accord-
ing to some distributionp with mean 0 and variance 1. Thusbi−j = bj−i. It is
convenient to normalize the eigenvalues of these Toeplitz matrices by1√

N
rather

than 1
2
√

N
. Thus

µA,N (x) =
1
N

N∑

i=1

δ

(
x− λi(A)√

N

)
. (2.40)

Remark 2.2.6. As the main diagonal is constant, the effect of the main diagonal
beingb0 is simply to shift all eigenvalues byb0. For simplicity, we takeb0 = 0.
Note there areN − 1 independent entriesb1, . . . , bN−1.

Exercise 2.2.7.If B = A + mI, prove the eigenvalues ofB arem plus the eigen-
values ofA.

The eigenvalue distribution is again not the semi-circle. As long as the probabil-
ity distributionp has mean 0, variance 1 and finite higher moments, the answer is
universal (i.e., independent of all other properties ofp). It is almostthe standard
Gaussian. Its moments are bounded by the moments of the standard Gaussian. Its
fourth moment is22

3 , while the standard Gaussian’s is3.

Exercise 2.2.8.ShowMN,1 = 0 and MN,2 = 1 − 1
N . Thus asN → ∞ the

expected value of the first two moments are 0 and 1, respectively. Recall the second
moment of the semi-circle is14 .

Just becauselimN→∞MN,2 6= 1
4 does not imply that the eigenvalue probability

distribution does not converge to a semi-circle; it only implies it does not converge
to thestandardsemi-circle — we need to examine the fourth moment. See Exercise
1.1.6.

It turns out that it is not the semi-circle that this distribution is trying to approach,
but rather the Gaussian. The odd moments of the Gaussian vanish, and the even
moments areG(2m) = (2m− 1)!!. The limits of the average of the moments want
to beG(2m); however, to calculate these moments involves solving a system of
Diophantine equations (see Chapter??). Obstructions to these equations arise due
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to the fact that the indices must be in{1, . . . , N}, and this prevents the limits from
equalling the Gaussian’s moments.

The fourth moment calculation highlights the Diophantine obstructions, which
bound the moments away from the Gaussian. Asaij = bj−i = bi−j , the trace
expansion becomes

MN,4(A) =
1

N3

∑

1≤i1i2i3,i4≤N

E(bi1−i2bi2−i3bi3−i4bi4−i1). (2.41)

Let xj = |ij − ij+1|. If any bxj occurs to the first power, its expected value is zero
(since the mean ofp is zero, and theb’s are drawn fromp), and these tuples do not
contribute. Thus either thexj ’s are matched in pairs (with different values), or all
four are equal (in which case they are still matched in pairs). There are 3 possible
matchings; however, by symmetry (simply relabel), we see the contribution from
x1 = x2, x3 = x4 is the same as the contribution fromx1 = x4, x2 = x3.

If x1 = x2, x3 = x4, we have

i1 − i2 = ±(i2 − i3) and i3 − i4 = ±(i4 − i1). (2.42)

Exercise 2.2.9.Show the number of tuples(i1, i2, i3, i4) satisfying the pair of
equations in(2.42) is O(N2) if a + sign holds in either equation. As we divide
by N3, in the limit these terms do not contribute and the main contribution arises
when both equations have the minus sign.

If both signs are negative in (2.42), theni1 = i3 andi2 andi4 are arbitrary. We
see there areN3 such tuples. Almost all of these will havex1 6= x3, and contribute
1; the rest will contribute a smaller term. Explicitly, letp4 denote the fourth moment
of p. Giveni1 andi2, N − 1 choices ofi4 yield x1 6= x3 (contributingE[b2

x1
b2
x3

] =
1), and one choice yields the two equal (contributingE[b4

x1
] = p4). Therefore this

case contributes

1
N3

(
N2(N − 1) · 1 + N2(1) · p4

)
= 1− 1

N
+

p4

N
= 1 + O

(
1
N

)
. (2.43)

The case ofx1 = x4 andx2 = x3 is handled identically, and contributes1+O
(

1
N

)
.

The other possibility is forx1 = x3 andx2 = x4. Non-adjacent pairing is what
leads to Diophantine obstructions, which decreases the contribution to the moment.
We call this a non-adjacent pairing as the neighbors ofx1 arex2 andx4, butx1 is
paired withx3. Now we have

i1 − i2 = ±(i3 − i4) and i2 − i3 = ±(i4 − i1). (2.44)

Exercise 2.2.10.Show the number of tuples(i1, i2, i3, i4) satisfying the pair of
equations in(2.44) is O(N2) if a + sign holds in either equation. As we divide
by N3, in the limit these terms do not contribute and the main contribution arises
when both equations have the minus sign.

