Sequences

ε

(2.2.1) Sequence. A sequence is a function whose domain is N.

(2.2.3) **Convergence of a Sequence.** A sequence (a_n) converges to a real number a if, for every $\varepsilon > 0$, there exists an $N \in \mathbf{N}$ such that whenever $n \ge N$, it follows that $|a_n - a| < \varepsilon$.

(2.2.3B) **Convergence of a Sequence, Topological Characterization.** A sequence (a_n) converges to a if, given any ε -neighborhood V(a) of a, there exists a point in the sequence after which all of the terms are in V(a) \Leftrightarrow every V(a) contains all but a finite number of terms of (a_n) .

(2.2.7) Uniqueness of Limits. The limit of a sequence, when it exists, must be unique.

(2.2.9) **Divergence**. A sequence that does not converge is said to diverge.

(2.3.1) **Bounded**. A sequence (x_n) is bounded if $\exists M > 0$ such that |xn| < M for all $n \in \mathbb{N}$.

(2.3.2) Every convergent sequence is bounded.

(2.3.3) Algebraic Limit Theorem. Let $\lim a_n = a$ and $\lim b_n = b$. Then, (i) $\lim(ca_n) = ca$ for all $c \in \mathbf{R}$; (ii) $\lim(a_n + b_n) = a + b$; (iii) $\lim(a_n b_n) = ab$; (iv) $\lim(a_n/b_n) = a/b$ provided $b \neq 0$.

(2.3.4) **Order Limit Theorem**. Assume $\lim a_n = a$ and $\lim b_n = b$. Then, (i) if $a_n \ge 0$ for all $n \in \mathbf{N}$, then $a \ge 0$; (ii) if $a_n \ge b_n$ for every $n \in \mathbf{N}$, then $a \ge b$; (iii) If there exists $c \in \mathbf{R}$ for which $c \le a_n$ for all $n \in \mathbf{N}$, then $c \le a$.

(2.4.3) **Convergence of a Series.** Let (b_n) be a sequence, and define the corresponding sequence of partial sums (s_m) of the series $\sum b_n$ where $s_m = b_1 + b_2 + ... + b_m$. The series $\sum b_n$ converges to *B* if the sequence (s_m) converges to *B*. Thus, $\sum b_n = B$.

(2.4.6) **Cauchy Condensation Test.** Suppose (b_n) is decreasing and satisfies $b_n \ge 0$ for all $n \in \mathbb{N}$. Then, the series $\sum b_n$ converges if and only if the series $\sum 2^n b_{2n} = b_1 + 2b_2 + 4b_4 + 8b_8 + \dots$ converges.

(2.4.7) The series $\sum 1/n^p$ converges if and only if p > 1.

(2.5.1) **Subsequences.** Let (a_n) be a sequence of real numbers, and let $n_1 < n_2 < n_3 < ...$ be an increasing sequence of natural numbers. Then the sequence $(a_{n1}, a_{n2}, a_{n3}, ...)$ is called a subsequence of (a_n) and is denoted by (a_{nk}) , where $k \in \mathbb{N}$ indexes the subsequence.

(2.5.2) Subsequence of a convergent sequence converge to the same limit as the original sequence.

(2.5.5) Bolzano-Weierstrass Theorem. Every bounded sequence contains a convergent subsequence.

(2.6.1) **Cauchy Sequence**. A sequence (a_n) is called a Cauchy sequence if, for every $\varepsilon > 0$, there exists an $N \in \mathbf{N}$ such that whenever $m, n \ge N$, it follows that $|a_n - a_m| < \varepsilon$.

(2.6.2) Every convergent sequence is a Cauchy sequence.

(2.6.3) Cauchy sequences are bounded.

(2.6.4) Cauchy Criterion. A sequence converges if and only if it is a Cauchy sequence.

Series

(2.7.1) Algebraic Limit Theorem for Series. If $\sum a_k = A$ and $\sum b_k = B$, then (i) $\sum ca_k = cA$ for all $c \in \mathbf{R}$ and (ii) $\sum (a_k + b_k) = A + B$.

(2.7.2) **Cauchy Criterion for Series.** The series $\sum a_k$ converges if and only if, given $\varepsilon > 0$, there exists an $N \in \mathbf{N}$ such that whenever $n > m \ge N$, it follows that $|a_{m+1} + a_{m+2} + ... + a_n| < \varepsilon$.

