
Sequences 

 

(2.2.1) Sequence. A sequence is a function whose domain is N.  
 

(2.2.3) Convergence of a Sequence. A sequence (a n ) converges to a real number a if, for every ε > 0, 

there exists an N  ∈ N such that whenever n  ≥ N , it follows that |a n  - a | < ε.  

 

(2.2.3B) Convergence of a Sequence, Topological Characterization. A sequence (a n ) converges to a if, 

given any ε-neighborhood Vε (a ) of a, there exists a point in the sequence after which all of the terms 

are in Vε (a ) ⇔ every Vε (a ) contains all but a finite number of terms of (a n ).  

 

(2.2.7) Uniqueness of Limits. The limit of a sequence, when it exists, must be unique.  

 

(2.2.9) Divergence. A sequence that does not converge is said to diverge.  

 

(2.3.1) Bounded. A sequence (x n ) is bounded if ∃ M  > 0 such that |xn| < M  for all n  ∈ N.  
 

(2.3.2) Every convergent sequence is bounded.  

 

(2.3.3) Algebraic Limit Theorem. Let lim a n  = a  and lim b n  = b . Then, (i) lim(ca n ) = ca  for all c  ∈ R; (ii) 
lim(a n  + b n ) = a  + b ; (iii) lim(a n b n ) = ab ; (iv) lim(a n /b n ) = a /b  provided b  ≠ 0.  

 

(2.3.4) Order Limit Theorem. Assume lim a n  = a  and lim b n  = b . Then, (i) if a n  ≥ 0 for all n  ∈ N, then  

a  ≥ 0; (ii) if a n  ≥ b n  for every n  ∈ N, then a  ≥ b ; (iii) If there exists c  ∈ R for which c  ≤ a n  for all n  ∈ N, 

then c  ≤ a .  

 

(2.4.3) Convergence of a Series. Let (b n ) be a sequence, and define the corresponding sequence of 

partial sums (s m ) of the series ∑b n  where s m  = b 1 + b 2 + … + b m . The series ∑b n  converges to B  if the 

sequence (s m ) converges to B . Thus, ∑b n  = B .  

 

(2.4.6) Cauchy Condensation Test. Suppose (b n ) is decreasing and satisfies b n  ≥ 0 for all n  ∈ N. Then, 

the series ∑b n  converges if and only if the series ∑2n b 2n  = b 1 + 2b 2 + 4b 4 + 8b 8 + … converges.  

 

(2.4.7) The series ∑1/n p  converges if and only if p  > 1.  

 

(2.5.1) Subsequences. Let (a n ) be a sequence of real numbers, and let n 1 < n 2 < n 3 < …. be an 

increasing sequence of natural numbers. Then the sequence (a n 1, a n 2, a n 3, …) is called a subsequence 

of (a n ) and is denoted by (a nk ), where k  ∈ N indexes the subsequence.  

 

(2.5.2) Subsequence of a convergent sequence converge to the same limit as the original sequence.  

 

(2.5.5) Bolzano-Weierstrass Theorem. Every bounded sequence contains a convergent subsequence.  

 



(2.6.1) Cauchy Sequence. A sequence (a n ) is called a Cauchy sequence if, for every ε > 0, there exists 

an N  ∈ N such that whenever m , n  ≥ N , it follows that |a n  - a m | < ε.  

 

(2.6.2) Every convergent sequence is a Cauchy sequence.  

 

(2.6.3) Cauchy sequences are bounded.  

 

(2.6.4) Cauchy Criterion. A sequence converges if and only if it is a Cauchy sequence.  

 

Series  

 

(2.7.1) Algebraic Limit Theorem for Series. If ∑a k  = A  and ∑b k  = B , then (i) ∑ca k  = cA  for all c  ∈ R 

and (ii) ∑(a k  + b k ) = A  + B .  

 

(2.7.2) Cauchy Criterion for Series. The series ∑a k  converges if and only if, given ε > 0, there exists 

an N  ∈ N such that whenever n  > m  ≥ N , it follows that |a m +1 + a m +2 + … + a n | < ε.  

 

(2.7.3) If the series ∑a k  converges, then the sequence (a k ) converges to 0.  