If both signs are negative in (2.44), then we have

i1 = i2 + i4 − i3, i1, i2, i3, i4 ∈ {1, . . . , N}. (2.45)
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The fact that eachij ∈ {1, . . . , N} is what leads to the Diophantine obstructions.
In the first case (whenx1 = x2 andx3 = x4), we saw we had three independent
variables andN3 + O(N2) choices that were mutually consistent. Now it is pos-
sible for choices ofi2, i3 andi4 to lead to impossible values fori1. For example,
if i2, i4 ≥ 2N

3 and i3 < N
3 , this forcesi1 > N , which is not allowed, which

implies there are at most(1 − 1
27 )N3 valid choices. This is enough to show the

Gaussian’s moment is strictly greater; we have lost a positive fraction of solutions.
The following lemma shows this case contributes2

3 to the fourth moment.

Lemma 2.2.11. Let IN = {1, . . . , N}. Then#{x, y, z ∈ IN : 1 ≤ x + y − z ≤
N} = 2

3N3 + 1
3N .

Proof. Sayx + y = S ∈ {2, . . . , 2N}. For2 ≤ S ≤ N , there areS− 1 choices of
z, and forS ≥ N + 1, there are2N − S + 1. Similarly, the number ofx, y ∈ IN

with x + y = S is S − 1 if S ≤ N + 1 and2N − S + 1 otherwise. The number of
triples is therefore

N∑

S=2

(S − 1)2 +
2N∑

S=N+1

(2N − S + 1)2 =
2
3
N3 +

1
3
N. (2.46)

2

Collecting all the pieces, we have shown

Theorem 2.2.12(Fourth Moment). MN,4 = 2 2
3 + O

(
1
N

)
.

In [BDJ, HM] the Toeplitz ensemble is investigated and shown to be non-Semi-
Circular and non-Gaussian. See [HM] for upper and lower bounds for the moments
of the new distribution that the densitiesµA,N (x) converge to.

Remark 2.2.13. Similar to our previous arguments, one can show that the odd
moments vanish and the main contribution to the even moments occur when the
bx’s are matched in pairs. For2m objects there are(2m − 1)!! ways to match in
pairs. Each matching wants to contribute1 (and if they all did, then we would have
the standard Gaussian’s moments); however, not all matchings contribute1. For
some matchings, a positive fraction of tuples are inaccessible. Explicitly, for each
matching we divide byNm+1. It turns out that of the2m indicesi1, . . . , i2m, once
m + 1 are specified the others are determined. If we could choosem + 1 indices
freely, we would haveNm+1 tuples for each matching, and a contribution of1. It
is here that the loss of a positive percent is felt. Interestingly, if we add additional
symmetries, all the moments are Gaussian. Explicitly, assume the first row is a
palindrome; forN = 2M this means the first row is

(0 b1 b2 b3 . . . bM−2 bM−1 bM−1 bM−2 . . . b3 b2 b1 0). (2.47)

Instead ofN − 1 free variables, there are now justN−2
2 . Similar to the density of

states ofd-regular graphs (§1.5.1), we have a sub-ensemble with different behavior.
See [MMS] for a proof that the moments are Gaussian.
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2.2.3 Truncated Cauchy Distribution

In §1.3.4 we saw that numerical simulations of eigenvalues of matrices with en-
tries independently chosen from the Cauchy distribution appeared not to satisfy
the Semi-Circle Law. ForN × N matrices, instead of choosing the entries from
the Cauchy distribution, choose the entries from atruncatedCauchy distribution,
where the truncation depends onN . Explicitly, let

pN (x) =

{
AN

1
π(1+x2) if |x| ≤ f(N)

0 otherwise,
(2.48)

whereAN is chosen to make
∫
R pN (x)dx = 1. By appropriately choosing the cut-

off f(N) and normalizing the eigenvalues, one obtains a new distribution. See [Za]
for complete statements and proofs, as well as generalizations to other distributions.

2.3 SPARSE MATRICES

A common theme of some of the above problems (band matrices, random graphs)
is that we are consideringsparse matrices: real symmetric matrices where most
entries are zero. Such matrices open up fascinating possibilities to see new behav-
ior. In general, the following heuristic principle is a good guide: if you consider a
very small subset of objects, you can see very special behavior. However, in math-
ematical proofs, we need to average over many similar objects. Thus, if we have
too few objects, we cannot perform the averaging; if we have too many objects,
non-standard behavior (which occurs rarely) could be washed away.

For example, as most matrices are not band symmetric of small width, even
though they have different eigenvalue statistics, this difference will not be noticed
when we look at all symmetric matrices. The goal, therefore, is to find an ensemble
that is large enough so that we can do the averaging, yet small enough so that new
interesting behavior is still present.

Thegeneralized coin toss matricesprovide another candidate. ForqN ∈ [0, 1
2 ],

let pN (1) = qN

2 , pN (−1) = qN

2 , andpN (0) = 1 − qN . We use the probability
functionpN to construct real symmetric matricesA by choosing the independent
entries frompN . We expect to have aboutqN · N(N+1)

2 non-zero entries in a typical
A. If qN is small relative toN , these matrices are sparse, and there is the possibility
for new behavior. Note, of course, that ifqN is independent ofN then the standard
proof of the Semi-Circle Law is applicable. See [Liu] for more details.

2.4 RESEARCH PROJECTS

For more on connections between random graphs and number theory, see [DSV]
and Chapter 3 of [Sar].