(2.7.3) If the series $\sum a_k$ converges, then the sequence (a_k) converges to 0.

(2.7.4) **Comparison Test.** Assume (a_k) and (b_k) are sequences satisfying $0 \le a_k \le b_k \forall k \in \mathbb{N}$. Then, (i) if $\sum b_k$ converges, then $\sum a_k$ converges and (ii) if $\sum a_k$ diverges, then $\sum b_k$ diverges.

(2.7.6) **Absolute Convergence Test.** If the series $\sum |a_n|$ converges, then $\sum a_n$ converges as well. jl12

(2.7.7) Alternating Series Test. Let (a_n) be a sequence satisfying (i) $a_1 \ge a_2 \ge ... \ge a_n \ge a_{n+1} \ge ...$ and (ii) (a_n) converges to 0. Then, the alternating series $\sum (-1)^{n+1}a_n$ converges.

Topology of The Reals

ε

ε

(3.2.1) **Open**. A set O is open if for all points $a \in O$, there exists a V (a) $\subseteq O$.

(3.2.3) (i) The union of an arbitrary collection of open sets is open. (ii) The intersection of a finite collection of open sets is open.

(3.2.4) **Limit Point.** A point x is a limit point of a set A if every V (x) intersects the set A at some point other than x.

(3.2.5) A point x is a limit point of a set A if and only if $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

(3.2.6) **Isolated Point**. A point $a \in A$ is an isolated point of A if it is not a limit point of A.

(3.2.7) **Closed**. A set $F \subseteq \mathbf{R}$ is closed if it contains its limit points.

(3.2.8) A set $F \subseteq \mathbf{R}$ is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.

(3.2.10) **Density of Q in R**. For every $y \in \mathbf{R}$, there exists a sequence of rational numbers that converges to y.

(3.2.11) **Closure**. Given a set $A \subseteq \mathbf{R}$, let *L* be the set of all limit points of *A*. The closure of *A* is defined to be Cl(*A*) = $A \cup L$.

(3.2.12) For any $A \subseteq \mathbf{R}$, the closure of A is a closed set and is the smallest closed set containing A.

(3.2.13) A set O is open if and only if O^c is closed.

(3.2.14) (i) The union of a finite collection of closed sets is closed. (ii) The intersection of an arbitrary collection of closed sets is closed.

(3.3.1) **Compactness**. A set $K \subseteq \mathbf{R}$ is compact if every sequence in *K* has a subsequence that converges to a limit that is also in *K*.

(3.3.3) **Bounded**. A set $A \subseteq \mathbf{R}$ is bounded if there exists M > 0 such that |a| < M for all $a \in A$.

(3.3.4) Characterization of Compactness in **R**. A set $K \subseteq \mathbf{R}$ is compact if and only if it is closed and bounded.

(3.3.5) If $K_1 \supseteq K_2 \supseteq K_3 \supseteq \dots$ is a nested sequence of nonempty compact sets, then the intersection $\cap K_n$ is not empty.

(3.3.6) **Open Cover.** Let $A \subseteq \mathbf{R}$. An open cover for A is a (possibly infinite) collection of open sets $\{O_d : d \in D\}$ whose union contains the set A. A finite subcover isa a finite sub collection of open sets from the original open cover whose union still manages to completely contain A.

(3.3.8) **Heine-Borel Theorem**. Let *K* be a subset of **R**. All of the following statements are equivalent in the sense that any one of them implies the two others: (i) *K* is compact; (ii) *K* is closed and bounded; (iii) Every open over for *K* has a finite subcover.

Functional Limits

(4.2.1) **Functional Limit.** Let *f* be defined on *A*, and let *c* be the limit point of *A*. Then, $\lim_{x\to c} f(x) = L$ provided that for all > 0, \exists > 0 such that whenever 0 < |x - c| < t it follows that |f(x) - L| < t.

(4.2.1B) **Functional Limit - Topological Characterization**. Let *c* be the limit point of the domain of *f*. We say $\lim_{x\to c} f(x) = L$ provided that, for every *V* (*L*) of *L*, there exists a *V* (*c*) such that for all $x \in V$ (*c*) it follows that $f(x) \in V$ (*L*).