 

(2.7.4) Comparison Test. Assume (a k ) and (b k ) are sequences satisfying 0 ≤ a k  ≤ b k  ∀ k  ∈ N. Then, (i) if 

∑b k  converges, then ∑a k  converges and (ii) if ∑a k  diverges, then ∑b k  diverges.  

 

(2.7.6) Absolute Convergence Test. If the series ∑|a n | converges, then ∑a n  converges as well. 
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(2.7.7) Alternating Series Test. Let (a n ) be a sequence satisfying (i) a 1 ≥ a 2 ≥ … ≥ a n  ≥ a n +1 ≥ … and (ii) 

(a n ) converges to 0. Then, the alternating series ∑(-1)n +1a n  converges.  

 

 

Topology of The Reals 

 

(3.2.1) Open. A set O  is open if for all points a  ∈ O , there exists a Vε (a ) ⊆ O .  

 

(3.2.3) (i) The union of an arbitrary collection of open sets is open. (ii) The intersection of a finite 

collection of open sets is open.  

 

(3.2.4) Limit Point. A point x  is a limit point of a set A  if every Vε (x ) intersects the set A  at some point 

other than x .  

 

(3.2.5) A point x  is a limit point of a set A  if and only if x  = lim a n  for some sequence (a n ) contained in A 

satisfying a n  ≠ x  for all n  ∈ N.  
 

(3.2.6) Isolated Point. A point a  ∈ A  is an isolated point of A  if it is not a limit point of A .  



 

(3.2.7) Closed. A set F  ⊆ R is closed if it contains its limit points.  

 

(3.2.8) A set F  ⊆ R is closed if and only if every Cauchy sequence contained in F  has a limit that is also 

an element of F .  

 

(3.2.10) Density of Q in R. For every y  ∈ R, there exists a sequence of rational numbers that 

converges to y .  

 

(3.2.11) Closure. Given a set A  ⊆ R, let L  be the set of all limit points of A . The closure of A  is defined 

to be Cl(A ) = A  ∪ L .  

 

(3.2.12) For any A  ⊆ R, the closure of A  is a closed set and is the smallest closed set containing A .  

 

(3.2.13) A set O  is open if and only if O c  is closed. 

 

(3.2.14) (i) The union of a finite collection of closed sets is closed. (ii) The intersection of an arbitrary 

collection of closed sets is closed.  

 

(3.3.1) Compactness. A set K  ⊆ R is compact if every sequence in K  has a subsequence that converges 

to a limit that is also in K .  

 

(3.3.3) Bounded. A set A  ⊆ R is bounded if there exists M  > 0 such that |a | < M  for all a  ∈ A .  

 

(3.3.4) Characterization of Compactness in R. A set K  ⊆ R is compact if and only if it is closed and 

bounded.  

 

(3.3.5) If K 1 ⊇ K 2 ⊇ K 3 ⊇ … is a nested sequence of nonempty compact sets, then the intersection 

∩K n  is not empty.  

 

(3.3.6) Open Cover. Let A  ⊆ R. An open cover for A  is a (possibly infinite) collection of open sets {O d  : 

d  ∈ D } whose union contains the set A. A finite subcover isa a finite sub collection of open sets from 

the original open cover whose union still manages to completely contain A .  

 

(3.3.8) Heine-Borel Theorem. Let K  be a subset of R. All of the following statements are equivalent in 

the sense that any one of them implies the two others: (i) K  is compact; (ii) K  is closed and bounded; 

(iii) Every open over for K  has a finite subcover. 

 

 

Functional Limits 

 

(4.2.1) Functional Limit. Let f  be defined on A , and let c  be the limit point of A . Then, limx →c  f (x ) = L 

provided that for all ε  > 0, ∃ δ  > 0 such that whenever 0 < |x  - c | < δ  it follows that |f (x ) - L | < ε .  



 

(4.2.1B) Functional Limit - Topological Characterization. Let c  be the limit point of the domain of f . 

We say limx →c  f (x ) = L  provided that, for every Vε (L ) of L , there exists a Vδ (c ) such that for all x  ∈ Vδ (c ) 

it follows that f (x ) ∈ Vε (L ).  

 

(4.2.3) Sequential Criterion for Functional Limits. Given a function f  defined on A  and a limit point c  of 

A , then limx →c  f (x ) = L  ⇔ for all sequences (x n ) ⊆ A  satisfying x n  ≠ x  and (x n ) → c , then f (x n ) → L .  

 

(4.2.4) Algebraic Limit Theorem for Functional Limits. Let f  and g  be functions defined on domain A 

⊆ R, and assume that limx →c  f (x ) = L  and limx →c  g (x ) = M  for some limit point c  ∈ A . Then, (i) limx →c 

kf (x ) = kL  for all k  ∈ R, (ii) limx →c  (f (x ) + g (x )) = L  + M ; limx →c (f (x )g (x )) = LM  and (iv) lim(f (x )/g (x )) = L /M , 

provided M  ≠ 0.  

 

(4.2.5) Divergence Criterion for Functional Limits. Let f  be a function defined on A , and c  be a limit 

point of A . If there exists two sequences (x n ), (y n ) with x n  ≠ c  and y n  ≠ c  and limx →c  x n  = limx →c  y n  = c 

but limx →c  f (x n ) ≠ limx →c  f (y n ), then lim f (x ) does not exist.  

 

(4.3.1) Continuity. A function f  is continuous at a point c  ∈ A  if, for all ε  > 0, there exists a δ  > 0 

such that whenever |x  - c | < δ  it follows that |f (x ) - f (c )| < ε . If f  is continuous at every point in the 

domain A , then f  is continuous on A .  

 

(4.3.2) Characterizations of Continuity. Let f , defined on A , and c  ∈ A . The function f  is continuous at 

c  if and only if any one of the following conditions is met: (i) For all ε > 0, there exists a δ > 0 such 

that |x  - c | < δ implies |f (x ) - f (c )| < ε; (ii) For all Vε (f (c )), there exists a Vδ (c ) such that x  ∈ Vδ (c ) 

implies f (x ) ∈ Vε (f (c )); (iii) If (x n ) → c , then f (x n ) → f (c ); If c  is a limit point of A , then the above 

conditions are equivalent to (iv) limx →c  f (x ) = f (c ).  

 

(4.3.3) Criterion for Discontinuity. Let f , defined on A , and c  ∈ A  be a limit point of A . If there exists a 

sequence (x n ) ⊆ A  where (x n ) → c  but such that f (x n ) does not converge to f (c ), we may conclude that f 
is not continuous at c .  

 

(4.3.4) Algebraic Continuity Theorem. Assume f , g  defined on A , continuous at a point c  ∈ A . Then, (i) 

kf (x ) is continuous at c  ∀ k  ∈ R; (ii) f (x ) + g (x ) is continuous at c ; (iii) f (x )g (x ) is continuous at c ; and 

(iv) f (x )/g (x ) is continuous at c , provided the quotient is defined.  

 

(*) All polynomials are continuous on R.  
 

(4.3.9) Compositions of Continuous Functions. Given f  defined on A  and g  defined on B , and assume 

the range f (A ) = {f (x ) : x  ∈ A } is contained in the domain B  so that the composition g  ⋅ f (x ) = g (f (x )) is 

defined on A . If f is continuous at c  ∈ A , and g  is continuous at f (c ) ∈ B , then g (f (x )) is continuous at c .  

 

(4.4.1) Preservation of Compact Sets. Let f  defined on A  be continuous on A . If K  ⊆ A  is compact, then 

f (K ) is compact as well.  



 

(4.4.2) Extreme Value Theorem. If f , defined on K  compact, is continuous on K  ⊆ R, then f  attains a 

maximum and a minimum value. In other words, there exists x 0, x 1 ∈ K  such that f (x 0) ≤ f (x ) ≤ f(x 1) for 

all x  ∈ K .  

 

(4.4.4) Uniform Continuity. A function f  defined on A  is uniformly continuous on A  if for every ε > 0, 

there exists a δ > 0 such that for all x , y  ∈ A , |x  - y | < δ implies |f (x ) - f (y )| < ε.  

 

(4.4.5) Sequential Criterion for Absence of Uniform Continuity. A function defined on A  fails to be 

uniformly continuous on A  if and only if there exists a particular ε0 > 0 and two sequences (x n ), (y n ) in 

A  satisfying |x n  - y n | → 0 but |f (x n ) - f (y n )| ≥ ε0.  
 

(4.4.7) Uniform Continuity on Compact Sets. A function that is continuous on a compact set K  is 

uniformly continuous on K .  

 

(4.5.1) Intermediate Value Theorem. Let f  be defined on [a , b ] be continuous. If L  is a real number 

satisfying f (a ) < L  < f (b ) or f (a ) > L  > f (b ), then there exists a point c  ∈ (a , b ) such that f (c ) = L .  

 

(4.5.3) Intermediate Value Property. A function f  has the intermediate value property on an interval 

[a , b ] if for all x  < y  in [a , b ] and all L  between f (x ) and f (y ), it is always possible to find a point c  ∈ (x , y ) 

where f (c ) = L .  

 

  

 

Sequences of Functions 

 

(6.2.1) Pointwise Convergence: For each n  ∈ N , let f n  be a function defined on set A  ⊆ R. The 

sequence of functions converges pointwise on A  to a function f  if, (1) for all x  ∈ A , the sequence pf 

real numbers f n (x ) converges to f (x ) ⇔ for every ε  > 0 and x  ∈ A , there exists an N  such that |f n (x ) - 

f (x )| < ε  ∀ n  ≥ N .  

 

(6.2.3) Uniform Convergence: Let (f n ) be a sequence of functions defined on a set A  ⊆ R. Then, (f n ) 

converges uniformly on A  to a limit function f  defined on A  if, for every ε  > 0, there exists an N  ∈ N 

such that |f n (x ) - f (x )| < ε  whenever n  ≥ N  and x  ∈ A .  

 

(6.2.5) Cauchy Criterion for Uniform Convergence: A sequence of functions (fn) defined on a set A ⊆ 

R converges uniformly on A if and only if for every ε > 0, there exists an N ∈ N such that |fn(x) - 

fm(x)| < ε whenever m, n ≥ N and x ∈ A.  

 

(6.2.6) Continuous Limit Theorem: Let (f n ) be a sequence of functions defined on A  ⊆ R that 

converges uniformly on A to a function f. If each fn is continuous at c ∈ A, then f is continuous at c.  

 



(6.3.1) Differentiable Limit Theorem: Let f n  → f  pointwise on the closed interval [a , b ], and assume 

that each f n  is differentiable. If (f n ’ ) converges uniformly on [a , b ] to a function f , then the function f  is 

differentiable and f’  = g .  

 

(6.3.2) Weaker Differentiability Limit Theorem: Let (f n ) be a sequence of differentiable functions 

defined on the closed interval [a , b ], and assume (f n ’ ) converges uniformly on [a , b ]. If there exists a 

point x 0 ∈ [a , b ] where f n (x 0) is convergent, then (f n ) converges uniformly on [a , b ].  

 

(6.3.3) Stronger Differentiable Limit Theorem: Let (f n ) be a sequence of differentiable functions 

defined on the closed interval [a , b ], and (f n ’ ) converges uniformly to a function g  on [a , b ]. If there 

exists a point x 0 ∈ [a , b ] where f n (x 0) is convergent, then (f n ) converges uniformly. Moreover, the limit 

function f  = lim f n  is differentiable and satisfies f’  = g .  

 

Series of Functions 

 

(6.4.1) Convergence of Series of Functions: For each n  ∈ N, let f n  and f  be functions defined on a set 

A  ⊆ R. The infinite series ∑ f n (x ) converges pointwise  on A  to f (x ) if the sequence s k (x ) of partial sums 

defined by s k (x ) = f 1(x) + f 2(x) + … + f k (x ) converges pointwise to f (x ). The series converges uniformly  on 

A  to f  if the sequences s k (x ) converges uniformly on A  to f (x ).  

 

(*) If have series in which functions f n  are continuous, then by the Algebraic Continuity Theorem the 

partial sums will be continuous as well.  

 

(6.4.2) Term by Term Continuity Theorem. Let f n  be continuous functions defined on a set A  ⊆ R, and 

assume that ∑f n  converges uniformly to a function f . Then, f  is continuous on A . Proof idea: Apply 

Continuous Limit Theorem (6.2.6) to partial sums s k  = f 1 + f 2 + … + f k .  

 

(6.4.3) Term by Term Differentiability Theorem. Let f n  be differentiable functions defined on an 

interval A , and assume that ∑f n ’(x ) converges uniformly to a limit g (x ) in A . If there exists a point x 0 ∈ 

[a , b ] where ∑ f n (x 0) converges, then the series ∑f n (x ) converges uniformly to a differentiable 

function f (x ) satisfying f’ (x ) = g (x ) on A . In other words, f (x )  = ∑ f n (x ) and f’ (x ) = ∑ f n ’ (x ). Proof idea: 

Apply the Stronger Differentiable Limit Theorem to the partial sums s k  = f 1 + f 2 + … + f k . and observe 

that the Algebraic Differentiability Theorem (5.2.4) implies that s k ’  = f 1’  + f 2’  + … + f k ’ 

 

(6.4.4) Cauchy Criterion for Uniform Convergence of a Series. A series ∑f n  converges uniformly on A 

⊆ R if and only if for every ε  > 0, there exists an N  ∈ N such that |f m +1(x) + f m +2(x ) + … + f n (x )| < ε  

whenever n  > m  ≥ N  and x  ∈ A . 

 

(6.4.5) Weierstrass M-Test. For each n  ∈ N, let f n  be a function defined on a set A  ⊆ R and let M n  > 0 

be a real number satisfying | f n (x )| ≤ M n  for all x  ∈ A . If ∑M n  converges, then ∑f n  converges 

uniformly on A . Proof idea: Cauchy Criterion and the triangle inequality.  

 

Power Series: functions of the form f(x) = ∑a n x n  = a 0 + a 1x  + a 2x 2 + a 3x 3 + … 



 

(6.5.1) If a power series ∑a n x n    converges at some point x 0 ∈ R, then it converges absolutely for any x 

satisfying |x | < |x 0|. Proof Idea: Since the series converges, then the sequence of terms is bounded 

(converges to 0). Using the hypothesis (if x  ∈ R : |x | < |x 0|), find series of M |x /x 0|
n  to be geometric 

with ratio |x /x 0| < 1, so converges and thus by Comparison Test, converges absolutely.  

 

(*)  Implies that the set of points for which a given power series converges must necessarily be {0}, R, 
or a bounded interval centered around x  = 0. R is referred to as the radius of convergence of a power 

series.  

 

(6.5.2) If a power series ∑a n x n  converges absolutely at a point x0, then it converges uniformly on the 

closed interval [-c, c] where c = |x0|. Proof Idea: Application of the Weierstrass M-Test.  

 

(*) if the power series g(x) = ∑a n x n  converges conditionally at x = R, then it is possible for it to diverge 

when x = -R. Sample with R = 1: ∑(-1)n x n /n.  

 

(6.5.3) Abel’s Lemma. Let b n  satisfy b 1 ≥ b 2 ≥ b 3 ≥ … ≥ 0, and let ∑a n  be a series for which the partial 

sums are bounded. In other words, assume that there exists A  > 0 such that |a 1 + a 2 + … + a n | ≤ A  for 

all n  ∈ N. Then for all n  ∈ N, |a 1b 1 + a 2b 2 + … + a n b n | ≤ Ab 1.  

 

(6.5.4) Abel’s Theorem. Let g (x ) = ∑a n x n  be a power series that converges at the point x  = R  > 0. Then 

the series converges uniformly on the interval [0, R ]. (Similar result for x  = -R .) 

 

(6.5.5) If a power series converges pointwise on the set A  ⊆ R , then it converges uniformly on any 

compact set K  ⊆ A . Proof idea: Apply Abel’s Theorem (6.5.4) to the max and min of the compact set 

K .  

 

(*) Power series is continuous at every point at which it converges.  

 

(6.5.6) If ∑a n x n  converges for all x  ∈ (-R , R ), then the differentiated series ∑na n x n -1 converges at each 

x  ∈ (-R , R ) as well. Consequently, the convergence is uniform on compact sets contained in (-R , R ).  

 

(*) Series can converge at endpoint, but differentiated series can diverge. Ex: ∑x n /n  at x  = -1. 
 

(6.5.7) Assume f (x ) = ∑a n x n  converges on an interval A  ⊆ R. Then, the function f  is continuous on A 

and differentiable on any open interval (-R , R ) ⊆ A . Moreover, the derivative is given by f’ (x ) = 

∑na n x n -1 and f  is infinitely differentiable on (-R , R ), and the successive derivatives can be obtained via 

term by term differentiation of the appropriate series. 

 

 

 

 

 



 

 

 

 

Results from psets:  

 

4W: 

● The limit of a sequence, if it exists, must be unique. First, assume lim a n  = a  and lim a n  = b , and 

proceed to show that a  = b . 

● (Reverse Triangle Inequality): |a  + b | ≤ |a | + |b | ⇒ Inverse Triangle Inequality: |a  - b | ≥ ||a | 

- |b ||.  

● For sequences (x n ), (y n ): 

○ (x n ) and (yn) divergent but (x n  + y n ) convergent; x n  = n , y n  = -n .  

○ (x n ) convergent and (y n ) convergent, and (x n  + y n ) converges; impossible by the ALT 

○ (b n ) convergent with b n  ≠ 0 ∀ n  : (1/b n ) convergent; b n  = 1/n 

○ unbounded (a n ) and convergent (b n ) and (a n  - b n ) bounded; impossible 

○ (a n ), (b n ) such that (a n b n ) converges but (b n ) does not; (a n ) = 0, (b n ) = n .  

 

4F:  

● (Squeeze Theorem): If x n  ≤ y n  ≤ z n  ∀ n  ∈ N and lim x n  = lim z n  = L, then lim y n  = L.  

● (Cesaro Means): If (x n ) is a convergent sequence, then the sequence given by the averages y n  = 

n -1(x 1 + x 2 + … + x n ) also converges to the same limit. Note: it is possible for (y n ) of averages to 

converge even if (x n ) does not. Example: x n  = (-1)n 

● (Limit Superior): lim sup a n  = lim n →∞ y n  where y n  = sup{a k  : k  ≥ n } 

○ y k  converges 

○ lim inf a n  =  lim n →∞ x n  where x n  = inf{a k  : k  ≥ n } 

○ lim inf a n  ≤ lim sup a n  for every bounded sequence.  

■ Strict inequality when lim inf a n  = -1 lim sup a n  = 1.  

○ lim inf a n  = lim sup a n  if and only if lim an exists, and all three values are equal.  

 

5W:  

● For (a n ), (b n ) Cauchy, we have that: 

○ c n  = |a n  - b n | is Cauchy while c n  = (-1)n a n  is not Cauchy.  

 

5F:  

● (Infinite product) Πb n  = b 1b 2b 3… 

○ Understood in terms of sequence of partial products p m  = Πb n  = b 1b 2…b m 

○ The sequence of partial products converges if and only if ∑a n  converges. 

● If a n  > 0 and lim (na n ) = L  ≠ 0, then ∑ a n  diverges.  

● Assume that a n  > 0 and lim n 2a n  exists. Then ∑a n  converges.  

● For sequence (a n ): 

○ If ∑a n  converges absolutely, then ∑a n
2 converges absolutely  



○ FALSE: If ∑a n  converges and (b n ) converges, then ∑a n b n  converges. Counterexample: 

a n  = b n  =  (-1)n (√n )-1 

○ If ∑a n  converges conditionally, then ∑n 2a n  diverges. 

● (Ratio Test): Given series ∑a n  with a n  ≠ 0, the Ratio Test states that if (a n ) satisfies lim 

|a n +1/a n | = r  < 1, then the series converges absolutely.  

 

6W:  

 

6F:  

 

7W:  

 

7F:  

● Lipschitz Condition 

○ A function f  is called Lipschitz if there exists a bound M  > 0 such that |(f (x ) - f (y ))/(x  - 

y )| ≤ M  for all x  ≠ y  ∈ A . Geometrically speaking, a function f  is Lipschitz if there is a 

uniform bound on the magnitude of the slopes of lines drawn through any two points 

on the graph of f .  

○ If f  defined on A  is Lipschitz, then it is uniformly continuous on A .  

● Inverse function + Topological Characterization of Continuity 

○ Let g  be defined on all of R. If B  ⊆ R, define the set g -1(B ) by g -1(B ) = {x  ∈ R : g (x ) ∈ B } 

■ g  is continuous if and only if g -1(O ) is open whenever O  ⊆ R is an open set  

■ if f  is a continuous function defined on R, 
■ g -1(K ) is not necessarily compact whenever K  is compact 

■ g -1(F ) is closed whenever F  is closed 

 

8W:  

 

8F:  

 

9W:  

 

9F:  

 

 


