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Chapter One

From Nuclear Physics to L-Functions

In attempting to describe the energy levels of heavy nuclei ([Wigl, Wig3, Po,
BFFMPW]), researchers were confronted with daunting calculations for a many
bodied system with extremely complicated interaction forces. Unable to explicitly
calculate the energy levels, physicists developed Random Matrix Theory to predict
general properties of the systems. Surprisingly, similar behavior is seen in studying
the zeros of_-functions!

In this chapter we give a brief introduction to classical Random Matrix Theory,
Random Graphs and@-Functions. Our goal is to show how diverse systems ex-
hibit similar universal behaviors, and introduce the techniques used in the proofs.
In some sense, this is a continuation of the Poissonian behavior investigations of
Chapter??. The survey below is meant to only show the broad brush strokes of this
rich landscape; detailed proofs will follow in later chapters. We assume familiarity
with the basic concepts di-functions (ChapteP?), probability theory (Chapter
??) and linear algebra (a quick review of the needed background is provided in
Appendix??).

While we assume the reader has some familiarity with the basic concepts in
physics for the historical introduction in §1.1, no knowledge of physics is required
for the detailed expositions. After describing the physics problems, we describe
several statistics of eigenvalues of sets of matrices. It turns out that the spacing
properties of these eigenvalues is a good model for the spacings between energy
levels of heavy nuclei and zeros 6ffunctions; exactly why this is so is still an
open question. For those interested in learning more (as well as a review of recent
developments), we conclude this chapter with a brief summary of the literature.

1.1 HISTORICAL INTRODUCTION

A central question in mathematical physics is the following: given some system
with observables; < ¢, < t3 < ..., describe how the are spaced. For example,
we could take the; to be the energy levels of a heavy nuclei, or the prime numbers,
or zeros ofL-functions, or eigenvalues of real symmetric or complex Hermitian
matrices (or as in Chapté? the fractional part§n*a} arranged in increasing
order). If we completely understood the system, we would know exactly where all
thet; are; in practice we try and go from knowledge of how thare spaced to
knowledge of the underlying system.
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1.1.1 Nuclear Physics

In classical mechanics it is possible to write down closed form solutions to the two
body problem: given two points with masses andm. and initial velocitiesy;

and v, and located af;, andr,, describe how the system evolves in time given
that gravity is the only force in play. The three body problem, however, defies
closed form solutions (though there are known solutions for special arrangements
of special masses, three bodies in general position is still open; see [Wh] for more
details). From physical grounds we know of course a solution must exist; how-
ever, for our solar system we cannot analyze the solution well enough to determine
whether or not billions of years from now Pluto will escape from the sun’s influ-
ence! In some sense this is similar to the problems with the formula for counting
primes in Exercis@?.

Imagine how much harder the problems are in understanding the behavior of
heavy nuclei. Uranium, for instance, has 0260 protons and neutrons in its nu-
cleus, each subject to and contributing to complex forces. If the nucleus were com-
pletely understood, one would know the energy levels of the nucleus. Physicists
were able to gain some insights into the nuclear structure by shooting high-energy
neutrons into the nucleus, and analyzing the results; however, a complete under-
standing of the nucleus was, and still is, lacking. Later, when we study zeros of
L-functions from number theory, we will find analogues of high-energy neutrons!

One powerful formulation of physics is through infinite dimensional linear alge-
bra. The fundamental equation for a system becomes

where H is an operator (called thelamiltonian) whose entries depend on the
physical system and the,, are the energy eigenfunctions with eigenvaligs

Unfortunately for nuclear physicg] is too complicated to write down and solve;
however, a powerful analogy with Statistical Mechanics leads to great insights.

1.1.2 Statistical Mechanics

For simplicity considetV particles in a box where the particles can only move left
or right and each particle’s speedvissee Figure 1.1.

If we want to calculate the pressure on the left wall, we need to know how many
particles strike the wall in an infinitesimal time. Thus we need to know how many
particles are close to the left wall and moving towards it. Without going into all
of the physics (see for example [Re]), we can get a rough idea of what is happen-
ing. The complexity, the enormous number of configurations of positions of the
molecules, actually helps us. For each configuration we can calculate the pressure
due to that configuration. We tha@verageover all configurations, and hope that a
generic configuration is, in some sense, close to the system average.

Wigner’s great insight for nuclear physics was that similar tools could yield use-
ful predictions for heavy nuclei. He modeled the nuclear systems as follows: in-
stead of the infinite dimensional operafémwhose entries are given by the physical
laws, he considered collections &dfx N matrices where the entries were indepen-
dently chosen from some probability distributionThe eigenvalues of these matri-
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Figure 1.1 Molecules in a box

ces correspond to the energy levels of the physical system. Depending on physical
symmetries, we consider different collections of matrices (real symmetric, complex
Hermitian). For any given finite matrix we can calculate statistics of the eigenval-
ues. We then average over all such matrices, and look at the limNs-asco. The

main result is thathe behavior of the eigenvalues of an arbitrary matrix is often

well approximated by the behavior obtained by averaging over all matrices, and
this is a good model for the energy levels of heavy nucl€his is reminiscent of

the Central Limit Theorem (&?). For example, if we average over all sequences of
tossing a fair coi2 N times, we obtainV heads, andhostsequences df N tosses

will have approximatelyV heads.

Exercise 1.1.1.Consider2N identical, indistinguishable particles, which are in
the left (resp., right) half of the box with probabiligy What is the expected number
of particles in each half? What is the probability that one half has more tBan)
particles than the other half? AQN)7 < N, most systems will have similar
behavior although of course some will not. The point is thatmcal system will
be close to the system average.

Exercise 1.1.2.Consider4N identical, indistinguishable particles, which are in
the left (resp., right) half of the box with probabiligg each particle is moving left
(resp., right) with probability;. Thus there are four possibilities for each particle,
and each of the*" configurations of thd N particles is equally likely. What is the
expected number of particles in each possibility (left-left, left-right, right-left, right-
right)? What is the probability that one possibility has more tIﬁaN)% particles
than the others? A6LN)i < N, most systems will have similar behavior.

1.1.3 Random Matrix Ensembles

The first collection of matrices we study akex N real symmetric matrices, with
the entries independently chosen from a fixed probability distribytimmR. Given
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such a matrix4,

ay; a2 @3 - Q1IN
az1 G22 @23 - G2N
a=| T T (1.2)
anNi1 an2 anN3 -*° QNN
(soa;; = a;;), the probability density of observing is
Prob(A)dA =[] p(ai)dai;. (1.3)
1<i<j<N

We may interpret this as giving the probability of observing a real symmetric matrix
where the probability of thej™ entry lying in[a;;, a;; + da;;] is p(a;;)da;;. More
explicitly,

Prob(A : a;; € [y, Bij]) = H / | paij)da;;. 1.4)

1<i<j<N ©%id

Example 1.1.3.For a2 x 2 real symmetric matrix we would have

A = < a1 12 >, PI‘Ob(A)dA = p(aH)p(alg)p(agg)dalldalgdagz.
aiz a2
(1.5)

An N x N real symmetric matrix is determined by specifyiﬁ{é%l) entries:
there areN entries on the main diagonal, anéd® — N off-diagonal entries (for
these entries, only half are needed, as the other half are determined by symmetry).
We say such a matrix haﬁ(l\;—*” degrees of freedomBecause is a probability
density, it integrates to 1. Thus

/ Prob(A)dA =[] / plai)da; = 1; (1.6)
1<i<GEN Y4 =7
this corresponds to the fact that we must choose some matrix.
For convergence reasons we often assume that the momentrefinite. We
mostly studyp(z) satisfying
p(z) =0

/00 p(z)dr =1

— 00

/oo |z|*p(x)dz < oo. 1.7)

The last condition ensures that the probability distribution is not too spread out (i.e.,
there is not too much probability near infinity). Many times we normalize that

the mean (first moment) is 0 and the variance (second moment if the mean is zero)
is 1.

Exercise 1.1.4.For thek™ moment/;, 2*p(x)dx to exist, we requirg, |z|*p(z)dx

< oo; if this does not hold, the value of the integral could depend on how we
approach infinity. Find a probability functiop(x) and an integek such that

A 24
lim / ¥p(x)dr = 0 but lim 2*p(x)dr = oc. (1.8)
A—oo _A A—oo _A
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Exercise 1.1.5.Letp be a probability density such that all of its moments exist. If
pis an even functionp(—z) = p(x)), show all the odd moments vanish.

Exercise 1.1.6.Letp be a continuous probability density & Show there exist
constantsz, b such thatg(z) = a - p(az + b) has mean 0 and variance 1. Thus

in some sense the third and the fourth moments are the first “free” moments as the
above transformation is equivalent to translating and rescaling the initial scale.

Exercise 1.1.7.1t is not necessary to choose each entry from the same probability
distribution. Let theijt" entry be chosen from a probability distributipr;. What
is the probability density of observing? Show this also integrates 1o

Definition 1.1.8 (Ensembles) A collection of matrices, along with a probability
density describing how likely it is to observe a given matrix, is calledrssemble
of matrices (or aandom matrix ensemble

Example 1.1.9. Consider the ensemble ®fx 2 real symmetric matriced where
foramatrixd=(; ¢ ),

Yy z

St 4yt 22 <1
A) = {4 - 1.9
p(4) {O otherwise. (1.9)

Note the entries are not independent. We can parametrize these matrices by using
spherical coordinates. For a sphere of radiusve have

z = z(r,0,¢) = rcos(d)sin(¢)
y = y(r,0,¢) = rsin(0)sin(¢)
z = z(r,0,¢) = rcos(o), (1.10)

wheref € [0,2n] is the azimuthal anglep € [0, 7] is the polar angle and the
volume of the sphere i3,

—_ =

In this introduction we confine ourselves to real symmetric matrices, although
many other ensembles of matrices are important. Complex Hermitian matrices
(the generalization of real symmetric matrices) also play a fundamental role in
the theory. Both of these types of matrices have a very important propbeiy:
eigenvalues are reakhis is what allows us to ask questions such as how are the
spacings between eigenvalues distributed.

In constructing our real symmetric matrices, we have not said much about the
probability densityp. In Chapter?? we show for that some physical problems,
additional assumptions about the physical systems fpricebe a Gaussian. For
many of the statistics we investigate, it is either known or conjectured that the
answers should be independent of the specific choigeldwever, in this method
of constructing random matrix ensembles, there is often no unique choiee of
Thus, for this method, there is no unique answer to what it means to choose a
matrix at random

Remark 1.1.10(Advanced) We would be remiss if we did not mention another
notion of randomness, which leads to a more natural method of choosing a ma-
trix at random. Lef/(NN) be the space oV x N unitary matrices, and consider
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its compact subgroups (for example, tNex N orthogonal matrices). There is a
natural (canonical) measure, called tHaar measure attached to each of these
compact groups, and we can use this measure to choose matrieeslom Fur-

ther, the eigenvalues of unitary matrices have modulushey can be written as

es | with thed; real. We again obtain a sequence of real numbers, and can again
ask many questions about spacings and distributions. This is the notion of random
matrix ensemble which has proven the most useful for number theory.

Exercise 1.1.11.Prove the eigenvalues of real symmetric and complex Hermitian
matrices are real.

Exercise 1.1.12.How many degrees of freedom does a complex Hermitian matrix
have?