(4.2.3) **Sequential Criterion for Functional Limits**. Given a function *f* defined on *A* and a limit point *c* of *A*, then $\lim_{x\to c} f(x) = L \Leftrightarrow$ for all sequences $(x_n) \subseteq A$ satisfying $x_n \neq x$ and $(x_n) \to c$, then $f(x_n) \to L$.

(4.2.4) Algebraic Limit Theorem for Functional Limits. Let f and g be functions defined on domain $A \subseteq \mathbf{R}$, and assume that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ for some limit point $c \in A$. Then, (i) $\lim_{x\to c} kf(x) = kL$ for all $k \in \mathbf{R}$, (ii) $\lim_{x\to c} (f(x) + g(x)) = L + M$; $\lim_{x\to c} (f(x)g(x)) = LM$ and (iv) $\lim(f(x)/g(x)) = L/M$, provided $M \neq 0$.

(4.2.5) **Divergence Criterion for Functional Limits**. Let *f* be a function defined on *A*, and *c* be a limit point of *A*. If there exists two sequences (x_n) , (y_n) with $x_n \neq c$ and $y_n \neq c$ and $\lim_{x\to c} x_n = \lim_{x\to c} y_n = c$ but $\lim_{x\to c} f(x_n) \neq \lim_{x\to c} f(y_n)$, then $\lim_{x\to c} f(x)$ does not exist.

(4.3.1) **Continuity**. A function *f* is continuous at a point $c \in A$ if, for all > 0, there exists a > 0 such that whenever |x - c| < i it follows that |f(x) - f(c)| < . If *f* is continuous at every point in the domain *A*, then *f* is continuous on *A*.

(4.3.2) **Characterizations of Continuity**. Let *f*, defined on *A*, and $c \in A$. The function *f* is continuous at *c* if and only if any one of the following conditions is met: (i) For all $\varepsilon > 0$, there exists a $\delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \varepsilon$; (ii) For all *V* (*f*(*c*)), there exists a *V* (*c*) such that $x \in V$ (*c*) implies $f(x) \in V$ (*f*(*c*)); (iii) If $(x_n) \to c$, then $f(x_n) \to f(c)$; If *c* is a limit point of *A*, then the above conditions are equivalent to (iv) $\lim_{x\to c} f(x) = f(c)$.

(4.3.3) **Criterion for Discontinuity**. Let f, defined on A, and $c \in A$ be a limit point of A. If there exists a sequence $(x_n) \subseteq A$ where $(x_n) \rightarrow c$ but such that $f(x_n)$ does not converge to f(c), we may conclude that f is not continuous at c.

(4.3.4) Algebraic Continuity Theorem. Assume f, g defined on A, continuous at a point $c \in A$. Then, (i) kf(x) is continuous at $c \forall k \in \mathbf{R}$; (ii) f(x) + g(x) is continuous at c; (iii) f(x)g(x) is continuous at c; and (iv) f(x)/g(x) is continuous at c, provided the quotient is defined.

(*) All polynomials are continuous on R.

(4.3.9) **Compositions of Continuous Functions**. Given *f* defined on *A* and *g* defined on *B*, and assume the range $f(A) = \{f(x) : x \in A\}$ is contained in the domain *B* so that the composition $g \cdot f(x) = g(f(x))$ is defined on *A*. If *f* is continuous at $c \in A$, and *g* is continuous at $f(c) \in B$, then g(f(x)) is continuous at *c*.

(4.4.1) **Preservation of Compact Sets**. Let *f* defined on *A* be continuous on *A*. If $K \subseteq A$ is compact, then *f*(*K*) is compact as well.

(4.4.2) **Extreme Value Theorem**. If *f*, defined on *K* compact, is continuous on $K \subseteq \mathbf{R}$, then *f* attains a maximum and a minimum value. In other words, there exists $x_0, x_1 \in K$ such that $f(x_0) \leq f(x) \leq f(x_1)$ for all $x \in K$.

(4.4.4) **Uniform Continuity**. A function *f* defined on *A* is uniformly continuous on *A* if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in A$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

(4.4.5) **Sequential Criterion for Absence of Uniform Continuity**. A function defined on A fails to be uniformly continuous on A if and only if there exists a particular $\varepsilon_0 > 0$ and two sequences (x_n) , (y_n) in A satisfying $|x_n - y_n| \rightarrow 0$ but $|f(x_n) - f(y_n)| \ge \varepsilon_0$.