Research Project 2.4.1(Band Matrices). Investigate how the eigenvalue density
depends on the band width. When do we observe the transition fromp to the semi-
circle? In other words, how large mustr be in order to see semi-circle behavior.
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Does this criticalr depend onp? It has been observed for many systems that
transitions occur aroundr =

√
N .

Research Project 2.4.2(Band, Sparse,d-Regular). Compare the eigenvalue dis-
tributions and spacing distributions (see Chapter??) of band matrices of widthr,
generalized coin toss matrices, andd-regular random graphs. If we chooser, q and
d so that

(r + 1)(2N − r)
2

∼ qN(N + 1)
2

∼ dN

2
, (2.49)

are the distributions similar? All three ensembles have approximately the same
number of non-zero entries, but they differ greatly inwherethe non-zero entries
may lie.

Research Project 2.4.3.In the above project we considered sparse matrices with
entries in{−1, 0, 1}. As the probability distribution depends onN , the arguments
used to prove Wigner’s Semi-Circle Law are not applicable. The adjacency matrix
of a simpled-regular graph with no self-loops hasdN

2 of theaij (with 1 ≤ i < j ≤
N ) equal to1 (and the rest are zero). Let now

pN,d(x) =

{
d

N−1 if x = 1
1− d

N−1 if x = 0.
(2.50)

If we choose the entriesaij (with 1 ≤ i < j ≤ N ) from pN,d and consider the
graph of such a matrix, the expected number of edges from each vertex isd. Thus
it is natural to see whether or not such an ensemble approximatesd-regular graphs.
How are the eigenvalues distributed? See also Remark 1.5.7.

Research Project 2.4.4(Self-Adjoint Matrices). Fix a probability distributionp
and chooseall the entries ofA randomly and independently fromp. Consider the
matrixAT A. This matrix is real symmetric, but hasN2 degrees of freedom. What
is the density of its eigenvalues, or at least what are the first few moments? Are the
eigenvalues real? Are they non-negative? What is the density of thesquare rootof
the eigenvalues? Matrices of this form, called Wishart matrices, are well studied
by other techniques. See for example [SM, Wis].

Research Project 2.4.5(Weighted Random Graphs). Consider the space ofd-
regular graphs. To each graph we attach an adjacency matrix, and we can study
the distribution of the eigenvalues. Consider the following generalization: fix a
probability distributionp. Let A be the adjacency matrix of ad-regular graphG.
Construct a matrixB as follows: ifaij = 1, choosebij randomly fromp; if aij = 0,
setbij = 0. How does the distribution of eigenvalues ofB depend onp? The den-
sity of eigenvalues ofd-regular graphs is not the semi-circle; however, is there a
choice ofp that leads to semi-circular behavior? These are called weighted graphs;
one can regard these weights (especially ifp is positive) as encoding different in-
formation about the system (for example, how far apart different vertices are, or
how long or how expensive it is to transmit information between vertices). See
[Gold, QS2] for more details.
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Research Project 2.4.6(Complex Hermitian). Investigate the eigenvalue densi-
ties for some of the ensembles for complex Hermitian rather than real symmetric
matrices. For example, consider complex Hermitian Toeplitz matrices.

Research Project 2.4.7(Spherical Ensemble: Non-Independent Entries). In the
spirit of Example 1.1.9, consider the ensemble ofN ×N real symmetric matrices
where

N∑

i=1

N∑

j=i

a2
ij =

N(N + 1)
2

. (2.51)

Note the entries are not chosen independently from a fixed probability distribution,
but rather we choose a point on a sphere of radius

√
N(N + 1)/2; we do this

so eachaij is of size1. What is the density of eigenvalues? Warning: the inte-
grals will probably be too difficult to directly evaluate (except possibly for lowN ),
though one can numerically investigate the eigenvalues. If we letx1 = a11, . . . ,
xN(N+1)/2 = aNN , then we have

x2
1 + · · ·+ x2

N(N+1)/2 = R2, (2.52)

whereR =
√

N(N + 1)/2 is the radius of theN(N+1)
2 -dimensional sphere. The

following coordinate transformations are useful to generate points on ann-sphere
of radiusr:

x1 = x1(r, φ1, . . . , φn−1) = r cos(φ1)
x2 = x2(r, φ1, . . . , φn−1) = r sin(φ1) cos(φ2)
x3 = x3(r, φ1, . . . , φn−1) = r sin(φ1) sin(φ2) cos(φ3)

...
xn−1 = xn−1(r, φ1, . . . , φn−1) = r sin(φ1) · · · sin(φn−2) cos(φn−1)
xn = xn(r, φ1, . . . , φn−1) = r sin(φ1) · · · sin(φn−2) sin(φn−1),

whereφ1, . . . , φn−2 ∈ [0, π], φn−1 ∈ [0, 2π] and the volume isπn/2rn

Γ(n
2 +1) . One

can also consider other ensembles where the entries are not chosen independently;
the point is to find ensembles that are easy to work with (either in determining the
eigenvalues or in generating the matrices).
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