1.2 EIGENVALUE PRELIMINARIES

1.2.1 Eigenvalue Trace Formula

Our main tool to investigate the eigenvalues of matrices will be the Eigenvalue
Trace Formula. Recall the trace of a matrix is the sum of its diagonal entries:

Trace(4) = a1 +---+ann. (1.12)

We will also need the trace of powers of matrices. For examplex @ matrix
A= < @ e > (1.12)

a1 a22
has
2 2
Trace(A%) = an1a11 + ai2a91 + 412021 + agza9y = Z Zaijaji~
i=1 j=1

(1.13)

In general we have
Theorem 1.2.1.Let A be anN x N matrix. Then
N N
Trace(Ak) = Z e Z ailiQamg . aikflikaikil . (114)
11=1 =1

For small values of, instead of using, is, i3, ... we often usé, j, k,.... For
exampleTrace(A?) = Y, D 2ok QijQikQk;-
Exercise 1.2.2.Show(1.13)is consistent with Theorem 1.2.1.
Exercise 1.2.3.Prove Theorem 1.2.1.

Theorem 1.2.4(Eigenvalue Trace Formulajor any non-negative intege, if A
isanN x N matrix with eigenvalues;(A), then

N
Trace(A¥) = Y Ni(A)*. (1.15)
=1
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The importance of this formula is that it relates thigenvaluesof a matrix
(which is what wewant to study) to theentriesof A (which is what wechoose
at random). The importance of this formula cannot be understated — it is what
makes the whole subject possible.

Sketch of the proofThe casé = 1 follows from looking at the characteristic poly-
nomialdet(A — A\I') = 0. For higherk, note any matrix4 can be conjugated to an
upper triangular matrixt/ ' AU = T whereT is upper triangular an@ is uni-
tary. The eigenvalues of equal those of" and are given by the diagonal entries
of T. Further the eigenvalues of* equal those of *. If \;(A) and);(A*) are
the eigenvalues oft and A%, note \;(A*) = X;(A)*. The claim now follows by
applying thek = 1 result to the matrix4*:

N N
Trace(A*) = Y A\i(4%) = > A (1.16)

i=1

O

Exercise 1.2.5.Prove all the claims used in the proof of the Eigenvalue Trace For-
mula. If A is real symmetric, one can use the diagonalizabilitydlofTo show any
matrix can be triangularized, start with every matrix has at least one eigenvalue-
eigenvector pair. Letting; be the eigenvector, using Gram-Schmidt one can find
an orthonormal basis. Let these be the columng/gf which will be a unitary
matrix. Continue by induction.

1.2.2 Normalizations

Before we can begin to study fine properties of the eigenvalues, we first need to
figure out what is the correct scale to use in our investigations. For example, the
celebrated Prime Number Theorem (see ThedP@rfor an exact statement of the
error term) states that(x), the number of primes less thansatisfies

m(x) = 4 lower order terms (1.17)
log x
Remark 1.2.6. If we do not specify exactly how much smaller the error terms
are, we do not need the full strength of the Prime Number Theorem; Chebyshev’s
arguments (Theorer??) are sufficient to get the order of magnitude of the scale.

The average spacing between primes less :tfiaraboutr/fﬁ = log x, which
tends to infinity ast — oo. Asking for primes that differ Ey 2 is a very hard
question: asx — oo, this becomes insignificant on the “natural” scale. Instead,
a more natural question is to inquire how often two primes are twice the average
spacing apart. This is similar to our investigations in Chap®wrhere we needed
to find the correct scale.

If we fix a probability densityp, how do we expect the sizes of the eigenvalues
Ai(A) to depend onV as we varyA? A good estimate falls out immediately from
the Eigenvalue Trace Formula; this formula will be exploited numerous times in
the arguments below, and is essential for all investigations in the subject.
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We give a heuristic for the eigenvalues of duik N ensembles of matrices being
roughly of sizev/N. Fix a matrixA whose entries,; are randomly and indepen-
dently chosen from a fixed probability distributigrwith mean 0 and variance 1.
By Theorem 1.2.1, ford = AT we have that

N N N N
TI‘&CG(A2) = ZZCLUCL]‘Z‘ = ZZCL?J (118)

i=1 j=1 i=1 j=1

From our assumptions gm we expect eachfj to be of sizel. By the Central
Limit Theorem (Theoren??) or Chebyshev’s inequality (Exerci&®), we expect
with high probability

N N
>3 al ~ N2 (1.19)
i=1 j=1

with an error of sizey N2 = N (as eachz?j is approximately of sizé and there
are N2 of them, with high probability their sum should be approximately of size
N?2). Thus

N
D> Ai(4)? ~ N7 (1.20)
=1
which yields
N - Ave(\;(A)?) ~ N2 (1.21)

For heuristic purposes we shall pass the square root through to get
|Ave(\;(A))| ~ V'N. (1.22)

In general the square root of an average need not be the same as the average of the
square root; however, our purpose here is merely to give a heuristic as to the correct
scale. Later in our investigations we shall see af is the correct normalization.

Thus it is natural to guess that the correct scale to study the eigenvalues of an
N x N real symmetric matrix is/N, wherec is some constant independent of
N. This yields normalized eigenvalugs(A4) = ?L\/%); choosinge = 2 leads to
clean formulas. One could of course normalize the eigenvalug§ &y, with f
an undetermined function, and see which choiceggif’e good results; eventually
one would findf(N) = ¢v/N.

Exercise 1.2.7.Consider realN x N matrices with entries independently chosen
from a probability distribution with mean 0 and variance 1. How large do you
expect the average eigenvalue to be?

Exercise 1.2.8.Use Chebyshev’s inequality (Exerci®® to bound the probability
that| >, 3", af; — N?| > Nlog N. Conclude that with high probability that the

sum of the squares of the eigenvalues is of Bizdor large V.
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1.2.3 Eigenvalue Distribution

We quickly review the theory of point masses and induced probability distributions
(see ®?and &7). LetJ,, represent a unit point massaf. We define its action
on functions by

ulh) = [ " H@)d(z — wo)da = f(xo). (1.23)

0., called theDirac delta functional at z, is similar to our approximations to
the identity. There is finite mass (its integral is 1), the density is 0 outsjdend
infinite atxzo. As its argument is a function and not a complex numbgy.is a
functional and not a function. To eacH, we attach a probability measure (the
eigenvalue probability distribution):

1 & (A
pan(z)de = N;(S (a: - 2\(/N)) dz. (1.24)

At each normalized eigenvald};% we have placed a mass of weig}%ﬂ; there
are N masses, thus we have a probability distribution.p(if) is a probability
distribution thenf(fp(x)dx is the probability of observing a value ja, b]. For us,
f; wa n(z)dz is the fraction of normalized eigenvaluesinb|:

b o 2ulA) ,b
/MA,N(x)dx _# Q@G[G ]}. (1.25)

We can calculate the moments;of n ().

Definition 1.2.9. Let E[z*] 4 denote thek™ moment ofi4 (). We often denote
this MN’]C(A)

The following corollary of the Eigenvalue Trace Formula is the starting point of
many of our investigations; we see in Remark 1.3.15 why it is so useful.

Lemma 1.2.10. My 1 (A) = Trace(A")

ok N5 +1

Proof. As Trace(A4*) = 3. X\;i(A4)* we have

My (A) = E[z*]4 = /wku,qw(a:)dx

I [ Ai(4)
- NZ;/R“” 5<x_ 2\/N)d$
1SR M(A)E
—= N; (2\/N)k
_ Trace(A*) (1.26)
ok N5+1 ’
o

Exercise 1.2.11LetA be anN x N real symmetric matrix withu;;| < B. Interms
of B, N andk bound|Trace(A*)| and My 1 (A). How large canmax; |\;(A)| be?
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1.3 SEMI-CIRCLE LAW

1.3.1 Statement

A natural question to ask concerning the eigenvalues of a matilisit fraction of
the normalized eigenvalues lie in an interyalb]? Let 14 v (x) be the eigenvalue
probability distribution. For a giver, the answer is

b
/ pa n(x)de. 1.27)

How does the above behave as we vdf We have the following startling result,
which is almost independent of the underlying probability dengitye used to
choose the entries of:

Theorem 1.3.1(Semi-Circle Law) Consider the ensemble &f x N real sym-
metric matrices with entries independently chosen from a fixed probability density
p(z) with mean 0, variance 1, and finite higher momentsNAs- oo, for almost

all A, 4 n(x) converges to the semi-circle densfrty/l — z2.

Thus the fraction of normalized eigenvaluesdin [a, b] C [—1, 1] for a typical
AasN — o is

b
/ g\/ 1 — 22dx. (1.28)
o T

Later in 81.3.4 we discuss what happens if the higher moments are infinite.

1.3.2 Moment Problem

We briefly describe a needed result from Probability Theory: the solution to the
Moment Problem. See padé0 of [Du] for details; see [ShTa] for a connection
between the moment problem and continued fractions!

Let & be a non-negative integer; below we always assuime= 1. We are inter-
ested in when numbers,, determine a unique probability distributidghwhosek"
moment ismy,. If the m; do not grow too rapidly, there is at most one continuous
probability density with these moments (see [Bi, CaBe, Fe]). A sufficient condition

is Carleman’s Condition that 7% | m2J1/2J = oo. Another is thab =72 | mj"
a positive radius of convergence. This implies the moment generatmg function (see
Exercise 1.3.2) exists in an interval and the distribution is uniquely determined.

Exercise 1.3.2Non-uniqueness of momentsjor z € [0, o), consider

_ L —(egw)2
fl(x) - \/ﬂﬂ? - &
fa(x) = fi(z)[1 + sin(27logx)]. (1.29)

Show that forr € N, the r'" moment off; and £, is e”"/2. The reason for the
non-uniqueness of moments is that th@ment generating function

My(t) = /w e f (x)dx (1.30)

does not converge in a neighborhood of the origin. See [CaBe], Chapter 2. See
also Exercise?.
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For us the numbersy;, arise from averaging the momenigy ,(A) of the
w4, n(x)'s and taking the limit asV — co. Let

.Z\f]\ry[€ = \/]\4]\]’16(A)Pl"Ob(A)dA7 mp = ]\}lm MN,k~ (131)
A —oe

For eachN the moments\/y ;, yield a probability distributionPy, andlimy_. «
My, = my. If the m;, grow sufficiently slowly, there is a unique continuous
probability densityP with k™ momentm,,. It is reasonable to posit that as for each
k, imy_,0o My = my, then “most”u4 n(x) converge (in some sense) to the
probability densityP(z).

Remark 1.3.3(Warning) For eachN, considerN numbers{a, y})_, defined

by a, n = 1if nis even and-1 if n is odd. ForN even, note the average of the
an,n's is 0, but eacha,, v| = 1; thus, no element is close to the system average.
Therefore, it is not always the case that a typical element is close to the system
average. What is needed in this case is to consider the variance of the moments
(see Exercise 1.3.5).

Remark 1.3.4. While it is not true that every sequence of numbersthat grow
sufficiently slowly determines a continuous probability density (see Exercise 1.3.8),
as ourmy, arise from limits of moments of probability distributions, we do obtain

a unique limiting probability density. This is similar to determining when a Taylor
series converges to a unique function. See also ExeP@ise

Exercise 1.3.5.Let {b, n}}_, be a sequence with meaiN) = % ijzl bn, N
and variances?(N) = & SN |b, v — u(N)|*. Assume that asV — oo,
w(N) — pando?(N) — 0. Prove for anye > 0 asN — oo for a fixed N
at moste percent ob,, y are not withine of ;.. Thereforejf the mean of a sequence
convergesandwe have control over the variancthenwe have control over the
limiting behavior ofmostelements.

In this text we content ourselves with calculating the average moments-
lImpy— oo fA My (A)dA. In many cases we derive simple expressions for the
probability densityP with momentsn,,; however, we do not discuss the probability
arguments needed to show that¥s— oo, a “typical” matrix A hasy 4, (z) close
to P. The interested reader should see [CB, HM] for an application to moment
arguments in random matrix theory.

Some care is needed in formulating what it means for two probability distribu-
tions to be close. For ug,4, v () is the sum ofV Dirac delta functionals of mass
+- Note|P(z) — pa v ()| can be large for individuat. For example, ifP(z) is
the semi-circle distribution, thelP(z) — 4, ()| will be of size 1 for almost all

€ [-1,1]. We need to define what it means for two probability distributions to
be close.

One natural measure is the Kolmogoroff-Smirnov discrepancy. For a probability
distribution f () its Cumulative Distribution Function C(z) is defined to be the
probability of[—oco, ]:

Ci(x) = /_T f(z)dz. (1.32)
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If our distribution is continuous, note this is the same as the probabiljtysf, z);
however, for distributions arising from Dirac delta functionals like pury (),
there will be finite, non-zero jumps in the cumulative distribution function at the
normalized eigenvalues. For example, for x (z) we have

Conn@) = v 3 1, (1.33)

Ai(A) .

VN < F
which jumps by at Ieasj; at each normalized eigenvalue. For two probability dis-
tributions f andg we define theKolmogoroff-Smirnov discrepency of f and ¢
to besup, |C¢(z) — Cy(x)|. Note asN — oo each normalized eigenvalue con-
tributes a smaller fraction of the total probability. Using the Kolmogoroff-Smirnov
discrepancy for when two probability distributions are close, one can show that as
N — o0 “most” u4 n(z) are close taP.

Remark 1.3.6. It is not true that all matriced yield 114 n(z) that are close t@;

for example, consider multiples of the identity matrix. All the normalized eigenval-
ues are the same, and these real symmetric matrices will clearly nop:havér)
close toP(z). Of course, asv — oo the probability ofA being close to a multiple

of the identity matrix is zero.

Exercise 1.3.7.Fix a probability distributionp, and considerV x N real symmetric
matrices with entries independently chosen franwWhat is the probability that a
matrix in this ensemble has all entries withiof a multiple of theV x N identity
matrix? What happens @8 — oo for fixede? How does the answer dependjgh

Exercise 1.3.8.Let m;, be thek™ moment of a probability densityP. Show
mamo — m3 > 0. Note this can be interpreted 45:3 e \ > 0. Thus, if
mamg — m?2 < 0, them;, cannot be the moments of a probability distribution.
Find a similar relation involvingng, m1, ms, ms andmy and a determinant. See
[Chr] and the references therein for more details, as well as [ShTa, Si] (where the
determinant condition is connected to continued fraction expansions!).

Exercise 1.3.9.1f p(z) = 0 for |z| > R, show thek"™ moment satisfies:;, <

R*. Hencelim; .. my;”) < oo. Therefore, if a probability distribution has
lim; . my;>) = oo, then for anyR there is a positive probability of observing

|z| > R. Alternatively, we say such has unbounded support. Not surprisingly,
the Gaussian moments (see Exercise 1.3.10) grow sufficiently rapidly so that the
Gaussian has unbounded support.lith;_, méfﬂ < oo must the distribution
have finite support?

Exercise 1.3.1Moments of the GaussianLalculate the moments of the Gaussian

g(z) = \/%6‘9”2/2. Prove the odd moments vanish and the even moments are

mor, = (2k — 1)U, wheren!! = n(n — 2)(n —4) ---. This is also the number of
ways to matcte2k objects in pairs. Show the moments grow sufficiently slowly to
determine a unique continuous probability density.
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Exercise 1.3.11.Consider two probability distributiong and g on [0, 1] where
f(z) = 1forall x andg(x) = 1 for x ¢ Q and0 otherwise. Note botlf and

g assign the same probability to ary, b] with b # a. Showsup,c(o ¢ [f(z) —
g(z)| = 1 but the Kolmogoroff-Smirnov discrepancy is zero. Thus looking at the
pointwise difference could incorrectly cause us to conclude fhand g are very
different.

Exercise 1.3.12.Do there exist two probability distributions that have a large
Kolmogoroff-Smirnov discrepancy but are close pointwise?

1.3.3 Idea of the Proof of the Semi-Circle Law

We give a glimpse of the proof of the Semi-Circle Law below; a more detailed
sketch will be provided in Chapter 2. We use Moment Method from §1.3.2.

For eachu 4, v (), we calculate it&:‘h-momentMMk(A) = E[z¥] 4. Let My
be the average af/ 1 (A) over all A. We must show a8’ — oo, My ;, converges
to the £ moment of the semi-circle. We content ourselves with just the second
moment below, and save the rest for §2.1. By Lemma 1.2.10,

)

MN2 = / MNJC(A)PI‘Ob(A)dA
A

1
= NI /A Trace(A?)Prob(A)dA. (1.34)
We use Theorem 1.2.1 to expafiichce(A?) and find
1 N N
My2 = 553 /A > > af; Prob(A)dA. (1.35)
i=1 j=1
We now expand®rob(A)dA by (1.3):
Mn 2
1 [e%S) 00 N N
= 2N / / Z Za?j -plarr)darr - plann)dann
a1 =—o0 JANN=—T00 ;1 j=1
1 N N o] oo
= 22 ZZ/ / ij -plair)darr - plann)dann;
i=1 j:l a1 =—0o0 aAaNN=—00
(1.36)

we may interchange the summations and the integrations as there are finitely many
sums. For each of th&? pairs(i, j), we have terms like

/oo a?jp(aij)daij . H /OO p(akl)dakl. (137)

@ij =—00 (k,1)#£(if) Y ARI=—00
k<l

The above equals. The first factor is 1 because it is the variance:gf which
was assumed to be 1. The second factor is a product of integrals where each integral
is 1 (because is a probability density). As there ané? summands in (1.36), we
find My = § (solimy_o My,2 = %), which is the second moment of the
semi-circle.
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Figure 1.2 Distribution of eigenvalues: 500 Gaussian matri¢@® & 400)

Exercise 1.3.13.Show the second moment of the semi-circl? is

Exercise 1.3.14.Calculate the third and fourth moments, and compare them to
those of the semi-circle.

Remark 1.3.15(Important) Two features of the above proof are worth highlight-
ing, as they appear again and again below. First, note that we want to answer a
guestion about theigenvalue®f A; however, our notion of randomness gives us
information on theentriesof A. The key to converting information on the entries

to knowledge about the eigenvalues is having some type of Trace Formula, like
Theorem 1.2.4.

The second point is the Trace Formula would be useless, merely converting us
from one hard problem to another, if we did not have a good Averaging Formula,
some way to average over all randofn In this problem, the averaging is easy
because of how we defined randomness.

Remark 1.3.16. While the higher moments qgf are not needed for calculating
My » = E[2?], their finiteness comes into play when we study higher moments.

1.3.4 Examples of the Semi-Circle Law

First we look at the density of eigenvalues wheis the standard Gaussiagi(z) =
\/LZTT e=®/2 In Figure 1.2 we calculate the density of eigenvalues for 500 such
matrices 400 x 400), and note a great agreement with the semi-circle.

What about a density where the higher moments are infinite? Consider the
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Figure 1.3 Distribution of eigenvalues: 5000 Cauchy matrigés ( 300)

Cauchy distribution,

1
The behavior is clearly not semi-circular (see Figure 1.3). The eigenvalues are
unbounded; for graphing purposes, we have put all eigenvalues greater than 300 in

the last bin, and less than -300 in the first bin.

Exercise 1.3.17.Prove the Cauchy distribution is a probability distribution by
showing it integrates to 1. While the distribution is symmetric, one cannot say
the mean is 0, as the integrdl|z|p(z)dz = oo. Regardless, show the second
moment is infinite.

1.3.5 Summary

Note the universal behavior: though the proof is not given here, the Semi-Circle
Law holds for all mean zero, finite moment distributions. The independence of the
behavior on the exact nature of the underlying probability densisya common
feature of Random Matrix Theory statements, as is the fact that as co most
Avyield p4 n(z) that are close (in the sense of the Kolmogoroff-Smirnov discrep-
ancy) to P (where P is determined by the limit of the average of the moments
My 1 (A)). For more on the Semi-Circle Law, see [Bai, BK].
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1.4 ADJACENT NEIGHBOR SPACINGS

1.4.1 GOEDistribution

The Semi-Circle Law (when the conditions are met) tells us about the density of
eigenvalues. We now ask a more refined question:

Question 1.4.1.How are the spacings between adjacent eigenvalues distributed?

For example, let us write the eigenvaluesfn increasing order; ad is real
symmetric, the eigenvalues will be real:

A(A4) € Aa(4) < - < An(A). (1.39)
The spacings between adjacent eigenvalues ar&'thel numbers
A2(A) — A (A), A3(A) — X2(4), ..., An(A) — An_1(A). (1.40)

As before (see Chaptér?), it is more natural to study the spacings between adja-
cent normalized eigenvalues; thus, we have
A2(4)  M(4) An(4)  Anv-a(4)
2N 2N~ 2JN 2V/N
Similar to the probability distribution. 4,5 (z), we can form another probability

distribution4 n(s) to measure spacings between adjacent normalized eigenval-
ues.

(1.41)

Definition 1.4.2.

N
van(s)ds = ﬁ ZZ:;(S (s - W) ds. (1.42)

Based on experimental evidence and some heuristical arguments, it was con-
jectured that asv — oo, the limiting behavior ofv4 n(s) is independent of the
probability densityp used in randomly choosing thé x N matricesA.

Conijecture 1.4.3(GOE Conjecture:) AsN — oo, V4, n(s) approaches a univer-
sal distribution that is independent pf

Remark 1.4.4. GOE stands for Gaussian Orthogonal Ensemble; the conjecture is
known if p is (basically) a Gaussian. We explain the nomenclature in Chapter

Remark 1.4.5(Advanced) The universal distribution iéf%, where¥(t) is

(up to constants) the Fredholm determinant of the operater fft K x f with
kernel K = - (Si“éf;") + Si“&(_ﬁ:”)). This distribution is well approximated by

_ ws?

pw(s) = %sexp( 1

2

Exercise 1.4.6.Provepy (s) = §sexp (—%) is a probability distribution with
mean 1. What is its variance?
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We study the case d¥ = 2 andp a Gaussian in detail in Chapte?.

Exercisé™ 1.4.7(Wigner’s surmise) In 1957 Wigner conjectured that a¥ — oo
the spacing between adjacent normalized eigenvalues is given by

™

pw(s) = Tsexp (—’1) . (1.43)

He was led to this formula from the following assumptions:

e Given an eigenvalue at, the probability that another one liesunits to its
right is proportional tos.

e Given an eigenvalue atandly, I, I3, ... any disjoint intervals to the right
of z, then the events of observing an eigenvalug; iare independent for all

7]
e The mean spacing between consecutive eigenvaldes is

Show these assumptions imfily43)

1.4.2 Numerical Evidence

We provide some numerical support for the GOE Conjecture. In all the experiments
below, we consider a large number8fx N matrices, where for each matrix we

look at a small (small relative t&/) number of eigenvalues in thaulk of the
eigenvalue spectrum(eigenvalues nedr), not near theedge(for the semi-circle,
eigenvalues neat1). We do not look at all the eigenvalues, as the average spac-
ing changes over such a large range, nor do we consider the interesting case of the
largest or smallest eigenvalues. We study a region where the average spacing is ap-
proximately constant, and as we are in the middle of the eigenvalue spectrum, there
are no edge effects. These edge effects lead to fascinating questions (for random
graphs, the distribution of eigenvalues near the edge is related to constructing good
networks to rapidly transmit information; see for example [DSV, Sar]).

First we consideb000 300 x 300 matrices with entries independently chosen
from the uniform distribution offi—1, 1] (see Figure 1.4). Notice that even with
as low as 300, we are seeing a good fit between conjecture and experiment.

What if we takep to be the Cauchy distribution? In this case, the second moment
of p is infinite, and the alluded to argument for semi-circle behavior is not applica-
ble. Simulations showed the density of eigenvalues did not follow the Semi-Circle
Law, which does not contradict the theory as the conditions of the theorem were
not met. What about the spacings between adjacent normalized eigenvalues of real
symmetric matrices, with the entries drawn from the Cauchy distribution?

We study5000 100 x 100 and therb000 300 x 300 Cauchy matrices (see Figures
1.5 and 1.6. We note good agreement with the conjecture, andiasreases the
fit improves.

We give one last example. Instead of using continuous probability distribution,
we investigate a discrete case. Consider the Poisson Distribution:

A"y

p(n) = (1.44)

nl
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Figure 1.4 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300 x 300) whose entries are drawn from the Uniform distributionfef, 1]

12,000

10,000

8,000

6,000

4,000

2,000

0 05 10 15 20 25 30 35 40 45 50

Figure 1.5 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(100 x 100) whose entries are drawn from the Cauchy distribution
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Figure 1.6 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300 x 300) whose entries are drawn from the Cauchy distribution

We investigate 500800 x 300 such matrices, first witth = 5, and then with
A = 20, noting again excellent agreement with the GOE Conjecture (see Figures
1.7 and 1.8):

1.5 THIN SUB-FAMILIES

Before moving on to connections with number theory, we mention some very im-
portant subsets of real symmetric matrices. The subsets will be large enough so
that there are averaging formulas at our disposal, but thin enough so that sometimes
we see new behavior. Similar phenomena will resurface when we study zeros of
Dirichlet L-functions.

As motivation, consider as our initial set all even integers.Ngtr) denote the
number of even integers at mast We seeN»(z) ~ §, and the spacing between
adjacent integers i8. If we look at normalizedeven integers, we would have
yi = % and now the spacing between adjacent normalized even integers is 1.

Now consider the subset of even square&Vdfz) is the number of even squares
at mostz, thenNg(x) ~ ‘/TE For even squares of size sayx = (2m)?, the next
even square is d2m + 2)2 = = + 8m + 4. Note the spacing between adjacent
even squares is abositn ~ 4./ for m large.

Exercise 1.5.1.By appropriately normalizing the even squares, show we obtain a
new sequence with a similar distribution of spacings between adjacent elements as
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Figure 1.7 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300 x 300) whose entries are drawn from the Poisson distributioa=(5)
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Figure 1.8 The local spacings of the central three-fifths of the eigenvalues of 5000 matrices
(300 x 300) whose entries are drawn from the Poisson distributiore=(20)
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—_

Figure 1.9 A typical graph

in the case of normalized even integers. Explicitly, look at the spacings befWween
consecutive even squares with each square ohsam®l N < z.

Remark 1.5.2. A far more interesting example concerns prime numbers. For the
first set, consider all prime numbers. For the subset, fix an integemd consider

all prime numberg such thap + 2m is also prime; ifm = 1 we sayp andp + 2

are a twin prime pair. It is unknown if there are infinitely many elements in the
second set for amy:, though there are conjectural formulas (using the techniques
of Chapter??). It is fascinating to compare these two sets; for example, what is the
spacing distribution between adjacent (normalized) primes look like, and is that the
same for normalized twin prime pairs? See Research Preffect

1.5.1 Random Graphs: Theory

A graph G is a collection of points (theertices ") and lines connecting pairs of
points (theedgesE). While it is possible to have an edge from a vertex to itself
(called aself-loop), we study the subset of graphs where this does not occur. We
will allow multiple edges to connect the same two vertices (if there are no multiple
edges, the graph @mple). Thedegree of a vertexis the number of edges leaving
(or arriving at) that vertex. A graph iregular if every vertex has exactly edges
leaving (or arriving).

For example, consider the graph in Figure 1.9: The degrees of vertices are 2, 1,
4 and 3, and vertices 3 and 4 are connected with two edges.

To each graph withV vertices we can associate &Ahx N real symmetric matrix,
called theadjacency matrix, as follows: First, label the vertices of the graph from
1to N (see Exercise 1.5.3). Let; be the number of edges from verteto vertex
j. For the graph above, we have

A= (1.45)

—__ oo
O R OO
O~ =
N O =

2

For each/N, consider the space of allregular graphs. To each graghwe
associate its adjacency mateG). We can build the eigenvalue probability dis-
tributions (see 81.2.3) as before. We can investigate the density of the eigenvalues
and spacings between adjacent eigenvalues. We are no longer choosing the matrix

o
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elements at random; once we have chosen a graph, the entries are determined. Thus
we have a more combinatorial type of averaging to perform: we average over all
graphs, not over matrix elements. Even though these matrices are all real symmet-
ric and hence a subset of the earlier ensembles, the probability density for these
matrices are very different, and lead to different behavior (see also Remark 2.2.13
and 7).

One application of knowledge of eigenvalues of graphs is to network theory. For
example, let the vertices of a graph represent various computers. We can transmit
information between any two vertices that are connected by an edge. We desire a
well connected graph so that we can transmit information rapidly through the sys-
tem. One solution, of course, is to connect all the vertices and obtacothplete
graph. In general, there is a cost for each edge; if thereManeertices in a simple
graph, there arér“\;—_l) possible edges; thus the complete graph quickly becomes
very expensive. Fal verticesd-regular graphs have onlf‘;éX edges; now the cost
is linear in the number of vertices. The distribution of eigenvalues (actually, the
second largest eigenvalue) of such graphs provide information on how well con-
nected it is. For more information, as well as specific constructions of such well
connected graphs, see [DSV, Sar].

Exercise 1.5.3.For a graph with N vertices, show there ar&'! ways to label

the vertices. Each labeling gives rise to an adjacency matrix. While a graph could
potentially haveV! different adjacency matrices, show all adjacency matrices have
the same eigenvalues, and therefore the same eigenvalue probability distribution.

Remark 1.5.4. Fundamental quantities should not depend on presentation. Exer-
cise 1.5.3 shows that the eigenvalues of a graph do not depend on how we label
the graph. This is similar to the eigenvalues of an oper&torC" — C" do not
depend on the basis used to repregenOf course, the eigenvectovall depend

on the basis.

Exercise 1.5.5.1f a graph hasN labeled vertices and’ labeled edges, how many
ways are there to place the edges so that each edge connects two distinct ver-
tices? What if the edges are not labeled?

Exercise 1.5.6Bipartite graphs) A graph is bipartite if the vertice®” can be split
into two distinct setsd; and A,, such that no vertices in ad; are connected by
an edge. We can constructdaregular bipartite graph with# 4, = #A, = N.
Let A, be verticesl,..., N and A, be verticesN + 1,...,2N. Letoy,...,04
be permutations of1,..., N}. For eacho; andi € {1,..., N}, connect vertex
i € A; tovertexN + o;(i) € As. Prove this graph is bipartite and-regular. If

d = 3, what is the probability (asV — oo) that two vertices have two or more
edges connecting them? What is the probability 4 4?

Remark 1.5.7. Exercise 1.5.6 provides a method for sampling the space of bipartite
d-regular graphs, but does this construction sample the space uniformly (i.e., is
everyd-regular bipartite graph equally likely to be chosen by this method)? Further,
is the behavior of eigenvalues éfregular bipartite graphs the same as the behavior
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of eigenvalues ofl-regular graphs? See [Bol], pages 50-57 for methods to sample
spaces of graphs uniformly.

Exercise 1.5.8.Thecoloring numberof a graph is the minimum number of colors
needed so that no two vertices connected by an edge are colored the same. What is
the coloring number for the complete graph dt? For a bipartite graph withvV
vertices in each set?

Consider now the following graphs. For any integéret Gy be the graph with
vertices the integer3, 3, ..., N, and two vertices are joined if and only if they have
a common divisor greater thah Prove the coloring number @0 is at least
13. Give good upper and lower bounds as function&/dior the coloring number
of Gy.

1.5.2 Random Graphs: Results

The first result, due to McKay [McK], is that while the density of statesdsthe
semi-circle there is a universal density for each

Theorem 1.5.9(McKay’s Law). Consider the ensemble of altregular graphs
with IV vertices. ASV — oo, for almost all such graphé&, 114(c),~ (z) converges
to Kesten’s measure

} (1.46)
0 otherwise.

Exercise 1.5.10.Show that agl — oo, by changing the scale af, Kesten's mea-
sure converges to the semi-circle distribution.

Below (Figures 1.10 and 1.11) we see excellent agreement between theory and
experiment ford = 3 and6; the data is taken from [QS2].

The idea of the proof is that locally almost all of the graphs almost always look
like trees (connected graphs with no loops), and for trees it is easy to calculate the
eigenvalues. One then does a careful book-keeping. Thus, this sub-family is thin
enough so that a new, universal answer arises. Even though all of these adjacency
matrices are real symmetric, it is a very thin subset. hidsausaét is such a thin
subset that we are able to see new behavior.

Exercise 1.5.11.Show a general real symmetric matrix hgé]\;Ll) independent
entries, while ai-regular graph’s adjacency matrix ha% non-zero entries.

What about spacings between normalized eigenvalues? Figure 1.12 shows that,
surprisingly, the resulloesappear to be the same as that from all real symmetric
matrices. See [JMRR] for more details.

1.6 NUMBER THEORY

We assume the reader is familiar with the material and notation from Chzpter
For us anl-function is given by aDirichlet series (which converges ifts is suffi-
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Figure 1.123-regular, 2000 vertices (graph courtesy of [JMRR])

ciently large), has akuler product, and the coefficients have arithmetic meaning:
L(s,f) = Za’;—(f) = [1L .7 R > s (1.47)
n=1 P
TheGeneralized Riemann Hypothesissserts that all non-trivial zeros hake =
1;i.e., they are on theritical line s = } and can be written as + i, v € R.

The simplest example i&s), wherea,,(¢) = 1 for all n; in Chapter?? we saw
how information about the distribution of zeros{dk) yielded insights into the be-
havior of primes. The next example we considered were Diridhiinctions, the
L-functions from Dirichlet charactessof some conductotn. Herea,,(x) = x(n),
and these functions were useful in studying primes in arithmetic progressions.

For a fixedm, there ares(m) Dirichlet L-functions modulon. This provides our
first example of damily of L-functions. We will not rigorously define a family, but
content ourselves with saying a family é6tfunctions is a collection of “similar”
L-functions.

The following examples will be considered families: (1) all Dirichlefunctions
with conductorm; (2) all Dirichlet L-functions with conductom € [N, 2N]; (3)
all Dirichlet L-functions arising from quadratic characters with prime conductor
p € [N,2N]. In each of the cases, eatkunction has the same conductor, similar
functional equations, and so on. It is not unreasonable to think they might share
other properties.

Another example comes from elliptic curves. We commente@itiBat given a
cubic equationy? = z3 + Ayx + By, if a,(f) = p— N, (whereN,, is the number
of solutions toy? = 2® + Az + By mod p), we can construct ah-function using
the a,(f)'s. We construct a family as follows. Let(T'), B(T') be polynomials
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with integer coefficients iff". For eacht € Z, we get an elliptic curve®; (given
by y? = ® + A(t)x + B(t)), and can construct ab-function L(s, E;). We can
consider the family wheree [N, 2N].

Remark 1.6.1. Why are we considering “restricted” families, for example Dirich-
let L-functions with a fixed conductorn, orm € [N,2N], or elliptic curves with

t € [N,2N]? The reason is similar to our random matrix ensembles: we do not
consider infinite dimensional matrices: we stullyx N matrices, and take the
limitas N — oo. Similarly in number theory, it is easier to study finite sets, and
then investigate the limiting behavior.

Assuming the zeros all lie on the lidés = % similar to the case of real sym-
metric or complex Hermitian matrices, we can study spacings between zeros. We
now describe some results about the distribution of zerdsfoihctions. Two clas-
sical ensembles of random matrices play a central role: the Gaussian Orthogonal
EnsembleGOE (resp., Gaussian Unitary EnsemIi8&JE), the space of real sym-
metric (complex Hermitian) matrices where the entries are chosen independently
from Gaussians; see Chap®% It was observed that the spacings of energy levels
of heavy nuclei are in excellent agreement with those of eigenvalues of real sym-
metric matrices; thus, the GOE became a common model for the energy levels.
In 81.6.1 we see there is excellent agreement between the spacings of normalized
zeros ofL-functions and those of eigenvalues of complex Hermitian matrices; this
led to the belief that the GUE is a good model for these zeros.

1.6.1 n-Level Correlations

In an amazing set of computations starting attb&" zero, Odlyzko [0d1, Od2]
observed phenomenal agreement between the spacings between adjacent normal-
ized zeros of (s) and spacings between adjacent normalized eigenvalues of com-
plex Hermitian matrices. Specifically, consider the seVof N random Hermitian
matrices with entries chosen from the Gaussian distribution (the GUEY. As co

the limiting distribution of spacings between adjacent eigenvalues is indistinguish-
able from what Odlyzko observed in zeros(@$)!

His work was inspired by Montgomery [Mon2], who showed that for suitable
test functions the pair correlation of the normalized zerag of agree with that of
normalized eigenvalues of complex Hermitian matrices.{gt: be an increasing
sequence of real numbeB, C R"~! a compact box. Define the-level correla-
tion by

lim #{(ajl Qs Oy —ajn) € Bv]l < N’jl #]k}

lm ¥ (1.48)

For example, the@-level (or pair) correlation provides information on how often
two normalized zeros (not necessarily adjacent zeros) have a difference in a given
interval. One can show that if all thelevel correlations could be computed, then
we would know the spacings between adjacent zeros.

We can regard the bak as a product ofi— 1 characteristic functions of intervals



IntroRMT_Math54  April 13, 2007

FROM NUCLEAR PHYSICS TO L-FUNCTIONS 31

(or binary indicator variables). Let

1 |fl’€ [ai,bi],
I, ,.(x) = _ 1.49
() {0 otherwise. ( )

We can represent the conditiane B by Ig(x) = [[}_, Ia, p: (z;). Instead of
using a boxB and its function/ g, it is more convenient to use an infinitely differ-
entiable test function (see [RS] for details). In addition to the pair correlation and
the numerics on adjacent spacings, Hejhal [Hej] showed for suitable test functions
the 3-level (or triple) correlation fo(s) agrees with that of complex Hermitian
matrices, and Rudnick-Sarnak [RS] proved (again for suitable test functions) that
then-level correlations oiny“nice” L-function agree with those of complex Her-
mitian matrices.

The above work leads to tH&UE conjecture: in the limit (as one looks at zeros
with larger and larger imaginary part, 8 x N matrices with larger and largé¥),
the spacing between zeros bffunctions is the same as that between eigenvalues
of complex Hermitian matrices. In other words, the GUE is a good model of zeros
of L-functions.

Even if true, however, the above cannot be the complete story.

Exercise 1.6.2.Assume that the imaginary parts of the zerog§(ej are unbounded.
Show that if one removes any finite set of zerosnthevel correlations are un-
changed. Thus this statistic is insensitive to finitely many zeros.

The above exercise shows that thvevel correlations are not sufficient to cap-
ture all of number theory. For mank-functions, there is reason to believe that
there is different behavior near the central paint £ (the center of the critical
strip) than higher up. For example, tBé&ch and Swinnerton-Dyer conjecture
(see 87?) says that ifE(Q) (the group of rational solutions for an elliptic cur#g
see 87?) has rankr, then there are zeros at the central point, and we might expect
different behavior if there are more zeros.

Katz and Sarnak [KS1, KS2] proved that thdevel correlations of complex
Hermitian matrices are also equal to thdevel correlations of thelassical com-
pact groups unitary matrices (and its subgroups of symplectic and orthogonal
matrices) with respect to Haar measure. Haar measure is the analogue of fixing a
probability distributionp and choosing the entries of our matrices randomly from
p; it should be thought of as specifying how we “randomly” chose a matrix from
these groups. As a unitary matfik satisfies/*U = I (whereU* is the complex
conjugate transpose 6f), we see each entry éf is at mostl in absolute value,
which shows unitary matrices are a compact group. A similar argument shows the
set of orthogonal matriced such thatQ” @ = I is compact.

What this means is thahanydifferent ensembles of matrices have the same
n-level correlations — there is not one unique ensemble with these values. This
led to a new statistic which is different for different ensembles, and allows us to
“determine” which matrix ensemble the zeros follow.

Remark 1.6.3(Advanced) Consider the following classical compact groupg:V),
USp(2N), SO, SO(even andSO(odd) with their Haar measure. Fix a group and
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choose a generic matrix element. CalculatingrtHevel correlations of its eigen-
values, integrating over the group, and taking the limitNas— oo, Katz and
Sarnak prove the resulting answer is universal, independent of the particular group
chosen. In particular, we cannot use thkevel correlations to distinguish the other
classical compact groups from each other.

1.6.2 1-Level Density

In the n-level correlations, given af.-function we studied differences between
zeros. It can be shown that any “nicé*function has infinitely many zeros on the
line Rs = 1; thus, if we want to study “high” zeros (zeros very far above the central
points = 3), eachL-function has enough zeros to average over.

The situation is completely different if we study “low” zeros, zeros near the cen-
tral point. Now each.-function only has a few zeros nearby, and there is nothing
to average: wherever the zeros are, that’s where they are! This led to the introduc-
tion of families of L-functions. For example, consider Dirichletfunctions with
characters of conductor. There areb(m) suchL-functions. For eact-function
we can calculate properties of zeros near the central point and then \agerage
over theg(m) L-functions, taking the limit as» — cc.

Explicitly, let h(x) be a continuous function of rapid decay. Forafunction
L(s, f) with non-trivial zero% + iy (assuming GRH, each; € R), consider

Dy(h) =3 h (w IOQg;f ) . (1.50)

Herec; is theanalytic conductor; basically, it rescales the zeros near the central
point. Ash is of rapid decay, almost all of the contribution to (1.50) will come
from zeros very close to the central point. We then average ovgriala family

F. We call this statistic thé-level density.

Dy(h) = % S Dy(h). (151)
feF

Katz and Sarnak conjecture that the distribution of zeros nearehial point
s = % in a family of L-functions should agree (in the limit) with the distribution of
eigenvalues near of a classical compact group (unitary, symplectic, orthogonal);
whichgroup depends on underlying symmetries of the family. The important point
to note is that the GUE is not the entire story: other ensembles of matrices naturally
arise. These conjectures, for suitable test functions, have been verified for a variety
of families: we sketch the proof for Dirichldt-functions in ChapteP? and give
an application as well.

Remark 1.6.4. Why does the central poist= % correspond to the eigenvalu@

As the classical compact groups are subsets of the unitary matrices, their eigenval-
ues can be writtea?, § € (—, n1]. Hered = 0 (corresponding to an eigenvalue

of 1) is the center of the “critical line.” Note certain such matrices have a forced
eigenvalue at (for example, anyV x N orthogonal matrix withV odd); this is
expected to be similar th-functions with a forced zeros at the central point. The
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situation with multiple forced zeros at the central point is very interesting; while
in some cases the corresponding random matrix models are known, other cases are
still very much open. See [Mil6, Sn] for more details.

Exercisé" 1.6.5. U is a unitary matrix ifU*U = I, whereU* is the complex
conjugate transpose &f. Prove the eigenvalues of unitary matrices can be written
ase'® for §; € R. An orthogonal matrix is a real unitary matrix; th@”Q = I
where@T is the transpose af). Must the eigenvalues of an orthogonal matrix be
real?

Remark 1.6.6 (Advanced) In practice, one takes in (1.50) to be a Schwartz
function whose Fourier transform has finite support (se®.8Similar to then-

level correlations, one can generalize the above and stddyel densities. The
determination of which classical compact group can sometimes be calculated by
studying the monodromy groups of function field analogues.

We sketch an interpretation of the 1-level density. Again, the philosophy is that
to each family ofL-functions F there is an ensemble of random matricesF)
(whereG(F) is one of the classical compact groups), and to €ach) is attached
adensity functio¢ ). Explicitly, consider the family of all non-trivial Dirichlet
L-functions with prime conductorn, denoted byF,,,. We study this family in detail
in Chapter??. Then for suitable test functioris we prove

. . 1 log ¢y
Jm D, (h) = T rr 3 ) (W o )

XEFm Tx

We see that summing a test function of rapid decay over the scaled zeros is equiv-
alent to integrating that test function against a family-dependent density function.
We can see a similar phenomenon if we study sums of test functions at primes.
For simplicity of presentation, we assume the Riemann Hypothesis to obtain better
error estimates, though it is not needed (see Exercise 1.6.8).

Theorem 1.6.7. Let F and its derivativeF” be continuously differentiable func-
tions of rapid decay; it suffices to assuiéF'(z)|dz and [ |F’(x)|dx are finite.

Then
log p logp _/°° 1
E:plogNF<logN -/ F(z)dz + O o) (1.53)

p

Sketch of the proofBy the Riemann Hypothesis and partial summation (Theorem
?7), we have

Z logp = & + O(x7 log?(z)). (1.54)

p<z

See [Da2] for how this bound follows from RH. We apply the integral version of
partial summation (Theoref?) to

1
Zlogp~ —. (1.55)
p

p<z
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In the notation of Theorem?, a,, = logp if p is prime and0 otherwise, and
h(z) = . We find

Zloﬁ = 0(1) —/ (u+O(u% log? u));—;du = logz + O(1). (1.56)
2

p<z p

We again use the integral version of partial summation, but noW&gh (1105]{’,)
P og

wherea,, = l"% for p prime andh(z) = F ( 108"”), Letug = llggg]%/_ Then

log N
log p logp\ /°° . d logz \
> S F(logN =/, (logz+O(1)) - F log N da
p=>2
<1 log 1 log =
= ~F F’
/2 [w (10gN> o (wlogN‘ <10gN>D] o

oo

log N [F(u) +0 (bglN |F’(u)>} du

= [ E”(u)]
logN/O {F(u) +0 < Tog N du + O(ug IOgth[%)E%O] F(t))

- logN/OOO F(u)du+ O (/OC F’(u)|du> +0 <uologN max F(t)>

0 te[0,uo]

log N /00 F(u)du+ O(1), (1.57)
0

asug = lfgjf, and our assumption thd®’ is of rapid decay ensures that tf&
integral isO(1). Dividing by log N yields the theorem. Using the Prime Number

Theorem instead of RH yields the same result, but with a worse error terni]

Exercise 1.6.8.Redo the above arguments using the bounds fretghich elim-
inate the need to assume the Riemann Hypothesis.

The above shows that summing a nice test function at the primes is related to
integrating that function against a density; here the density isljugthe 1-level
density is a generalization of this to summing weighted zeras-hfnctions, and
the density we integrate against depends on properties of the fandiiuwfctions.

See &7?for more on distribution of points.

Exercise 1.6.9.How rapidly mustF’ decay ast — oo to justify the arguments
above? Clearly iff" has compact support (i.e., ¥(z) is zero if|z| > R for some
R), F decays sufficiently rapidly, and this is often the case of interest.

Exercise 1.6.10.Why is the natural scale for Theorem 1.60g N (i.e., why is it
natural to evaluate the test function %ig—ﬁ and notp)?

Exercise 1.6.11.Instead of studying all primes, fix. and b with (b,m) = 1,

and consider the set of primgs= b mod m (recall suchp are calledprimes in an
arithmetic progressioly see 2. Modify the statement and proof of Theorem 1.6.7
to calculate the density for primes in arithmetic progression. If instead we consider
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twin primes, and we assume the number of twin primes at meatisfiesrs (x) =

T log’é -+ O(ac%“) for some constarif;,, what is the appropriate normalization

and density? See Definiti&? for the conjectured value &f,.

1.7 SIMILARITIES BETWEEN RANDOM MATRIXTHEORY AND  L-FUNCTIONS

The following (conjectural) correspondence has led to many fruitful predictions: in
some sense, the zerosloffunctions behave like the eigenvalues of matrices which
in turn behave like the energy levels of heavy nuclei. To study the energy levels
of heavy nuclei, physicists bombard them with neutrons and study what happens;
however, physical constraints prevent them from using neutrons of arbitrary en-
ergy. Similarly, we want to study zeros @ffunctions. We “bombard” the zeros
with a test function, but not an arbitrary ongdianced:the technical condition
is the support of the Fourier transform of the test function must be small; the test
function’s support corresponds to the neutron’s energy). To evaluate the sums of
the test function at the zeros, similar to physicists restricting the neutrons they can
use, humber theorists can evaluate the sums for only a small class of test functions.
Similar to our proofs of the Semi-Circle Law, we again have three key ingre-
dients. The first is we average over a collection of objects. Before it was the
probability measures built from the normalized eigenvalues, now it ixhg:)
for eachL-function f in the family for a fixed test functioh. Second, we need
some type of Trace Formula, which tells us what the correct scale is to study our
problem and allows us to pass from knowledge of what we can sum to knowledge
about what we want to understand. For matrices, we passed from sums over eigen-
values (which we wanted to understand) to sums over the matrix elements (which
we were given and could execute). For number theory, using what are known as
Explicit Formulas (see®), we pass from sums over zeros in (1.50) to sums over
the coefficients:,, (f) in the L-functions. Finally, the Trace Formula is useless if
we do not have some type of Averaging Formula. For matrices, because of how we
generated matrices at random, we were able to average over the matrix elements;
for number theory, one needs powerful theorem concerning averagsgs Of as
f ranges over a family. We have already seen a special case where there is an av-
eraging relation: the orthogonality relations for Dirichlet characters (see Lemma
??). In §?? we summarize the similarities between Random Matrix Theory and
Number Theory calculations. We give an application oftHevel density to num-
ber theory in TheoreM?, namely bounding the number of charactgrsuch that
L(s, x) is non-zero at the central point. See [IS1, 1S2] for more on non-vanishing
of L-functions at the central point and applications of such results.

1.8 SUGGESTIONS FOR FURTHER READING

In addition to the references in this and subsequent chapters, we provide a few
starting points to the vast literature; the interested reader should consult the bibli-
ographies of the references for additional reading.
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A terrific introduction to classical random matrix theory is [Meh2], whose expo-
sition has motivated our approach and many others; see also [For]. We recommend
reading at least some of the original papers of Wigner [Wigl, Wig2, Wig3, Wig4,
Wig5] and Dyson [Dyl, Dy2]. For a more modern treatment via Haar measure,
see [KS2]. Many of the properties of the classical compact groups can be found in
[Weyl]. See [Ha2] for an entertaining account of the first meeting of Random Ma-
trix Theory and Number Theory, and [Roc] for an accessible tour of connections
between!(s) and much of mathematics.

In Chapter 2 we sketch a proof of the Semi-Circle Law. See [CB] for a rigorous
treatment (including convergence issues and weaker conditions on the distribution
p). For more information, we refer the reader to [Bai, BK]. In Chafm@mwe
investigate the spacings of eigenvalueg of 2 matrices. See [Gau, Mehl, Meh2]
for the spacings oV x N matrices asV — oc.

In Chapter?? we study thel-level density for all Dirichlet characters with con-
ductorm, and state that as« — oo the answer agrees with the similar statis-
tic for unitary matrices (see [HuRu, Mil2]). If we look just at quadratic Dirich-
let characters (Legendre symbols), then instead of seeing unitary symmetry one
finds agreement with eigenvalues of symplectic matrices (see [Rub2]). This is
similar to the behavior of eigenvalues of adjacency matricesmegular graphs,
which are a very special subset of real symmetry matrices but have different be-
havior. For more on connections between random graphs and number theory, see
[DSV] and Chapter 3 of [Sar]; see [Bol, McK, McW, Wor] and the student reports
[Cha, Gold, Nov, Ric, QS2] for more on random graphs.

The 1-level density (see also [ILS, Mill]) and-level correlations [Hej, Mon2,

RS] are but two of many statistics where random matrices behave similafly as
functions. We refer the reader to the survey articles [Con1, Dia, FSV, KS2, KeSn],
Chapter25 of [IK] and to the research works [CFKRS, DM, FSV, KS1, Mil6, Od1,
0d2, Sn, TrWi] for more information.
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Chapter Two

Random Matrix Theory: Eigenvalue Densities

In this chapter we study the eigenvalue densities for many collections of random
matrices. We concentrate on the density of normalized eigenvalues, though we
mention a few questions regarding the spacings between normalized eigenvalues
(which we investigate further in Chapte®). We use the notation of Chapter 1.

2.1 SEMI-CIRCLE LAW

Consider an ensemble &f x N real symmetric matrices, where for simplicity
we choose the entries independently from some fixed probability distribption
One very important question we can ask is: given an intejvdl], how many
eigenvalues do we expect to lie in this interval? We must be careful, however,
in phrasing such questions. We have seen in §1.2.2 that the average size of the
eigenvalues grows lik¢/N. Hence it is natural to look at the density of normalized
eigenvalues.

For example, the Prime Number Theorem states that the number of prishes
is 10213 plus lower order terms; see Theor&nfor an exact statement. Thus the
average spacing between primes. x is x/lﬁ = log x. Consider two intervals
[105,10° + 1000] and[102%°,102°° + 1000]. The average spacing between primes
in the first is about 1.5; the average spacing between primes in the second is about
460.5. We expect to find abowlt7 primes in the first interval, and abofitin the
second. In order to obtain a universal answer, we instead look at the density of
normalized primes.

The appropriate question to ask is not what is the density of eigenvalues or primes
in an intervalla, b], but rather in an intervdk - (Ave Spacing)b - (Ave Spacing)

Exercise 2.1.1.As 2 — oo how many numbers at mostare square-freer
is square-freeif n?|m impliesn = +1)? What is the average spacing between
square-free numbers?

2.1.1 Moments of the Semi-Circle Density

Consider

. (2.1)
0 otherwise.

Pla) = {fr\/l —z2 if |z| <1

Exercise 2.1.2.Show thatP () is a probability density (show that it is non-negative
and integrates td). Graph P(x).
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We call P(x) the semi-circle density. We calculate the moments of the semi-
circle. We prove that fok < 3, the k" moment of the semi-circl€’(k) equals
the expected™ moment ofu 4 x(z) asN — oo, and sketch the proof for higher
moments; see §1.2.3 for the definition;of x(x). We have

Ck) = /Oo " P(x)dx = i/_ll 2¥V/1 — 22dz. (2.2)

We note that, by symmetry)(k) = 0 for k¥ odd, andC'(0) = 1 asP(z) is a
probability density. Fok = 2m even, we change variables. Letting= sin 6,

C(2m) = 2 /2 sin?™(6) - cos®(6)do. (2.3)
m™J)_=
Usingsin®(f) = 1 — cos?(#) gives
c(2m) = 2 / ’ sin®™(0)do — 2 / ’ sin®™2(6)do. (2.4)
) _= Vs _%

The above integrals can be evaluated exactly. We repeatedly use

cos?(¢) = 1 + L cos(2¢)

22
sin?(¢p) = % — %cos(zqs). (2.5)

Repeated applications of the above allow us to wiité™ (4) as a linear combina-
tion of 1, cos(20), . .., cos(2méd). Let

Al = n-(n—2)---2 ?fn?seven (2.6)
n-(n—2)---1 ifnisodd.
We find (either prove directly or by induction) that
2 2 . 2m _ (2m_ 1)”
Exercise 2.1.3.CalculateC'(2) andC'(4) and show that in general
_@m -1
C(2m) = 27(2771—&— o (2.8)

To eachN x N real symmetric matrixA we associate a probability distribution
pnan(z) (see 81.2.3). We now sketch the proof thatdis— oo most of the
wa n(z) are close taP(z), the semi-circle density.

2.1.2 Moment Preliminaries

Definition 2.1.4. My 1(A) is the k™ moment of the probability measure attached
to 4, n(2):

N _ k
My x(A) = /xk,uA,N(x)dx = %Z (AZ\(/%)) . (2.9)
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As always, the starting point for our investigations is Theorem 1.2.4, which says
S Ai(A)F = Trace(A*¥). By Lemma 1.2.10,

My p(4) = - Trace(AF). (2.10)

ok N1+%
We show that asV — oo the expected value of the momentsy ,(A) of the
w4, n(x) converge to the moments of the semi-circle. This does not prove Wigner’s
Semi-Circle Law; we need some results from Probability Theory to complete the
proof (see 8§1.3.2 for an explanation of the needed technical arguments, and [CB]
for a rigorous derivation of the Semi-Circle Law).

See §1.3.3 for a review of notation. L&fy , = E[My 1(A)] be the average
over all A (appropriately weighted by the probability density)\dfy . (A). Explic-
itly, the probability density of observing a matrikwith entriesa,; is P(A)dA =
[, <i<j<n plaij)da;;, and averaging over all matrices gives the expected value of
MN,k-(A) is

MN,k:/OO /Oo Myr(4) [ plag)das.  @219)

n=-o0 NN=—00 1<i<j<N

From Theorem 1.2.1
Trace(A*) = Z Qiyin Qigig ** * Qigiy - (2.12)

1<iy, i SN

This and (2.10) yield

1
MN,k = W Z E[ailiQai2i3 cr Qg |y (213)
? 1<it,...,in<N

where

E[a‘ilizaizig e aikil}

= / o / iy Qinig **  Qijpiq H p(a’ij)da’ij' (214)

a11=—00 ANN=—00 1<i<j<N

There areN* terms inTrace(A*), each term is a product df factorsa;;. We
use the notatiof|a;, i, @i, - - - @44, ] @S We integrate each temm, ;,a;,i, - - - @i, i,
againstP(A)dA, and this gives the expected value of the term.

We can write (2.14) in a more useful manner. While the above formula is correct,
by grouping terms together we can rewrite it in such a way that it will be easier to
evaluate. For small, by brute force one can determine these integrals; however, as
k increases, the computation becomes significantly harder and good combinatorics
are needed, and the reformulation emphasizes the important parts of the calcula-
tion. Further, writing out the integrals each time leads to long formulas; by using
expectation we have more concise formulas (though of course they convey the same
information).

In the producta;, ;,ai,i, - - - ai,4,, 9roupa;; together that have the same sub-
scripts; as the matrices are symmettig, = a;; and we consider the pairs, ;)
and(j,i) equal. Say we can write

Qi ey s = a't ooqre
al122a2213 alkh - aw1y1 aleyz’ (215)
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where all pairs(z;,y;) are distinct (remember, we consider the pairsy) and
(y, z) equal). For example,

a13034045053031014043031 = a?ga§4014a45035~
As a;; = aj;;, we have chosen to write the lower subscript first, especially as
P(A)dA =[], <;<;j<n plaij)da;; hasi < j. We then obtain

E[ai1i2 Qiyig " aikil]

= / / Ay Ay, H plaij)da;. (2.16)

a1 =—0o0

NN=T00 1<i<G<N
As all entries arandependentlydrawn from thesamedistribution, this integral
greatly simplifies. Lep, be thek™ moment ofp:

pE = /OO a*p(a)da. (2.17)

=—00

Then (2.16) becomes

Lemma 2.1.5. Let a;, i, aiyis *+ * Qiyi, = ayt,, - ayt,,, where all pairs(z;,y;)

are distinct, remembering that we considér;) the same agj,i). Then

Elaiy i, Qiig *** Qigis]| = Dry v+ Dry- (2.18)
Note we could also write
E[ailizai2i3 T a'ikil] - E[ lel} a E[a;iyg] = DPry " Pry- (219)

As we assumg has mearb, variancel and finite higher moments, if any = 1
then the above product vanishes. If eagh= 2 the above product i$.

Instead of proving Lemma 2.1.5, we handle the contribution from one a¥the
terms; the general proof proceeds similarly. Let us calculate the contribution from
the term in (2.16), assuminy > 5. Let

S = {(17 3)3 (374)7 (L 4)7 (47 5)a (37 5)}

T ={(i,j) : 1<i<j<N,(i,5) € S}. (2.20)
For each(s, j) € S, letr(¢, j) be the exponent af; ; in (2.16):
r(1,3) =3, r(3,4) =2, r(1,4) =r(4,5) = r(3,5) = 1. (2.21)

We haveN(NT“) integrals ovem,;;, with 1 < ¢ < j < N. Thus the integral in
(2.16) from the term in (2. 16) becomes

I1 / al\"Pplai;)dai; [ / plaij)da;.  (2.22)
(i,)€8 4= (i,j)€T * =T
Each integral over afi,j) € 7 givesl, and the integrals ovefi, j) € S give
Pr(i,5)- Explicitly,

H J) azj)da,;j

(i,j)€s ~ 4=

o0 o0
= / algp(a13)da13/ a§4p(a34)d@34/ aap(ais)dayy
a1z3=—00 a

34=—00 ajg=—o0
oo oo
. / a45p(aas)daas / assp(ass)dass
ass=—00 azs=—00

D3P2P1P1P1- (2.23)
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N(N+1)
2

Therefore, the contribution from the term in (2.16pig»0p3 - 1 —5; the ex-
ponent ofl is |7| = Ll) 5. This is zero ap has mean zero, implying
p1 = 0.

Exercise 2.1.6.Prove(2.12) (2.13)and Lemma 2.1.5.

2.1.3 The First Few Moments

We use the expansions from §2.1.2 to calculate the first few moments. See §1.3
for a review of the formulation of Wigner's Semi-Circle Law. We must show that
limy_.oo My = C(k), whereC(k) is the ™" moment of the semi-circle distrib-
ution.

Lemma 2.1.7. The expected value 8y o(A) = 1, thuslimy ... My, = C(0).
Proof. We have
Myo = E[Myo(A)] = E[Trace(D)] = ~E[N] = “E[1] = 1
N,O = N,0 =N race =N =¥ = 1.

(2.24)
O

Lemma 2.1.8. The expected value 8f 1 (A) = 0, thuslimy ..o My 1 = C(1).

Proof. We have

1
My1 = E[My1(4)] = WE [Trace(A)]
- N3/2 Z ii
1
As eachu;; is drawn from a probability dlstrlbutlon Wlth mean zero, edith;;] =
0. O
Lemma 2.1.9. The expected value 8f v »(A) = 1, thuslimy_.oc My 2 = C(2).

Proof. By Theorem 1.2.1

Trace(A?) = ZZaljaﬂ (2.26)

=1 j=1
As A is symmetrica;; = aj;. Thus, the trace 5, >, az;. Now

My2 = E[My2(A)] = mﬂ«: [Trace(A?)]

= 4N2 Zzafj

=1 j=1

1 N N
= WZZE[C@}. (2.27)

i=1 j=1
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EachE[a};] = 1 because we have assumetias mean 0 and variance 1 (which
implies the second moment pfis 1). There areV? pairs (i, j). Thus, we have
oz (N2 1) = O

Lemma 2.1.10.11m]\HOO Mys=C(3)=0.
Proof. By Theorem 1.2.1
N N N
Trace( A3 Z Z Z @i Qi Qi - (2.28)
j=1k=1

i=1

Therefore
1
Mys = E[My3(A)] = SNEE E [Trace(A®)]
N N N
- E | L O Y e
=1 j=1 k=1
N N N
= 8N2 5 Z Z ZE i@y (2.29)
=1 j=1 k=1
There are three cases. If the subscripgsandk are all distinct, them;;, a1, and
ay; are three independent variables (in other words, these are three distinct pairs).
As p has mean zero, by Lemma 2.1.5

Elaijajrar] = Elaij] - Elaji] - Elak] = 0. (2.30)
If two of the subscripts are the same (3ay j) and the third is distinct, by Lemma
2.1.5

]E[aiiaikaki] = E[a“] E[afk] = O 1 = 0 (231)
because has mean zero and variance 1. If all three subscripts are the same, we
have

E[a]. (2.32)
This is the third moment op. It is the same for all pairéi, ), equal tops by
Lemma 2.1.5. This is where we use the assumption that the higher moments of

are finite. There aré&/ triples wherei = j = k. Thus,

1
My;s = E[Mya(A)) = 5 - Nps = 2= (2.33)

8N1.5
Letting N — oo we see that the expected value of the third moment is zero in the
limit. O

Remark 2.1.11. Many of the above calculations are unnecessary. We are dividing
by N2, There areN? triples a;ja;ray;. If i,j andk are distinct, we showed

by Lemma 2.1.5 the contribution is zero. If the indices@oedistinct, there are at
most3N?2 such triples, and as all momentsgadre finite, by Lemma 2.1.5 each such
triple contributes a bounded amount (independenVdf As we divide byN?2-?,

the total contribution is at most some universal constant ti%s which tends

to zero asV — oo. This illustrates a general principle: often order of magnitude
calculations are sufficient to show certain terms do not contribute in the limit.
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2.1.4 The Higher Moments

Lemma 2.1.12. For odd %, the expected value @/ 1, (A) asN — oo is zero.
Exercisé™ 2.1.13. Prove Lemma 2.1.12.

We are left with calculating the limit of the averagesidiy ;(A) for k = 2m
even.

Lemma 2.1.14. Notation as before, the only tuples which contributeNas— oo
to the main term of the average dfy .., (A) are those where eachy = 2.

Exercisé™ 2.1.15. Prove Lemma 2.1.14.

We are reduced to calculating the contributions to the average @b, (A)
from tuples with eaclr; = 2. By Lemma 2.1.5, a tuple

_ 42 2
Aiyig " " Qigiy = Qgyyy "~ Agy,, (234)

contributesl™ (because we have a productsaf second moments qof, and the
second moment gf is 1). The above arguments and (2.13) yield, up to lower order
terms,

1 *
My om = E[Mnam(4)] = omNTFm Z 1, (2.35)
1<1i,dam <N

where Z* means we restrict to tuplés,. . . . , is,,) such that the corresponding
r;'s are all 2. The determination of the limits of the even moments is completed by
showing

1 ] —1)

The solution of this counting problem involves the Catalan number (see [ G])
] (°F). See [Leh] for details on these calculations.
Exercise 2.1.16.Compute the fourth and sixth moments directly, and compare them
to C(4) andC(6).
Exercise 2.1.17.For eachm show there exists a constafyt, > 0 such that
YU 1> Nt (2.37)
1<1i,eeyiom <N

This implies that the even moments do not vanish.
Exercise 2.1.18.For eachm show there exists a constadyf, such that

S 1< N (2.38)

1<1i,..,i2m <N

This implies that the even moments are finite.

Exercisé™ 2.1.19. Prove(2.36)
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2.2 NON-SEMI-CIRCLE BEHAVIOR

In our investigations of randoni-regular graphs, we showed the density of nor-
malized eigenvalues do not converge to the semi-circle (Theorem 1.5.9). We give
several more examples of ensembles of matrices where the density of eigenvalues
is provablynotgiven by the Semi-Circle Law. Théregular graphs are combinato-

rial objects, and we are not constructing our matrices by choosing entries at random
from a fixed probability distributiop. Now we give several examples where we do
choose the entries randomly, but with additional structure (otherwise we would of
course just have the ensemble of all real symmetric matrices). A generic real sym-
metric matrix hasw independent entries. We now consider subsets with far
fewer independent entries, often of siXe The hope is that these thin ensembles
might exhibit new, interesting behavior.

2.2.1 Band Matrices

Definition 2.2.1 (Band Matrix (of widthr)). We say a real symmetric matrix is a
band matrix (of widthr) if a;; = 0 whenevefi — j| > r.

A band matrix of width 0 is a diagonal matrix and of width 1 has non-zero entries
only along the main diagonal and the diagonals immediately above and below. In
general the number of independent entries is of §lze+ 1) N.

Exercise 2.2.2.Calculate exactly how many entries can be non-zero if the band
width isr.

While band matrices are a subset of real symmetric matrices, they are a very thin
subset forr < N. Do they obey the Semi-Circle Law? Is the spacing between
adjacent eigenvalues the GOE?

If the band widthr = N — 1, then the matrix is “full”; in other words, every
entry can be non-zero and the density of normalized eigenvalues converges to the
semi-circle. What about the opposite extreme, when(0? ConsidetV x N real
symmetric band matrices of width each entry which can be non-zero is chosen
randomly and independently from some fixed probability distribupioRorr = 0,
we do not need to assume anything about the moments of

Theorem 2.2.3. The normalized eigenvalue densityis the semi-circle; it is just
p-
Proof. There is no need to normalize the eigenvalues. As we have a diagonal ma-

trix, the entriesare the eigenvalues! Asking how many eigenvalues ar:jm)
is equivalent to calculating the probability that @i € [a,b], which is given by

f; p(x)dx. O

Exercise 2.2.4.Let A be anN x N band matrix of width 1 with real entries, but
not necessarily symmetric. Which entries can be non-zeAdid?
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2.2.2 Toeplitz Matrices

We consider another ensemble of random matrices with far fewer independent en-
tries than the ensemble of all real symmetric matrices.

Definition 2.2.5. A Toeplitz matrixA is of the form
bp b1 by b3
b_1 byp b1 b

A = b_2 b_l bO bl e . (239)
b_g b_o b_1 by ---

That is, A is constant along its diagonals. Noig; = b;_;.

We consider real symmetric Toeplitz matrices whose entries are chosen accord-
ing to some distributiop with mean 0 and variance 1. Thés ; = b;_;. Itis
convenient to normalize the eigenvalues of these Toeplitz matrice:%byather

1
thanm. Thus

VN

Remark 2.2.6. As the main diagonal is constant, the effect of the main diagonal
beingby is simply to shift all eigenvalues by,. For simplicity, we takéy = 0.
Note there aréV — 1 independent entrids, ..., by_1.

N
pan(z) = %25 (x — Ai(A)) . (2.40)

Exercise 2.2.7.1f B = A+ ml, prove the eigenvalues &f are m plus the eigen-
values ofA.

The eigenvalue distribution is again not the semi-circle. As long as the probabil-
ity distributionp has mean 0, variance 1 and finite higher moments, the answer is
universal (i.e., independent of all other propertieppflt is almostthe standard
Gaussian. Its moments are bounded by the moments of the standard Gaussian. Its
fourth moment iQ%, while the standard Gaussian's3is

Exercise 2.2.8.ShowMy; = 0 and My, = 1 — % Thus asN — oo the
expected value of the first two moments are 0 and 1, respectively. Recall the second
moment of the semi-circle %

Just becausBmpy _,oo My 2 # i does not imply that the eigenvalue probability
distribution does not converge to a semi-circle; it only implies it does not converge
to thestandardsemi-circle — we need to examine the fourth moment. See Exercise
1.1.6.

It turns out that it is not the semi-circle that this distribution is trying to approach,
but rather the Gaussian. The odd moments of the Gaussian vanish, and the even
moments aré(2m) = (2m — 1)!1. The limits of the average of the moments want
to be G(2m); however, to calculate these moments involves solving a system of
Diophantine equations (see Chap?g). Obstructions to these equations arise due
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to the fact that the indices must bef{ih, ..., N}, and this prevents the limits from
equalling the Gaussian’s moments.

The fourth moment calculation highlights the Diophantine obstructions, which
bound the moments away from the Gaussian.afs= b;_; = b;,_;, the trace
expansion becomes

My 4(A) = % > B(bi,—iabiy—isbis—isbis—i,)- (2.41)
1<i1izi3,54 <N

Letx; = |i; —i;41]. Ifany b, occurs to the first power, its expected value is zero
(since the mean gf is zero, and thé’s are drawn fronp), and these tuples do not
contribute. Thus either the;’s are matched in pairs (with different values), or all
four are equal (in which case they are still matched in pairs). There are 3 possible
matchings; however, by symmetry (simply relabel), we see the contribution from
T1 = T9, T3 = x4 IS the same as the contribution from = z4, 7o = 3.

If x1 = x2, x3 = x4, We have

11—l = ﬂ:(iQ — 7:3) and i3 — 14 = :|:(i4 — 71) (242)

Exercise 2.2.9.Show the number of tuples,, iz, i3,i4) Satisfying the pair of
equations in(2.42)is O(N?) if a + sign holds in either equation. As we divide
by N3, in the limit these terms do not contribute and the main contribution arises
when both equations have the minus sign.

If both signs are negative in (2.42), thén= i3 andiy andi, are arbitrary. We
see there ar&3 such tuples. Almost all of these will hawg # x5, and contribute
1; the rest will contribute a smaller term. Explicitly, ket denote the fourth moment
of p. Giveniy andiy, N — 1 choices ofi, yield 1 # x5 (contributingE[b2 b2.] =
1), and one choice yields the two equal (contribuﬂE{gjﬁl] = p4). Therefore this
case contributes

1

&5 (VAN = 1) - 1+ N*(1) - pa) = LI S 1+0<;7>. (2.43)

N N
The case of; = x4 andz, = x5 is handled identically, and contributés-O (%)

The other possibility is for:; = x3 andzs = x4. Non-adjacent pairing is what
leads to Diophantine obstructions, which decreases the contribution to the moment.
We call this a non-adjacent pairing as the neighborsg,cdrexs andzy, butz; is
paired withzz. Now we have

11— 1y = :|:(23 — i4) and 19 — 13 = :t(i4 — il). (244)

Exercise 2.2.10.Show the number of tuplés;, iz, i3,i4) Satisfying the pair of
equations in(2.44)is O(N?) if a + sign holds in either equation. As we divide
by N3, in the limit these terms do not contribute and the main contribution arises
when both equations have the minus sign.

If both signs are negative in (2.44), then we have

11 = 19 +14 — 13, 11,%9,13,14 € {1, .. ,N} (245)
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The fact that each; € {1,..., N} is what leads to the Diophantine obstructions.
In the first case (whem; = x5 andzs = x4), we saw we had three independent
variables andV? + O(N?) choices that were mutually consistent. Now it is pos-
sible for choices of,, i3 andi, to lead to impossible values fér. For example,

if ip,44 > 2¥ andis < &, this forcesi; > N, which is not allowed, which
implies there are at mogt — 5-)N® valid choices. This is enough to show the
Gaussian's moment is strictly greater; we have lost a positive fraction of solutions.
The following lemma shows this case contribugeto the fourth moment.

Lemma2.2.11.LetIy ={1,...,N}. Then#{z,y,z € In : 1 <z 4+y—2 <
N}=2N3+1iN.

Proof. Sayz+y =S5 € {2,...,2N}. For2 < S < N, there are5 — 1 choices of
z,and forS > N + 1, there ar& N — S + 1. Similarly, the number of,y € Iy
withe +y=85isS—1if S <N+ 1and2N — S + 1 otherwise. The nhumber of
triples is therefore

N 2N 9 1
D S-1+ Y @N-85+1)° = §N3 + 5. (2.46)
S=2 S=N+1

a
Collecting all the pieces, we have shown
Theorem 2.2.12(Fourth Moment) My 4 =22 + O (37).

In [BDJ, HM] the Toeplitz ensemble is investigated and shown to be non-Semi-
Circular and non-Gaussian. See [HM] for upper and lower bounds for the moments
of the new distribution that the densitigs x(z) converge to.

Remark 2.2.13. Similar to our previous arguments, one can show that the odd
moments vanish and the main contribution to the even moments occur when the
b,’'s are matched in pairs. F@m objects there aré@m — 1)!! ways to match in
pairs. Each matching wants to contributéand if they all did, then we would have

the standard Gaussian’s moments); however, not all matchings conttibler
some matchings, a positive fraction of tuples are inaccessible. Explicitly, for each
matching we divide byV™+!, It turns out that of th@m indicesiy, . . . , i2,,, once

m + 1 are specified the others are determined. If we could choosel indices
freely, we would haveV™*! tuples for each matching, and a contributioniofit

is here that the loss of a positive percent is felt. Interestingly, if we add additional
symmetries, all the moments are Gaussian. Explicitly, assume the first row is a
palindrome; forN = 2M this means the first row is

(0bybabs ... bayr—2bpr—1 byr—1 bar—o ... b3 by by 0). (2.47)

Instead ofN — 1 free variables, there are nowju@gﬁ. Similar to the density of
states ofi-regular graphs (81.5.1), we have a sub-ensemble with different behavior.
See [MMS] for a proof that the moments are Gaussian.
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2.2.3 Truncated Cauchy Distribution

In §1.3.4 we saw that numerical simulations of eigenvalues of matrices with en-
tries independently chosen from the Cauchy distribution appeared not to satisfy
the Semi-Circle Law. FolV x N matrices, instead of choosing the entries from
the Cauchy distribution, choose the entries frotnumcatedCauchy distribution,
where the truncation depends dh Explicitly, let

{ANM if |2| < F(IV)

) (2.48)
0 otherwise,

pn(z) =
whereA y is chosen to makg@JR pn(z)dz = 1. By appropriately choosing the cut-
off f(N) and normalizing the eigenvalues, one obtains a new distribution. See [Za]
for complete statements and proofs, as well as generalizations to other distributions.

2.3 SPARSE MATRICES

A common theme of some of the above problems (band matrices, random graphs)
is that we are consideringparse matrices real symmetric matrices where most
entries are zero. Such matrices open up fascinating possibilities to see new behav-
ior. In general, the following heuristic principle is a good guide: if you consider a
very small subset of objects, you can see very special behavior. However, in math-
ematical proofs, we need to average over many similar objects. Thus, if we have
too few objects, we cannot perform the averaging; if we have too many objects,
non-standard behavior (which occurs rarely) could be washed away.

For example, as most matrices are not band symmetric of small width, even
though they have different eigenvalue statistics, this difference will not be noticed
when we look at all symmetric matrices. The goal, therefore, is to find an ensemble
that is large enough so that we can do the averaging, yet small enough so that new
interesting behavior is still present.

Thegeneralized coin toss matriceprovide another candidate. Fag < [0, %],
letpn(1) = 45, pn(—1) = 4%, andpy(0) = 1 — gnv. We use the probability
functionp to construct real symmetric matricesby choosing the independent
entries fronp . We expect to have abouyy; - w non-zero entries in a typical
A. If g is small relative taV, these matrices are sparse, and there is the possibility
for new behavior. Note, of course, thayif; is independent oN then the standard
proof of the Semi-Circle Law is applicable. See [Liu] for more details.

2.4 RESEARCH PROJECTS

For more on connections between random graphs and number theory, see [DSV]
and Chapter 3 of [Sar].

Research Project 2.4.1Band Matrices) Investigate how the eigenvalue density
depends on the band width. When do we observe the transitiongfitorthe semi-
circle? In other words, how large mustbe in order to see semi-circle behavior.



IntroRMT_Math54  April 13, 2007

RANDOM MATRIX THEORY: EIGENVALUE DENSITIES 49

Does this criticalr depend orp? It has been observed for many systems that
transitions occur around= /N

Research Project 2.4.2Band, Sparsej-Regular) Compare the eigenvalue dis-
tributions and spacing distributions (see Cha@®rof band matrices of width,
generalized coin toss matrices, afidegular random graphs. If we choase; and

d so that

(r+DEN-r)  gNN+1) N (2.49)
2 2 2

are the distributions similar? All three ensembles have approximately the same
number of non-zero entries, but they differ greatlywiherethe non-zero entries
may lie.

Research Project 2.4.3.In the above project we considered sparse matrices with
entries in{—1,0,1}. As the probability distribution depends @, the arguments
used to prove Wigner’s Semi-Circle Law are not applicable. The adjacency matrix
of a simpled-regular graph with no self-loops hég ofthea;; (with1 <i < j <

N) equal tol (and the rest are zero). Let now

= ifex=1
= { N1 2.50
P.a(®) {1—Nd1 if 2 = 0. (2.50)

If we choose the entrieg;; (with 1 < ¢ < j < N) from py ¢ and consider the
graph of such a matrix, the expected number of edges from each verteXligis
it is natural to see whether or not such an ensemble approximiatggilar graphs.
How are the eigenvalues distributed? See also Remark 1.5.7.

Research Project 2.4.4Self-Adjoint Matrices) Fix a probability distributiorp

and choosall the entries ofA randomly and independently from Consider the
matrix AT A. This matrix is real symmetric, but ha&> degrees of freedom. What

is the density of its eigenvalues, or at least what are the first few moments? Are the
eigenvalues real? Are they non-negative? What is the density sfjtirere rootof

the eigenvalues? Matrices of this form, called Wishart matrices, are well studied
by other techniques. See for example [SM, Wis].

Research Project 2.4.5Weighted Random GraphsXonsider the space af
regular graphs. To each graph we attach an adjacency matrix, and we can study
the distribution of the eigenvalues. Consider the following generalization: fix a
probability distributionp. Let A be the adjacency matrix of &regular graphG.
Construct a matrix3 as follows: ifa;; = 1, choosé;; randomly frony; if a;; = 0,

setb;; = 0. How does the distribution of eigenvalues®fdepend op? The den-

sity of eigenvalues ofl-regular graphs is not the semi-circle; however, is there a
choice ofp that leads to semi-circular behavior? These are called weighted graphs;
one can regard these weights (especially i positive) as encoding different in-
formation about the system (for example, how far apart different vertices are, or
how long or how expensive it is to transmit information between vertices). See
[Gold, QS2] for more details.
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Research Project 2.4.§Complex Hermitian) Investigate the eigenvalue densi-
ties for some of the ensembles for complex Hermitian rather than real symmetric
matrices. For example, consider complex Hermitian Toeplitz matrices.

Research Project 2.4.{Spherical Ensemble: Non-Independent Entrids)the
spirit of Example 1.1.9, consider the ensemblé\ok N real symmetric matrices
where

Y = LN; D) (2.51)
i=1 j=i

Note the entries are not chosen independently from a fixed probability distribution,

but rather we choose a point on a sphere of radi(& (N + 1)/2; we do this

so eachu;; is of sizel. What is the density of eigenvalues? Warning: the inte-

grals will probably be too difficult to directly evaluate (except possibly for fg)y

though one can numerically investigate the eigenvalues. If welet aq4, ...,

TN(N+1)/2 = anN, then we have
o+ + X ngye = B (2.52)

whereR = /N (N + 1)/2 is the radius of the" " *1)_dimensional sphere. The
following coordinate transformations are useful to generate points ensgere
of radiusr:

1 = .’l?]_(T,(bl,---,an_l) = TCOS(¢1)

Ta = zo(r,d1,. . Pn_1) = rsin(¢y) cos(¢s)

I3 = I3 (7‘, ¢1, ceey ¢n,—1) = T Sin(¢1) Sin(¢2) COS((Z53)

Tat = Taa(ndru1) = rsin(d)- - sin(dns)cos(dn_1)

Tn = Tn (Ta ¢17 ) (bn—l) = r SiIl(¢1) e Sin(¢n—2) Sin(¢n—1)7
where¢,,..., ¢, € [0,7], p,_1 € [0,27] and the volume |s;(2%:) One

can also consider other ensembles where the entries are not chosen independently;
the point is to find ensembles that are easy to work with (either in determining the
eigenvalues or in generating the matrices).
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