(4.4.7) **Uniform Continuity on Compact Sets**. A function that is continuous on a compact set *K* is uniformly continuous on *K*.

(4.5.1) **Intermediate Value Theorem**. Let *f* be defined on [*a*, *b*] be continuous. If *L* is a real number satisfying f(a) < L < f(b) or f(a) > L > f(b), then there exists a point $c \in (a, b)$ such that f(c) = L.

(4.5.3) **Intermediate Value Property**. A function *f* has the intermediate value property on an interval [a, b] if for all x < y in [a, b] and all *L* between f(x) and f(y), it is always possible to find a point $c \in (x, y)$ where f(c) = L.

Sequences of Functions

(6.2.1) **Pointwise Convergence:** For each $n \in N$, let f_n be a function defined on set $A \subseteq \mathbf{R}$. The sequence of functions converges pointwise on A to a function f if, (1) for all $x \in A$, the sequence pf real numbers $f_n(x)$ converges to $f(x) \Leftrightarrow$ for every > 0 and $x \in A$, there exists an N such that $|f_n(x) - f(x)| < \forall n \ge N$.

(6.2.3) **Uniform Convergence:** Let (f_n) be a sequence of functions defined on a set $A \subseteq \mathbb{R}$. Then, (f_n) converges uniformly on A to a limit function f defined on A if, for every > 0, there exists an $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < whenever <math>n \ge N$ and $x \in A$.

(6.2.5) **Cauchy Criterion for Uniform Convergence:** A sequence of functions (fn) defined on a set $A \subseteq R$ converges uniformly on A if and only if for every $\varepsilon > 0$, there exists an $N \in N$ such that $|fn(x) - fm(x)| < \varepsilon$ whenever m, $n \ge N$ and $x \in A$.

(6.2.6) **Continuous Limit Theorem:** Let (f_n) be a sequence of functions defined on $A \subseteq \mathbf{R}$ that converges uniformly on A to a function f. If each fn is continuous at $c \in A$, then f is continuous at c.

(6.3.1) **Differentiable Limit Theorem:** Let $f_n \rightarrow f$ pointwise on the closed interval [a, b], and assume that each f_n is differentiable. If (f_n) converges uniformly on [a, b] to a function f, then the function f is differentiable and f' = g.

(6.3.2) Weaker Differentiability Limit Theorem: Let (f_n) be a sequence of differentiable functions defined on the closed interval [a, b], and assume (f_n) converges uniformly on [a, b]. If there exists a point $x_0 \in [a, b]$ where $f_n(x_0)$ is convergent, then (f_n) converges uniformly on [a, b].

(6.3.3) **Stronger Differentiable Limit Theorem:** Let (f_n) be a sequence of differentiable functions defined on the closed interval [a, b], and (f_n') converges uniformly to a function g on [a, b]. If there exists a point $x_0 \in [a, b]$ where $f_n(x_0)$ is convergent, then (f_n) converges uniformly. Moreover, the limit function $f = \lim f_n$ is differentiable and satisfies f' = g.

Series of Functions

(6.4.1) **Convergence of Series of Functions**: For each $n \in \mathbb{N}$, let f_n and f be functions defined on a set $A \subseteq \mathbb{R}$. The infinite series $\sum f_n(x)$ **converges pointwise** on A to f(x) if the sequence $s_k(x)$ of partial sums defined by $s_k(x) = f_1(x) + f_2(x) + ... + f_k(x)$ converges pointwise to f(x). The series **converges uniformly** on A to f if the sequences $s_k(x)$ converges uniformly on A to f(x).

(*) If have series in which functions f_n are continuous, then by the Algebraic Continuity Theorem the partial sums will be continuous as well.

(6.4.2) **Term by Term Continuity Theorem.** Let f_n be continuous functions defined on a set $A \subseteq \mathbf{R}$, and assume that $\sum f_n$ converges uniformly to a function f. Then, f is continuous on A. **Proof idea:** Apply Continuous Limit Theorem (6.2.6) to partial sums $s_k = f_1 + f_2 + ... + f_k$.

(6.4.3) **Term by Term Differentiability Theorem**. Let f_n be differentiable functions defined on an interval A, and assume that $\sum f'_n(x)$ converges uniformly to a limit g(x) in A. If there exists a point $x_0 \in [a, b]$ where $\sum f_n(x_0)$ converges, then the series $\sum f_n(x)$ converges uniformly to a differentiable function f(x) satisfying f'(x) = g(x) on A. In other words, $f(x) = \sum f_n(x)$ and $f'(x) = \sum f_n'(x)$. **Proof idea:** Apply the Stronger Differentiable Limit Theorem to the partial sums $s_k = f_1 + f_2 + ... + f_k$. and observe that the Algebraic Differentiability Theorem (5.2.4) implies that $s'_k = f'_1 + f'_2 + ... + f'_k$.

(6.4.4) Cauchy Criterion for Uniform Convergence of a Series. A series $\sum f_n$ converges uniformly on $A \subseteq \mathbf{R}$ if and only if for every > 0, there exists an $N \in \mathbf{N}$ such that $|f_{m+1}(\mathbf{x}) + f_{m+2}(\mathbf{x}) + ... + f_n(\mathbf{x})| < whenever <math>n > m \ge N$ and $x \in A$.

(6.4.5) Weierstrass M-Test. For each $n \in \mathbf{N}$, let f_n be a function defined on a set $A \subseteq \mathbf{R}$ and let $M_n > 0$ be a real number satisfying $|f_n(x)| \le M_n$ for all $x \in A$. If $\sum M_n$ converges, then $\sum f_n$ converges uniformly on A. **Proof idea**: Cauchy Criterion and the triangle inequality.

Power Series: functions of the form $f(x) = \sum a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$

(6.5.1) If a power series $\sum a_n x^n$ converges at some point $x_0 \in \mathbf{R}$, then it converges absolutely for any x satisfying $|x| < |x_0|$. **Proof Idea:** Since the series converges, then the sequence of terms is bounded (converges to 0). Using the hypothesis (if $x \in \mathbf{R} : |x| < |x_0|$), find series of $M|x/x_0|^n$ to be geometric with ratio $|x/x_0| < 1$, so converges and thus by Comparison Test, converges absolutely.

(*) Implies that the set of points for which a given power series converges must necessarily be $\{0\}$, **R**, or a bounded interval centered around x = 0. R is referred to as the radius of convergence of a power series.

(6.5.2) If a power series $\sum a_n x^n$ converges absolutely at a point x0, then it converges uniformly on the closed interval [-c, c] where c = |x0|. **Proof Idea**: Application of the Weierstrass M-Test.

(*) if the power series $g(x) = \sum a_n x^n$ converges conditionally at x = R, then it is possible for it to diverge when x = -R. Sample with R = 1: $\sum (-1)^n x^n / n$.

(6.5.3) **Abel's Lemma.** Let b_n satisfy $b_1 \ge b_2 \ge b_3 \ge ... \ge 0$, and let $\sum a_n$ be a series for which the partial sums are bounded. In other words, assume that there exists A > 0 such that $|a_1 + a_2 + ... + a_n| \le A$ for all $n \in \mathbb{N}$. Then for all $n \in \mathbb{N}$, $|a_1b_1 + a_2b_2 + ... + a_nb_n| \le Ab_1$.

(6.5.4) **Abel's Theorem**. Let $g(x) = \sum a_n x^n$ be a power series that converges at the point x = R > 0. Then the series converges uniformly on the interval [0, *R*]. (Similar result for x = -R.)

(6.5.5) If a power series converges pointwise on the set $A \subseteq R$, then it converges uniformly on any compact set $K \subseteq A$. **Proof idea**: Apply Abel's Theorem (6.5.4) to the max and min of the compact set K.

(*) Power series is continuous at every point at which it converges.

(6.5.6) If $\sum a_n x^n$ converges for all $x \in (-R, R)$, then the differentiated series $\sum na_n x^{n-1}$ converges at each $x \in (-R, R)$ as well. Consequently, the convergence is uniform on compact sets contained in (-R, R).

(*) Series can converge at endpoint, but differentiated series can diverge. Ex: $\sum x^n/n$ at x = -1.

(6.5.7) Assume $f(x) = \sum a_n x^n$ converges on an interval $A \subseteq \mathbf{R}$. Then, the function f is continuous on A and differentiable on any open interval $(-R, R) \subseteq A$. Moreover, the derivative is given by $f'(x) = \sum na_n x^{n-1}$ and f is infinitely differentiable on (-R, R), and the successive derivatives can be obtained via term by term differentiation of the appropriate series.

Results from psets:

4W:

- The limit of a sequence, if it exists, must be unique. First, assume $\lim a_n = a$ and $\lim a_n = b$, and proceed to show that a = b.
- (Reverse Triangle Inequality): |a + b| ≤ |a| + |b| ⇒ Inverse Triangle Inequality: |a b| ≥ ||a|
 |b||.
- For sequences (x_n) , (y_n) :
 - (x_n) and (y_n) divergent but $(x_n + y_n)$ convergent; $x_n = n$, $y_n = -n$.
 - (x_n) convergent and (y_n) convergent, and $(x_n + y_n)$ converges; impossible by the ALT
 - (b_n) convergent with $b_n \neq 0 \forall n : (1/b_n)$ convergent; $b_n = 1/n$
 - unbounded (a_n) and convergent (b_n) and $(a_n b_n)$ bounded; impossible
 - (a_n) , (b_n) such that (a_nb_n) converges but (b_n) does not; $(a_n) = 0$, $(b_n) = n$.

4F:

- (Squeeze Theorem): If $x_n \le y_n \le z_n \forall n \in \mathbb{N}$ and $\lim x_n = \lim z_n = L$, then $\lim y_n = L$.
- (Cesaro Means): If (x_n) is a convergent sequence, then the sequence given by the averages y_n = n⁻¹(x₁ + x₂ + ... + x_n) also converges to the same limit. Note: it is possible for (y_n) of averages to converge even if (x_n) does not. Example: x_n = (-1)ⁿ
- (Limit Superior): lim sup $a_n = \lim_{n \to \infty} y_n$ where $y_n = \sup\{a_k : k \ge n\}$
 - \circ y_k converges
 - lim inf $a_n = \lim_{n \to \infty} x_n$ where $x_n = \inf\{a_k : k \ge n\}$
 - lim inf $a_n \leq \lim \sup a_n$ for every bounded sequence.
 - Strict inequality when $\lim a_n = -1 \lim \sup a_n = 1$.
 - lim inf a_n = lim sup a_n if and only if lim an exists, and all three values are equal.

5W:

- For (a_n) , (b_n) Cauchy, we have that:
 - $c_n = |a_n b_n|$ is Cauchy while $c_n = (-1)^n a_n$ is not Cauchy.

5F:

- (Infinite product) $\prod b_n = b_1 b_2 b_3 \dots$
 - Understood in terms of sequence of partial products $p_m = \prod b_n = b_1 b_2 \dots b_m$
 - The sequence of partial products converges if and only if $\sum a_n$ converges.
- If $a_n > 0$ and lim $(na_n) = L \neq 0$, then $\sum a_n$ diverges.
- Assume that $a_n > 0$ and $\lim n^2 a_n$ exists. Then $\sum a_n$ converges.
- For sequence (a_n) :
 - If $\sum a_n$ converges absolutely, then $\sum a_n^2$ converges absolutely

- FALSE: If $\sum a_n$ converges and (b_n) converges, then $\sum a_n b_n$ converges. Counterexample: $a_n = b_n = (-1)^n (\sqrt{n})^{-1}$
- If $\sum a_n$ converges conditionally, then $\sum n^2 a_n$ diverges.
- (Ratio Test): Given series $\sum a_n$ with $a_n \neq 0$, the Ratio Test states that if (a_n) satisfies lim $|a_{n+1}/a_n| = r < 1$, then the series converges absolutely.

6W:

6F:

7W:

7F:

- Lipschitz Condition
 - A function f is called Lipschitz if there exists a bound M > 0 such that $|(f(x) f(y))/(x y)| \le M$ for all $x \ne y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.
 - If *f* defined on *A* is Lipschitz, then it is uniformly continuous on *A*.
- Inverse function + Topological Characterization of Continuity
 - Let g be defined on all of **R**. If $B \subseteq \mathbf{R}$, define the set $g^{-1}(B)$ by $g^{-1}(B) = \{x \in \mathbf{R} : g(x) \in B\}$
 - g is continuous if and only if $g^{-1}(O)$ is open whenever $O \subseteq \mathbf{R}$ is an open set
 - if *f* is a continuous function defined on **R**,
 - $g^{-1}(K)$ is not necessarily compact whenever K is compact
 - $g^{-1}(F)$ is closed whenever F is closed

8W:

8F:

9W:

9F: