MATH 317: INTRODUCTION TO OPERATIONS RESEARCH: FALL 2022
HOMEWORK SOLUTION KEY

STEVEN J. MILLER (SIM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 317, FALL 2022

ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material in the book so
that you can do the problems to thinking about the problem statement, how you might go about solving it, and why some
approaches work and others don’t. Another important part, which is often forgotten, is how the problem fits into math. Is this
a cookbook problem with made up numbers and functions to test whether or not you’ve mastered the basic material, or does it
have important applications throughout math and industry? Below I’ll try and provide some comments to place the problems
and their solutions in context.
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1. HW #2: DUE SEPTEMBER 19, 2022

1.1. Problems. #0: Write a program to generate Pascal’s triangle modulo 2. How far can you go? Can you use the
symmetries to compute it quickly? You do not need to hand this in. From the textbook: #1: Exercise 1.7.4 (there are
many trig tables online: see for example http://www.sosmath.com/tables/trigtable/trigtable.
html), and read BUT DO NOT DO Exercise 1.7.5. #2: Exercise 1.7.7. #3: Exercise 1.7.18. #4: Exercise 1.7.34. #5:
Exercise 1.7.26. #5: Exercise 1.7.36.

1.2. Solutions.

#0: The Pascal’s triangle was not meant to be turned in. If you are interested, email me for my code. The book
suggests some approaches.

#1: Exercise 1.7.4. Another way to do multiplication is to note
(a+b)? —a? —b2.
2 )

a-b =

how does this compare to the Babylonian method?
Solution: This is similar, but instead of squaring twice we square thrice; will thrice is fun to say, and lets your mind
wander to how you say doing something four times, I would prefer to do the other approach!

NOTE: I mentioned trig tables. That is Exercise 1.7.6. If we know the values of either sin(x) or cos(z) for 0 < x <
7 /4 (or from O to 45 degrees if you prefer not to work in radians) then we can find the values of all trig functions using

basic relations (such as sin(x + w/2) = cos(x)). Create a look-up table of sin(x) by finding its values for x = %%
with k € {0,1,...,45}. Come up with at least two different ways to interpolate values of sin(x) for x not in your

list, and compare their accuracies. For which values of x are your interpolations most accurate? 1 didn’t assign this,

assigned the easier Exercise 1.7.4, but wanted to write this up as it illustrates good concepts

Solution: There are many trig tables online (see for example
http://www.sosmath.com/tables/trigtable/trigtable.html

for one such table). A very simple way is to use whatever value is closest. Thus if we have values for sin x,, for
n € {0,1,..., N}, one option is to approximate sin x by sin z,,, where n is chosen so that x,, is the closest angle to .
We can do better. The next idea is to linearly interpolate between the two angles closest. Thus, if z,, < & < T,41
(there is no reason to interpolate if = happens to be one of the angles in our table!), one possibility is to look at a linear
combination of sin x,, and sin z,,1. Thus we can look at w,, sinx,, + (1 — w,,) sin x,, 11, where we have chosen a
non-negative weight w,, € [0, 1]. While we have complete freedom in choosing these weights, some choices are better
and more natural than others. It seems reasonable that we should weight more the angle closer to . Thus one option is
Tpt1 — T xr— T,

sinx,, +
Tptl — Tn T —Tp

SIN Tpp41-

Notice the weights add to 1, and the closer z is to x,, the less we care about sin z,,+; and the more we care about
sin x,, in our approximation (and we have a similar result for = close to x,,41).
There is another option: we can use calculus and use Taylor series. If z,, is the closet angle to x, we have
sin’ z, sin” z,, sin”’ z,,

P o 2
@)t (@)t

However, as the derivative of sine is cosine and the derivative of cosine is negative sine (we need our angles to be
measured in radians for this to hold!), we get the following:
COS Ty, sin z,, COS Ty,

@) = @ )’ — =

We now have an interesting problem: which is better? Is it better to interpolate with linear weights, or the Taylor
series? The more Taylor coefficients we take the more accurate it should be, so eventually the Taylor method should be
superior. Numerical computations for one fixed choice suggest that even the one term Taylor series is better.

It’s worth noting that the Taylor series expansion of sine only involves sines and cosines; thus given a Taylor series
of degree d we can express our answer as a weight of the values of sine and cosine of the closest angle! Of course, the
weight used depends on the value of our input, but our output is linear in the values of the lookup table. The difference
is that we’re not using two adjacent angles for sine, but sine and cosine at the same angle.

sinz = sinz, + (x—xp)3+---

sinx = sinz, + (x—xp)> 4.


http://www.sosmath.com/tables/trigtable/trigtable.html
http://www.sosmath.com/tables/trigtable/trigtable.html
http://www.sosmath.com/tables/trigtable/trigtable.html
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We assume we have a lookup table for sin(x) at each degree, from O to 360, and discuss various ways to interpolate.
As Mathematica evaluates in radians, we need to put in a conversion factor.

The first program, linweightf, calculates the weights needed and uses linear weights. As the separation between
entries in the lookup table is 1, the denominator in calculating the weights is fortunately just 1. These weights are easy
to find and the calculation is pretty fast.

Taylorf is a bit more involved, but not horribly so. It looks at the Taylor expansion at a point to a given degree. The
calculation is longer, but only uses the values in the table. Even doing just one term seems to do better, and of course
the more terms we take the better we do.

convert = Pi / 180. ;

linweightf[x_] = Module([{},
w = Ceiling[x] - x;
new = w Sin[Floor[x] convert] + (1 - w) Sin[Ceiling[x] convert];
Return[new];
17
taylorf[x_, d_] := Module[{},
step = If[x - Floor[x] < .5, x - Floor[x], Ceiling[x] - x] convert;
nearest = If[x - Floor[x] < .5, Floor([x], Ceiling[x]];
new = 0;
For[k = 0, k <= d, k++,
new =
new + If[Mod[k, 2] == 0, Sin[nearest convert],
Cos[nearest convert]] If[Mod[k, 4] == 2 || Mod[k, 4] == 3, -1,

1] step”k / k!
1;
Return[new];
1;
Below we calculate how good the various approximations do at 13.432 degrees. Even the linear weight is doing a
good job. We print out the answer and the two nearest values in the lookup table.

In[90]:= angle = 13.432;

Print["Angle = ", anglel;

Print[Sin[angle convert], ", ", Sin[Floor[angle] convert], ", "

Sin[Ceiling[angle] convert]];

linweightf[angle]

taylorfl[angle, 1

taylorf[angle, 2

taylorflangle, 3
[ 4

]
]
]
taylorflangle, ]

During evaluation of In[90]:= Angle = 13.432

During evaluation of In[90]:= 0.232291, 0.224951, 0.241922
Out [93]= 0.232282

Out[94]= 0.232298

Out [95]= 0.232291

Out[96]= 0.232291

Out [97]= 0.232291

In the analysis below, we fix a fractional angle and then look at it plus n, for n from O to 359. We calculate the
absolute value of the error in each method and sum, and see which method has the lowest aggregate error. The first
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order Taylor series is only a little better than the linear weights, but it is better. The second order gives us a few more
digits of accuracy, and the third and fourth are ridiculously good!

decimal = .432;
For[d = 0, d <= 10, d++, error[d] = 0];
For[n = 0, n <= 359, n++,

{

angle = n + decimal;

value Sin[angle convert];

error[0] = error[0] + Abs[ value - linweightflanglel]l];
For[d = 1, d <= 4, d++,
error[d] = error[d] + Abs[value - taylorflangle, d]ll;

P
For[d = 0, d <= 4, d++, Print([d, ": ", error([d]]]

0: 0.00856529
1: 0.00651435
2: 0.0000163723
3: 3.0861%10"-8

4: 4.65334%x10"-11

#4: Exercise 1.7.7. One of the most important densities in probability theory is the standard normal:

_ L ez
flz) = me .

The corresponding cumulative distribution function, F(x), gives the probability of obtaining a value at most x:

)= [ s

note F' = f. Unfortunately there is no simple closed form expression for the anti-derivative. We could try to find a
series expansion for it by expanding the exponential; unfortunately, as one of the bounds is negative infinity we cannot
integrate term by term. We are saved by noting that F(0) = 1/2 and thus

F@) = 5+ [ T Lt
2 0o V2m ’

the convention is to define the error function (or erf) by

I\/i 1 t2/2
erf(z / = / ——e ' /4dt.
\f 0 V2T

Create a look-up table for F(x) for x € [0,5] (say in steps of size .1). Come up with at least two different ways
to interpolate values of erf(x) for x not in your list, and compare their accuracies. For which values of x are your
interpolations most accurate?

Solution: One can use

http://www.sjsu.edu/faculty/gerstman/EpiInfo/z-table.htm

to get some values.... The analysis is almost identical to the trig problem. We construct the interpolation as before using
linear weights. For areas under the standard normal, we can again do a Taylor expansion. While there is no closed form
expression for the anti-derivative of the normal’s density, we can easily take its derivative and construct an expansion
about any point. The density is exp(—x2/2)/+/27, and the derivatives are readily found. We often use ®(z) to denote
the value in the look-up table for the integral of the standard normal from —oo to z.

For example, the linear weight approach would give

Tpal — T —x,
L@(.’L‘n) +

d(x .
Tpil — Tn T — T, (nt1)


http://www.sjsu.edu/faculty/gerstman/EpiInfo/z-table.htm
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For the Taylor series, we find

() + exp(—z2/2) (& — ) xnexp(—1z2/2)
Ver 2V2r

where x,, is the nearest value to . While at first this looks worse than the sine expansion, at the end of the day in
some sense it’s very similar. The reason is we can write our answer as a combination of ®(x,,) and exp(—x2/2). The
difficulty is we now need to calculate that function! We can approximate that if needed by a Taylor series expansion of
the exponential function, but it’s important to realize that we may not know it exactly. Fortunately in the Taylor series
approximation to ®(x) as we keep taking higher derivatives all that happens is we get different polynomials times
exp(—x2 /2). Of course, this suggests that good choices for x,, might be such that the exponential is easily calculated;
for example, z,, = v/21og 5; unfortunately, we then need to figure out what that is! The gist is that this problem really
wants fwo look-up tables, one for ®(x,,) and one for exp(—x2 /2).

(x_mn)2+...’

One final remark: in everything we’ve done we assume we have N values in our look-up table and we space them
uniformly. While that might seem the most natural, it is wasteful. It turns out you want more points where the derivative
is large, and fewer points where the derivative is small. The reason is that if you only have a fixed number of places
to sample, sample where they’re most valuable. If the derivative is small the function is mostly flat, and you’ll make
smaller errors in interpolating! This leads to the very important subject of dynamic sampling.

EXTRA PROBLEM: Exercise 1.7.9. Prove the five log laws. For example, for the first we have log, z; = y;, so
x; = bY¥. Thus zyz9 = HY1bY¥2 = Y112, By definition, we now get log, (z172) = 91 + y2, which finally yields
logy (z122) = logy, 1 + log, z2. 'M INCLUDING THIS AS IT°S WORTH SEEING THE PROOFS.
Solution: (2) If log, x = y then & = bY so " = b"Y and thus log, (z") = ry = rlog, z. (3) Take the logarithm base b
of b'°% * and use (2). (4) follows from (1) applied to x5 ! and then using (2) for x5 1 (5) Is the most interesting. Let
log.x =ysox =c¥. As b = c!°8:? by (3), we find

plogsz — log,zlog. b log,blog, x = log, xlog,blog, ¢

by taking logs of both sides and using (3); the result follows from division and noting log, ¢ = 1.

#3 Exercise 1.7.18. Let ay and as be two positive numbers. Prove their arithmetic mean is never smaller than their
geometric mean. When are the two equal?
Solution: See
https://web.williams.edu/Mathematics/sjmiller/public_html/OSUClasses/487/
ArithMeanGeoMean.pdf

Briefly, equal if and only if the two numbers are the same. For the inequality: Assume 0 < \/as < /a;. Then

0 < (Vai—+az)?
0 < a1 —2ajas+as
v a1as S a@ ;ag.

#4: Exercise 1.7.34. Is there a fast way to multiply three matrices? Four? If yes how much better can you do than
brute force?
Solution: Four matrices: we can do two pairs of two.... For three matrices we can pair two of them and fast multiply....
There are advantages to powers of 2 for the number of objects.

#5: Exercise 1.7.26. Prove that the number of multiplications required by fast multiplication to compute x" is at
most 21ogy(n).
Solution: We showed in class that you need at most log,(n) powers, and worse case is if you multiply all of them
together.... Could probably save a 1 in the number of steps....


https://web.williams.edu/Mathematics/sjmiller/public_html/OSUClasses/487/ArithMeanGeoMean.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/OSUClasses/487/ArithMeanGeoMean.pdf
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HOMEWORK DUE MONDAY SEPTEMBER 26: #1: Investigate the Euclidean algorithm for various choices of =
and y. What values cause it to take a long time? A short time? For problems like this you need to figure out what is the
right metric to measure success. For example, if © < y and it takes s steps, a good measure might be s/ log, (). #2:
What is the dimension of the Cantor set? #3: Exercise 3.7.38: Find the optimal solution to the diet problem when the
cost function is Cost(x1,x2) = x1 + x2. #4: Exercise 3.7.39. There are three vertices on the boundary of the polygon
(of feasible solutions); we have seen two choices of cost functions that lead to two of the three points being optimal
solutions; find a linear cost function which has the third vertex as an optimal solution. #5: Exercise 3.7.40. Generalize
the diet problem to the case when there are three or four types of food, and each food contains one of three items a
person needs daily to live (for example, calcium, iron, and protein). The region of feasible solutions will now be a
subset of R3. Show that an optimal solution is again a point on the boundary. #6: the diet problem with two products
and two constraints led us to an infinite region, and then searching for the cheapest diet led us to a vertex point. Modify
the diet problem by adding additional constraints so that, in general, we have a region of finite volume, and again show
that the optimal point is at a vertex. Your constraints should be reasonable, and you should justify their inclusion.
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2. HW #3: DUE MONDAY, SEPTEMBER 26

#0: #1: Investigate the Euclidean algorithm for various choices of z and y. What values cause it to take a long time?
A short time? For problems like this you need to figure out what is the right metric to measure success. For example,
if x < y and it takes s steps, a good measure might be s/ log,(z). #2: What is the dimension of the Cantor set? #3:
Exercise 3.7.38: Find the optimal solution to the diet problem when the cost function is Cost(z1, z2) = x1 + 2. #4:
Exercise 3.7.39. There are three vertices on the boundary of the polygon (of feasible solutions); we have seen two
choices of cost functions that lead to two of the three points being optimal solutions; find a linear cost function which
has the third vertex as an optimal solution. #5: Exercise 3.7.40. Generalize the diet problem to the case when there are
three or four types of food, and each food contains one of three items a person needs daily to live (for example, calcium,
iron, and protein). The region of feasible solutions will now be a subset of R3. Show that an optimal solution is again a
point on the boundary. #6: the diet problem with two products and two constraints led us to an infinite region, and then
searching for the cheapest diet led us to a vertex point. Modify the diet problem by adding additional constraints so
that, in general, we have a region of finite volume, and again show that the optimal point is at a vertex. Your constraints
should be reasonable, and you should justify their inclusion.

2.1. Solutions. #1: Investigate the Euclidean algorithm for various choices of = and y. What values cause it to
take a long time? A short time? For problems like this you need to figure out what is the right metric to measure
success. For example, if < y and it takes s steps, a good measure might be s/ log, (z).
Solution: The answer are adjacent Fibonacci numbers. Clearly we can make things take more steps by taking the
numbers larger, and thus it is important to come up with a reasonable metric. A great choice is to look at the number
of steps versus the theoretical maximum. Of course, we don’t have to get the theoretical maximum perfectly correct;
it suffices to get the correct growth rate with respect to = and we can miss by a multiplicative constant, as that would
affect all rations equally. Thus we’ll use log, « for our scaling.

Next, we can assume x < y < 2z; if y > 2x it won’t take more steps than the corresponding y (which has the same
remainder when dividing by z) that lives in [z, 2x).

We make the assumption that there is some ratio r between x and y that leads to the worse run-time. The worse
possible case is that after each step the two new numbers also have that ratio. Thus, imagine we go from (z,y) to
(y — x, z) and both pairs have ratio r:

Cross multiplying and simplifying gives
y> —xy = 2® therefore y? —zy —2? = 0.

We solve for y as a function, or equivalently we write y = rx and find r satisfies

r?z? —rz? -2 =0 or 2°(r  —r—1) = 0.

Notice that the equation for r is the same as the characteristic polynomial, and we find

14++5
7
As z < y we need r > 0, and thus the ratio that will give us the most trouble should be r = (1 + \/5) /2; this is the
Golden Mean, and leads to the Fibonacci numbers!

The above is not a fully fleshed out proof. It assumed there was a worse ratio (clearly the algorithm runs fastest
when y = z). Let’s try to attack this from the other perspective: let’s start off with the smallest pair and move upwards:
so we go from (1,0) to (1,1) to (2,1) to (3,2) to (5,3), .... At each stage we do what keeps us as small as possible, and
makes the next number as small as possible, and thus this is the optimal approach.

#2: What is the dimension of the Cantor set?

Solution: The dimension is log; 2. We use the formula that the dimension d can be found by ¢ = r¢, where when we
dilate our set by a factor of r we end up with d copies of it. For the Sierpinski triangle from class, when we doubled the
sides we ended up with three copies of our original triangle. Remember the Cantor set is defined as what is left when
we remove the middle third of each interval at each stage. Thus we start with [0, 1], then go to [0,1/3] U [2/3, 1], then
[0,1/9] U [2/9,1/3] U [2/3,7/9] U [8/9,1], and so on. If we triple the set (so we map z to 3x) then we end up with
two copies of the Cantor set: the region contained in [0, 1/3] expands to a full Cantor set in [0, 1], as does the region
contained in [2/3, 1], but now to a Cantor set in [2, 3]. We thus have ¢ = 2 when r = 3, so 2 = 3¢ or the dimension d
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FIGURE 1. Diet Problem 1: Plot of the first diet problem, with several cost lines.

equals logs 2 ~ .63093. Note this is a number between 0 and 1, which is reasonable as the Cantor set is fatter than a
singleton but thinner than a point.
#3: Exercise 3.6.38. Find the optimal solution to the diet problem when the cost function is Cost(x1,z2) =
xr1 + o
Solution: When I first taught this course I made a mistake in describing the Diet Problem in the notes. In the text I
had one unit of cereal contributing 30 units of iron and 5 units of protein; however, when I wrote the equations in (1) I
transposed things, and had one unit of cereal giving 30 units of iron and 15 units of protein. I'll thus solve the problem
both ways.

Using the numbers in the book, we have the following system of equations:

30x1 + 1529 > 60 (iron)
5x1 + 10x2 70 (protein)

>
T, r2 = 0, 2.1
and now we want to minimize Cost(x1, z2) = 1 + x2. It isn’t immediately clear what the optimal solution is, as both
products have the same cost per unit, but one delivers more iron and the other more protein. We give a plot in Figure

Here is the Mathematica code to generate the plot.
linel([x_] := If[-2 x + 4 > 0, -2 x + 4, 0]

Cost([x_, c_] := If[ -x + ¢ > 0, -x + ¢, 0]
Plot[{linel[x], -.5 x + 7, Cost[x,10.0], Cost[x,10.17,

Cost[x,10.2], Cost[x,10.3], Cost[x,10.4], Cost[x,10.5]}, {x,0,14}]

The cost falls as we shift the cost lines down and to the left. Notice that whenever the protein constraint is satisfied
then the iron constraint holds as well, and is thus extraneous. (To see this, note the coefficients from this equation are
all larger than those of the one below, and the required amount is less!) The optimal diet will be entirely steak (i.e.,
only the second product). Thus ; = 0 and x5 = 7.

We now consider the other diet problem:

30x1 + 522 > 60 (iron)
1521 + 10z > 70 (protein)
L1, X2 Z 07 (22)

and now we want to minimize Cost(z1, z3) = x1 + x2. We give a plot in Figure
The Mathematica code is
line2[x_] := If[-6 x + 12 > 0, -6 x + 12, 0]
Cost([x_, c_] := If[ -x + ¢ > 0, -x + ¢, 0]
Plot[{line2[x], -1.5 x + 7, Cost[x, 10.0], Cost[x, 10.17],
Cost[x,10.2], Cost[x,10.3], Cost[x,10.4], Cost[x,10.51}, {x,0,5}]
The cost is falling as the cost line moves down and to the left. We flow until we have none of the second product,
only buying the first product (thus z; = 4% and x5 = 0).
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FIGURE 2. Diet Problem 1: Plot of the second diet problem, with several cost lines.

#4: Exercise 3.6.39. There are three vertices on the boundary of the polygon (of feasible solutions); we have
seen two choices of cost functions that lead to two of the three points being optimal solutions; find a linear cost
function which has the third vertex as an optimal solution.

Solution: We have:

301 +5x2 > 60 (iron)
1521 + 10z > 70 (protein)
zi,2 > 0. 2.3)

The two lines have slope -6 and -1.5; if we choose our cost function to have a slope between these two values, then the
intersection of those two lines will be the unique optimal point. We can do this if we take a slope of -4, or equivalently
if the cost function is Cost(z1,z2) = 421 + x2 (though we may replace the 4 with any number strictly between 1.5
and 6).

#5: Exercise 3.6.40. Generalize the diet problem to the case when there are three or four types of food, and each
food contains one of three items a person needs daily to live (for example, calcium, iron, and protein). The region
of feasible solutions will now be a subset of R3. Show that an optimal solution is again a point on the boundary.
Solution: If each food can contain exactly one item, then the only way we can have a solution is if each food contains
a different item or we have more food choices than needed items. If we only have three food items, each food must
contain a different nutrient, and then there is only one feasible diet: take the appropriate amount of each food. If instead
we have four types of food, we need two of the food types to have the same nutrient, and the other two foods to have
the remaining two nutrients. In this case, the only interesting aspect of the problem concerns the nutrient represented
by two different foods. We simply take whichever food has a better price per unit of nutrient.

The problem is more interesting if the foods can contain all three items. In this case, if we have x; units of food j,
and food j delivers a;; units of nutrient ¢ then, assuming we need r; units of nutrient 4 to stay alive, our constraints are

a1171 + a12T2 +a13rs = 11
(2171 + G22%2 + G23T3 = T2
a31r1 + azax2 +aszrs = T3
r1,722,23 = 0. (2.4)

The cost function is Cost(x1, 2, x3) = c121 + coxa + c3x3.

The same logic as before shows that an optimal solution must be on a boundary; the difference is now we need to
use words like planes rather than lines. Instead of a region in the upper right quadrant we get a region in the positive
octant. We now have planes of constant cost; we can decrease the cost by moving towards the origin, and thus if we’re
at an interior point we can lower the cost by shifting ‘down’. Similarly, once we hit the boundary, we can continue to
lower the cost by moving to a vertex (we might not be lowering the cost if the slopes align, but in that case we at least
keep the cost constant).



10 STEVEN J. MILLER (SIM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 317, FALL 2022

FIGURE 3. Diet Problem 3D: Plot of constraints in a 3-dimensional diet problem.

FIGURE 4. Diet Problem 3: Plot of the third diet problem, now with maximum daily allowances.

It’s a bit harder of course to visualize things in three-dimensions. We give a plot in Figure [3} the constraints are

2r+y+2z > 4

br+2y+2 > 4

3x+4y+2z > 6

z,y,2 > 0
The Mathematica code is

planel[x_, y_] := If[-2 x -y + 4 >0, -2 x -y + 4, 0];
plane2[x_, y_] := If[-.6 x - 2 vyv + 4 >0, -.6 x -2y + 4, 0];
plane3[x_, y_] := If[-3 x =4y + 6 >0, -3 x -4y + 6, 0];
Plot3D[{planel([x,y], plane2(x,y], plane3[x,yl}, {x,0,2}, {y,0,2}]

#6: the diet problem with two products and two constraints led us to an infinite region, and then searching for
the cheapest diet led us to a vertex point. Modify the diet problem by adding additional constraints so that, in
general, we have a region of finite volume, and again show that the optimal point is at a vertex. Your constraints
should be reasonable, and you should justify their inclusion.
Solution: There are lots of ways to keep things finite. A ‘fun’ way is to prohibit you from eating too much of any
nutrient (in other words, too much of a good thing can kill you!). Right now we said we need at least 60 units of iron
and at least 70 units of protein; maybe we die if we eat more than 100 units of iron or 140 units of protein. We give a
plot in Figure 4

The Mathematica code is
line3([x_, c_] := If[-6 x + ¢/5 > 0, -6 x + c/5, 0]
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lined([(x_, c_] := If[-1.5 x + ¢/10 > 0, -1.5 x + ¢/10, 0]
Plot[{line3([x, 60], line3[x, 100], lined[x, 70], lined([x, 140]},
{x, 0, 10}]

There is a very nice consequence to our restrictions. We now have a closed and bounded subset of the plane. We
know from real analysis that any continuous function on a closed and bounded set attains its maximum and its minimum.
Thus, there is an optimal diet (i.e., a cheapest diet that will keep you alive).

The problem is we don’t necessarily know how to find it. When we start studying the simplex method, we’ll learn
how to flow from a guess to a better guess. This is similar to some items you may have seen. For example, in Lagrange
Multipliers we know candidates for a local extremum of f to the region with constraint function g satisfy V f = AVg;
if the two gradients are not aligned, we obtain information on which direction to flow. Of course, what’s best locally
might not be best globally — it might be better to take a small hit in the beginning to get to the global extremum;
sadly this issue causes enormous complications in the subject. Another situation where you might have seen this is in
contraction mappings, which give an iterative procedure to find fixed points (a nice application of this is in differential
equations).

2.2. HW #4: Due Monday, October 3, 2022. Due Monday, October 3, 2022: #1: Exercise 4.9.8: Prove that any
cubic ax® + bx? + cx + d = 0 can be written as 23 + px + ¢ = 0 (i.e., we can rewrite so that the coefficient of the x>
term vanishes and the coefficient of the 23 term is 1); this is called the depressed cubic associated to the original one.
(For fun see the next problem on how to solve the cubic.) #2: Exercise 4.9.13. Can you construct a canonical linear
programming problem that has exactly two feasible solutions? Exactly three? Exactly k where k is a fixed integer? #3:
Exercise 4.9.15. Find a continuous function defined in the region (z/2)? + (y/3)? < 1 (i.e., the interior of an ellipse)
that has neither a maximum nor a minimum but is bounded. #4: Exercise 5.4.3. Imagine we want to place n queens
on an n X n board in such a way as to maximize the number of pawns which can safely be placed. Find the largest
number of pawns for n < 5. #5: Exercise 5.4.4. Write a computer program to expand your result in the previous
problem to as large of an n as you can. Does the resulting sequence have any interesting problems? Try inputting it in
the OEIS. #6: Consider the problem of placing n queens on an n X n board with the goal of maximizing the number
of pawns which may safely be placed. For each n, let that maximum number be p(n). Find the best upper and lower
bounds you can for p(n). For example, trivially one has 0 < p(n) < n?; can you do better? #7: Exercise 5.4.30: Prove
\/% S e~ /N = > e=™"N_ As N tends to infinity, bound the error in replacing the sum on the right
hand side with the zeroth term (i.e., taking just n = 0). Hint: the Fourier transform of a Gaussian is another Gaussian;

if f(fﬂ) — efamQ then f<y) _ \/7%6—71‘2212/(1.
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3. HW #4: DUE MONDAY, OCTOBER 3, 2022

3.1. Problems. Due Monday, October 3, 2022: #1: Exercise 4.9.8: Prove that any cubic ax® + bx? + cx +d = 0 can
be written as 23 4+ px + ¢ = 0 (i.e., we can rewrite so that the coefficient of the 2% term vanishes and the coefficient of
the =3 term is 1); this is called the depressed cubic associated to the original one. (For fun see the next problem on how
to solve the cubic.) #2: Exercise 4.9.13. Can you construct a canonical linear programming problem that has exactly
two feasible solutions? Exactly three? Exactly k where £ is a fixed integer? #3: Exercise 4.9.15. Find a continuous
function defined in the region (z/2)% + (y/3)? < 1 (i.e., the interior of an ellipse) that has neither a maximum nor a
minimum but is bounded. #4: Exercise 5.4.3. Imagine we want to place n queens on an n X n board in such a way as to
maximize the number of pawns which can safely be placed. Find the largest number of pawns for n < 5. #5: Exercise
5.4.4. Write a computer program to expand your result in the previous problem to as large of an n as you can. Does the
resulting sequence have any interesting problems? Try inputting it in the OEIS. #6: Consider the problem of placing
n queens on an n X n board with the goal of maximizing the number of pawns which may safely be placed. For each
n, let that maximum number be p(n). Find the best upper and lower bounds you can for p(n). For example, trivially
one has 0 < p(n) < n?; can you do better? #7: Exercise 5.4.30: Prove \/% S e~ IN = S e N,
As N tends to infinity, bound the error in replacing the sum on the right hand side with the zeroth term (i.e., taking just
n = 0). Hint: the Fourier transform of a Gaussian is another Gaussian; if f(z) = e=%*" then f(y) = /7 /ae~" ¥’/

3.2. Solutions. #1: Exercise 4.9.8: Prove that any cubic ax® + bz? + cx + d = 0 can be written as 2% + px +¢ =0
(i.e., we can rewrite so that the coefficient of the =2 term vanishes and the coefficient of the =3 term is 1); this is called
the depressed cubic associated to the original one. (For fun see the next problem on how to solve the cubic.)

Solution: Implicit in the above is that a # 0, as if it did we would not have a cubic but a quadratic; this is the old
rectangle-square debate.... If a # 0 we may divide both sides by a and thus may assume the coefficient of 2 is 1. We
now change variables and let = x —b/3. This sends 2° to 2° — bz? + b2 /3 — b® /27, and ba? to ba? — 2b%x /3 + b3 /9
(the other terms are lower order and don’t involve z2); note the coefficient of the z? term is now zero.

#2: Exercise 4.9.13. Can you construct a canonical linear programming problem that has exactly two feasible
solutions? Exactly three? Exactly k where k is a fixed integer?
Solution: Assume x; and x5 are two feasible solutions; thus they satisfy Az = b and have non-negative entries. Then
xt = txy + (1 — t)a2 has non-negative entries for all ¢ € [0, 1] and also satisfies the constraints. Thus if there are
two solutions there are infinitely many. This idea of a weighted linear combination is extremely important, and occurs
frequently in mathematics. It tells us that the solution space is convex.

#3: Exercise 4.9.15. Find a continuous function defined in the region (x/2)% + (y/3)? < 1 (i.e., the interior of an
ellipse) that has neither a maximum nor a minimum but is bounded.
Solution: Consider f(x) = x; it approaches 2 as (x,y) — (2,3) and —2 as (z,y) — (—2,3) but never hits those
values.

#4: Exercise 5.4.3. Imagine we want to place n queens on an n X n board in such a way as to maximize the number

of pawns which can safely be placed. Find the largest number of pawns for n < 5.
Solution: For n € {1,2} the answer is zero; a little work shows also zero for n = 3, then gets harder. The code below
is good enough to brute force n < 5 in seconds, will be very bad for n = 6 (horrible memory management). We get 1
pawn for n = 4 and 3 for n = 5.
chess[n_] := Modulel[{},

maxpawns = 0; (*

max number pawns observe on nxn board that are safe with n queens \
present x)

board = {}; (* create the board =x)
For[i =1, 1 <= n, 1i++,
For[j =1, Jj <= n, j++,

{

board = AppendTol[board, {i, j}1;

}11; (x end of 1, J loops x)
listboard = Subsets|[board, {n}]; (*
all subsets of EXACTLY n squares x)
Print [Length[listboard]]; (=
prints how many cases have to study =)
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(# crashes if don’t subtract 1 below —-- strange x)
For[p = 1, p <= Length[listboard] - 1, p++
{
pawns = 0; (x initialize pawns safe to zero x)
list = listboard[[p]]; (x these are the squares chosen x)
(» mark off what rows,
columns and diagonals are not allowed for pawns x)
horiz = {}; vert = {}; diagl = {}; diag2 = {};
For [k 1, k <= n, k+t+,
{
horiz = AppendTolhoriz, list[[k, 1]111;
vert = AppendTo[vert, list[[k, 2]]
diagl = AppendTo[diagl, list[[k, 1
diag2 = AppendTo[diag2, list[[k, 2
1
(x for each sgquare see if can place a pawn;
if can increase pawn count by 1 x)

]
17

11 - list[[k, 2]11;
11 + list[[k, 1111;

For[i = 1, i <= n, i++,
For[j = 1, J <= n, j++,
{
If]
MemberQ[horiz, 1] == False && MemberQ[vert, J] == False &&
MemberQ[diagl, i - j] == False &&
MemberQ[diag2, j + 1] == False, pawns = pawns + 1];

}11; (+ end of i, j loops =)
(+ see if have more pawns safe than previous best x)

If[pawns > maxpawns, maxpawns = pawns];
}1; (x end of p loop «*)
Print["For n = ", n, " max pawns safe is ", maxpawns]; (*

print best x)
17

#5: Exercise 5.4.4. Write a computer program to expand your result in the previous problem to as large of an n as
you can. Does the resulting sequence have any interesting problems? Try inputting it in the OEIS.
Solution: Need to do better than what I wrote; saving all options into a list is expensive; if we wrote to file and then
called would be better. Would make a huge difference if we code symmetries. Actually, didn’t realize I left the program
running and it got n = 6 fairly quickly, giving 5 pawns. The OEIS lists 39 options; one more data point would be nice!
Kirby Gordon sent me the following: 0, 0, 0, 1, 3,5, 7, 11, 18, 22, 30, which is enough to move us to just one option.

#6: Consider the problem of placing n queens on an n x n board with the goal of maximizing the number of pawns

which may safely be placed. For each 7, let that maximum number be p(n). Find the best upper and lower bounds you
can for p(n). For example, trivially one has 0 < p(n) < n?; can you do better?
Solution: Clearly p(n) < n2 — n; it can unfortunately be zero at times, so must be careful. Let’s look at some large
values of n, for example let’s assume n = m?. Then we have an n x n board, which is m? x m?, and we need to
place n = m? queens. One option is to place these in an m x m square in the bottom right. Let’s see how many
squares that kills. It kills m? vertically and m? horizontally, but this double counts the m? in the bottom, so a total
of 2m3 — m? spaces are killed. We now must look at the diagonals killed. We could compute it exactly, but a rough
calculation suffices. We have 2m — 1 diagonals and each diagonal kills at most m? for at most 2m3 — m?2. There’s of
course some double counting of this in the bottom right square and the vertical / horizonal rows, but that is going to be
lower order. Thus combining everything we see that on the order of 4m? (up to order m?) of the m* are killed. Thus
it looks like in the limit we can have almost all squares safe! In general, if you have an n x n consider the sub-block
that’s z X = where © = [1/n], the smallest integer at least y/n. Thus the number of pawns that can be safely placed is
at least (approximately) n? minus something of order n®/? (if we wanted we could figure out the constant multiple of
n3/2 we know it’s around 4).

It’s easier to get a good lower bound than an upper bound here; for a lower bound we just need to find the number
of pawns that work for one special configuration, while for an upper bound we must get something that holds for all



14 STEVEN J. MILLER (SIM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 317, FALL 2022

configurations. We give an argument that gets an outstanding upper bound without too much work, and allows us to
see the correct order of magnitude. Remember the more rows or columns we have queens in, the more squares are
killed; thus it is reasonable to try and minimize the number of rows or columns with queens, being careful always not
to accidentally do what is locally best as that may not lead to a globally best placement.

Consider any configuration. Let f(n) denote the number of rows that have queens. This kills at least f(n)n squares,
n squares in each row with a queen (we can do a little better as it has to kill some squares in columns; I'll leave it to
you to try and do that). How many columns have queens? Note the more columns with queens, the more squares killed;
thus if we are going for an upper bound we want to consider the fewest possible number of columns with queens. As we
can only have queens in f(n) rows, no column can have more than f(n) queens. There are n queens to place, and thus
by the pigeonhole principle at least one column must receive n/ f(n) queens (which is the average number of queens
per column). Note that each queen in this special column kills at least n squares, and thus at least n?/ f(n) squares are
killed from the column locations. It’s important to note that these squares are not necessarily distinct from the squares
killed by looking at row placements.

We have shown that the number of squares killed is at least f(n)n and also at least n?/f(n); thus the number
of squares killed is at least max(f(n)n,n?/f(n)). To get an upper bound for all configurations, we choose f(n) to
minimize the maximum of the two. We find this by setting the two expressions equal and solving for f(n), as if we
take f(n) so that they are equal then increasing it will increase the first factor, while decreasing it would increase the

second. Thus
2

fn = s thus f(n) = Vi

implying that at least n3/2 of the n? squares are killed (we should really use floor or ceiling functions for n in general,
but this gives the right order of magnitude and I'll just leave it like this).
Thus, combining all our work, we find there exist positive constants ¢; > ¢, such that

3/2

n? —cn?? < p(n) < n? — con3/?

3

in other words, the order of magnitude of the number of spaces on an n x n board that are killed is of size n>/?!

#7: Exercise 5.4.26: Prove \/% Z?:—oo e~ /N — Z?:—oo e=™"N_ As N tends to infinity, bound the error in
replacing the sum on the right hand side with the zeroth term (i.e., taking just n = 0). Hint: the Fourier transform of a
Gaussian is another Gaussian; if f(z) = e~ then fly) = \/w/ae’WQyQ/“.

Solution: Step one is to compute the Fourier transform:
o0
L B
— 00

we are fortunate in that we’re given the answer, but that can be found by completing the square. We are able to use the
Poisson Summation formula, which states

Y. f)y = Y fln)
for nice functions (such as the Gaussian). We can use this formula with « = 7 /N, and find
S 2 > >
—mn“/N _ —mn*N
— e = e .
Note this problem is not hard because of what we’re given. What makes it hard is proving those givens. Prove the
Fourier transform is as claimed. Prove the Poisson Summation Formula.

Also, it’s worth seeing why we care about this. What happens as N — oco? On the left hand side, we have to deal
with all terms with |n| up to about V/N, whereas on the right hand side only the n = 0 term contributes significantly
(as |n| > 1 already has the argument of the exponential at essentially negative ). This is the power of Poisson
Summation; we pass from a long slowly decaying sum to a short rapidly decaying sum. If we keep just the zeroth term
on the right, the error is mostly given from the n = +1 terms. We can get an upper bound on the error by noting that
fora > 0,

—a

e
— 2 —
§ e—an 2§ :6 an .
1—e@
n=1

In|>1
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We can do a bit better by splitting off the n = 1 term:

) —4
—an? o —a —an? —a 2e
E e = 2e +2§ e < 2e +1—e_4'
n|>1 n=2

3.3. New Homework. Due Monday Oct 10, 2022. #1. Prove that if A’ has M rows and k columns, with M > k,
then A'" A’ is invertible. Note this is the A’ from the text, and thus the k columns of A’ are linearly indepen-

dent.#2. For fixed ), find some lower bounds for the size of 224:1 (f ) .If M = N = 1000 (which can easily

happen for real world problems), how many basic feasible solutions could there be? There are less than 10°°
sub-atomic objects in the universal (quarks, photons, et cetera). Assume each such object is a supercomputer
capable of checking 102" basic solutions a second (this is much faster than current technology!). How many
years would be required to check all the basic solutions? #3: Imagine you want to transmit the shape of the plot
f(x) = sin(x?) on the interval [-3,3]. You have the ability to sample the value of this function for 360 different
choices of x. Plot it if you sample uniformly. Is this the best way to sample? How should you sample / choose
where to sample? #4: We say a z is an ordered feasible solution if its non-negative entries are ordered from
smallest to largest; thus (1,0,0,4,3,0,0,5,8) is not ordered (as 4 is less than 3) but (1,0,0,3,3,0,0,5,8) is. Prove or
disprove: if a canonical linear programming problem has a feasible solution then it has an ordered feasible so-
lution. #5: Give an example of a 4 x 4 matrix such that each entry is positive and all four columns are linearly
independent; if you cannot find such a matrix prove that one exists. #6: Redo the previous problem but for an
arbitrary N (thus find an N x N matrix where all entries are positive and the N columns are linearly indepen-
dent). Extra Credit: For each positive integer NV find a matrix with /V rows and infinitely many columns so that
all entries are positive and any set of N columns is linearly independent.
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4. HW #5: DUE OCTOBER 12, 2022

4.1. Problems. Due Wednesday, Oct 12, 2022: #1. Prove that if A’ has M rows and k columns, with M > k, then
A'T A’ is invertible. Note this is the A’ from the text, and thus the k columns of A’ are linearly independent.#2. For

fixed M, find some lower bounds for the size of Zi\/le (I,Z ) If M = N = 1000 (which can easily happen for real

world problems), how many basic feasible solutions could there be? There are less than 10%° sub-atomic objects in
the universal (quarks, photons, et cetera). Assume each such object is a supercomputer capable of checking 10%° basic
solutions a second (this is much faster than current technology!). How many years would be required to check all the
basic solutions? #3: Imagine you want to transmit the shape of the plot f(z) = sin(2?) on the interval [-3,3]. You have
the ability to sample the value of this function for 360 different choices of x. Plot it if you sample uniformly. Is this the
best way to sample? How should you sample / choose where to sample? #4: We say a x is an ordered feasible solution
if its non-negative entries are ordered from smallest to largest; thus (1,0,0,4,3,0,0,5,8) is not ordered (as 4 is less than
3) but (1,0,0,3,3,0,0,5,8) is. Prove or disprove: if a canonical linear programming problem has a feasible solution then
it has an ordered feasible solution. #5: Give an example of a 4 X 4 matrix such that each entry is positive and all
four columns are linearly independent; if you cannot find such a matrix prove that one exists. #6: Redo the previous
problem but for an arbitrary IV (thus find an N x [N matrix where all entries are positive and the /N columns are linearly
independent). Extra Credit: For each positive integer /N find a matrix with /V rows and infinitely many columns so that
all entries are positive and any set of N columns is linearly independent.

4.2. Solutions. #1. Prove that if A’ has M rows and & columns, with M/ > k, then A’T A’ is invertible. Note this
is the A’ from the text, and thus the & columns of A’ are linearly independent.

Solution: If z is any vector with k components, then 27 A’T A’z = || A’z||?, where ||v|| denotes the length of a vector
v. Imagine A’T A’ is not invertible. Then the columns of this matrix are dependent, and there is some non-zero vector
v such that A'T' A’v is the zero vector. Thus v’ A’ A’v = 0, or || A’v||* = 0. The only way the length of the vector A’v
can be zero is if A’v is zero. What does it mean for A’v to be zero? If v is not the zero vector, it means the columns
of A’ are linearly dependent. As we know these columns are linearly dependent, we must have v the zero vector. This
contradicts our assumption that v is not the zero vector, completing the proof.

#2. For fixed M, find some lower bounds for the size of Z,ivil (IZ ) If M = N = 1000 (which can easily happen
for real world problems), how many basic feasible solutions could there be? There are less than 10°° sub-atomic
objects in the universal (quarks, photons, et cetera). Assume each such object is a supercomputer capable of
checking 102° basic solutions a second (this is much faster than current technology!). How many years would be
required to check all the basic solutions?

Solution: The binomial coefficients are increasing to the middle, then decreasing. If M < N/2 a decent bound for the
sum is (i\;), if N/2 < M < N areasonable bound is (NA/[Q), though even better would be %(1 + 1)N.

A basic feasible solution is a feasible solution where the columns corresponding to the non-zero entries are linearly
independent. If we let ¢ be the number of such columns, we find 1 < ¢ < 1000, and for each c the largest number of
basic feasible solutions would be (*°°°). We thus have 3°1%%" (*°%%). By the Binomial Theorem, this is 21°%° — 1 (we
subtract 1 as we don’t have ¢ = 0), which is approximately 1.07151 - 103°!. Under our assumptions, we can check
10110 possibilities a second, which means we need about 1.07151 - 10191 seconds. As there are about 1.32016 - 108
seconds in a year, we would need approximately 8.11651 - 10182 years, far longer than the 15 billion or so years we
believe the universe has existed.

#3: Imagine you want to transmit the shape of the plot f(x) = sin(z*) on the interval [-3,3]. You have the ability
to sample the value of this function for 360 different choices of x. Plot it if you sample uniformly. Is this the best
way to sample? How should you sample / choose where to sample?
Solution: If we want to transmit a function such as f(x) = 32° — 223 + 422 + 8z + 1 for —3 < x < 3, we could just
send the coefficients 1, 8, 4, -2, 0, 3 and then the receiver could easily reconstruct the function. In streaming information
we can represent the intensities of the pixel colors (red, green and blue) as functions; unfortunately we typically do not
have such simple expressions. While we cannot send a few bits of information and uniquely identify the function, what
we can do is send its values at a representative set of points, which allows the receiver to approximately recover it.

In general one would do a Fourier analysis of the signal and expand in terms of sines and cosines (or perhaps better
use wavelets). Here we’ll confine ourselves to discussing how to choose points to sample plotting a function. First we
give the code and then a plot (Figure [3)) of the function.
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FIGURE 6. Plot of sin(z3).

Plot[Sin[x"3], {x, -3, 3}]
If we sample uniformly from —3 to 3 say 361 times we get:

uniformlist = {};
For[n = -180, n <= 180, n++,

uniformlist = AppendTo[uniformlist, {n/60, Sin[(n/60)"31}11;
ListPlot[uniformlist]

Notice this fails to capture all of the shape (see Figure[6). The reason is that we're being wasteful. We only have
so many observations to make, and we’re wasting a lot of them in a region where the function doesn’t change much.
Instead we should sample more towards the endpoints and less in the center.

biaslist = {};
For[n = -180, n <= 180, n++,
{
(*x = Sign[n] (3Abs[n]/30)"(1/2) ;*)
If[Abs[n] > 10, x = Sign[n] (1 + 2 Sqgrt[(Abs[n] - 10)/1701),
x = n/1071;
(*x = Sign[n] (n"2/50%2) / 3 ;x)
biaslist = AppendTol[biaslist, {x, Sin[x"31}];
11
ListPlot[biaslist]
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FIGURE 7. Plot of sin(z3).

The dynamic sampling (Figure [7] does a much better job. What we did above is not the best, but was easily pro-
grammed. We sampled uniformly from -1 to 1, and took 21 values there. In the other regions, we let n run from -180
to -10 and then 10 to 180 and spread the points out a bit within that region. For example, for n positive we chose z,,
tobe 1 4 24/(n — 10)/170; note this gives us values running from 1 to 3 but the z-coordinates are not spaced equally.
This is called dynamic sampling, and is extremely important. When it is expensive to gather data, you want to gather
the right data. If the function is approximately constant, as our function is from -1 to 1 (or at least from -1/2 to 1/2), it is
wasteful to be frequently sampling there. As we can only sample a fixed number of times, it is better to sample where
the function is wildly fluctuating.

Some students noticed that if the second derivative is close to zero we don’t need to sample as much, as that requires
the first derivative is approximately constant and thus we have a linear growth. Depending on how much one is willing
to consider, one can choose points better and better.

#4: We say a z is an ordered feasible solution if its non-negative entries are ordered from smallest to largest;
thus (1,0,0,4,3,0,0,5,8) is not ordered (as 4 is less than 3) but (1,0,0,3,3,0,0,5,8) is. Prove or disprove: if a canonical
linear programming problem has a feasible solution then it has an ordered feasible solution.

Solution: Unfortunately, the concept of an ordered feasible solution (which I made up for this homework) is not useful.
Image A = I, the identity matrix. Let b be a vector whose entries are positive an in decreasing order. Then there are no
ordered feasible solutions, even though we always have a feasible solution (just take = = b). For definiteness, consider
A = I3, the 3 x 3 identity matrix, and let b = (3,2, 1)” (I'm using the transpose symbol so as to write b as a row and
not a column vector). So we can have feasible solutions and basic feasible solutions here, but we won’t have an ordered
feasible solution.

#5: Give an example of a 4 x 4 matrix such that each entry is positive and all four columns are linearly indepen-
dent; if you cannot find such a matrix prove that one exists.

Solution: If we start off with the identity matrix the columns are linearly independent, but the entries are not positive.
The idea is if we add a very small e we’ll be fine. I’ll leave that as an exercise for you to play with. Instead, let’s look
at a new approach. If the matrix has a non-zero determinant it is invertible, so consider

A:

A brute force calculation shows the determinant is —3 + 8 M — 6M2 + M*, and so if we take M large we’ll be fine.
Of course, we don’t need to calculate the determinant exactly. Imagine an NV x N matrix where all entries are 1,

save for the main diagonal where all entries are M. When we expand the determinant we have N! terms. Though this

can’t happen, the worse possible case (to make the determinant as small as possible) is one only one term is positive
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(the product of the N values on the main diagonal, and thus contributing M), and all other cases come in negative
(which can’t happen as only half of the terms are negative in the determinant expansion!) and each has N — 1 factors
of M (again, can’t happen).

Thus the determinant is at least

MY — (N —=1)MN=t > MN(M — N! +1);

thus if M > N! the determinant is positive, and we’ve found a matrix with all non-negative entries with columns
linearly independent.

#6: Redo the previous problem but for an arbitrary N (thus find an NV x N matrix where all entries are positive
and the NV columns are linearly independent). Extra Credit: For each positive integer NV find a matrix with V
rows and infinitely many columns so that all entries are positive and any set of N columns is linearly independent.
Solution: See the previous problem for a solution.

4.3. Next HW: HW #6: Due Wednesday, Oct 19, 2022. #1: Formulate Sudoku as a linear programming problem
(you can do either 4 x 4 or 9 x 9 Sudoku). #2: Consider the 3 x 3 constraint matrix A where the first row is 1, 2,
3, the second row is 4, 5, 6 and the third row 7, 8, 9 (thus it’s the numbers 1 through 32). Let the vector b equal
(1,1,1)T. Find all basic feasible solutions to Az = b with = > 0. #3: Let’s revisit the chess problem from class.
Consider an n x n chess board. We want to put down n queens and maximize the number of pawns that can
be safely placed on the board. Set this up as a linear programming problem. #4: Do Exercise 6.6.30. WORTH
ZERO POINTS: ONLY DO IF YOU ARE THINKING OF DOING A PROJECT! Hand in a short write-up
saying who is in your group and what you will be studying / doing. Give a brief outline of what you think you’ll
need to learn, what data you think you’ll need to gather, what you’ve done so far .... Describe why you feel your
group has the necessary skill sets to complete the task, or if not what your plan is to remedy that. As some of the
projects are still coming it, it may not be possible to do this as of now.
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5. HW #6: DUE WEDNESDAY, OCTOBER 19, 2022

#1: Formulate Sudoku as a linear programming problem (you can do either 4 x 4 or 9 x 9 Sudoku). #2: Consider
the 3 x 3 constraint matrix A where the first row is 1, 2, 3, the second row is 4, 5, 6 and the third row 7, 8, 9
(thus it’s the numbers 1 through 32). Let the vector b equal (1,1,1)”. Find all basic feasible solutions to Az = b
with x > 0. #3: Let’s revisit the chess problem from class. Consider an n x n chess board. We want to put
down n queens and maximize the number of pawns that can be safely placed on the board. Set this up as a
linear programming problem. #4: Do Exercise 6.6.30. #5: WORTH ZERO POINTS: ONLY DO IF YOU ARE
THINKING OF DOING A PROJECT! Hand in a short write-up saying who is in your group and what you will
be studying / doing. Give a brief outline of what you think you’ll need to learn, what data you think you’ll need
to gather, what you’ve done so far .... Describe why you feel your group has the necessary skill sets to complete
the task, or if not what your plan is to remedy that. As some of the projects are still coming it, it may not be
possible to do this as of now.

#1: Formulate Sudoku as a linear programming problem (you can do either 4x4 or 9x9 Sudoku).
Solution: Let x;;4 be the binary variable which is 1 if the cell in row ¢ and column j is d, and zero otherwise. Let n be
either 4 or 9. Then the constraints are

e Forall j € {1,...,n}andforalld € {1,...,n}: YI' | x;;4 = 1. This means each column has each digit
exactly once.

e Foralli € {1,...,n}andforalld € {1,...,n}: 337, 2;;q = 1. This means each row has each digit exactly
once.

o Let F ={(1,1),(1,2),...,(v/n,+/n)}, and let (a, b) + F be the set of all pairs of the form (a + z,b + y) for
some (z,y) € F. ThenForalla,b € {0,1,...,y/n—1}andalld € {1,...,n} wehave 3=, iyc 1)+ 7 Tijd =
1. This means that in each \/n x y/n box we have each digit.

We need an objective function. As all we care is for a feasible solution, we can take as our objective function

2020 2oq Tijd-

Finally, often Sudokus have certain cells given to us; in that case, we simply add these as constraints: if S is the set
of indices where we are given values, and v;; is the given value, then for all (¢, j) € S we have z;;¢ = 1 if d — v;; and
0 otherwise.

There are other ways to try and solve this. We could instead let z;; € {1,2, 3,4} and try to make that work. I know
one group tried the constraint that each column, each row and each of the four blocks of four had to sum to 10, trying
to use the only way to get 10 from these numbers is 1 + 2 4+ 3 + 4. Unfortunately, 2 + 3 + 2 4 3 also works, but leads
to an invalid Sudoku:

2 3 2 3
3 2 3 2
2 3 2 3
3 2 3 2

You can use a sum constraint, however; use as your numbers 1, 10, 100 and 1000. The only way to have four numbers
from this set sum to 1111 is to have exactly one of each! Really, all you need is a set such that no two sets of four
objects have the same sum (actually, all we need is that there is not another way to get the sum of all four terms). Could
we use 1, 3, 8, 21? Yes we can; interesting — where have you seen these numbers? Note we could not have used 1, 2,
3, 5 as our four numbers, as 1+2+3+5 equals 2+3+3+3.

#2: Consider the 3 x 3 constraint matrix A where the first row is 1, 2, 3, the second row is 4, 5, 6 and the third
row 7, 8, 9 (thus it’s the numbers 1 through 32). Let the vector b equal (1,1, 1)”. Find all basic feasible solutions
to Az = b with z > 0.

Solution: We give a one-line solution at the end; as a large part of homework is to learn the methods and techniques, it
is good to see the straightforward approach.

The matrix A is not invertible (the n x n matrix with entries going from 1 to n? is invertible only when n < 2);
one way to see this is to note that the first plus third columns are twice the second. Note that any pair of columns
are linearly independent, and any column is linearly independent. Thus there are 6 sub-matrices that generate basic
feasible solutions, and each generates a unique candidate for a basic feasible solution. If A’ is the reduced matrix, then
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the candidate for the basic feasible solution is found by solving A’z’ = b. We multiply by A’" on the left since A’7 A’
is invertible. This gives A7 A'z’ = A'T'b, or o' = (A" A’)~1 AT'b. This gives us the non-zero entries of the candidate
for the basic feasible solution; we finish by adding the zero entries.

e Using the first column, (1,4, 7), we get a non-zero element of 2/11 and thus the candidate for the basic feasible
solution is (2/11,0, 0).

e Using the second column, (2,5, 8), we get a non-zero element of 5/31 and thus the candidate for the basic
feasible solution is (0,5/31,0).

e Using the third column, (3, 6,9), we get a non-zero element of 1/7 and thus the candidate for the basic feasible
solution is (0,0,1/7).

e Using the first two columns we get non-zero elements (—1, 1), and thus the candidate for the basic feasible
solution is (—1,1,0).

e Using the first and third columns we get non-zero elements (—1/2,1/2), and thus the candidate for the basic
feasible solution is (—1/2,0,1/2).

e Using the second and third columns we get non-zero elements (—1, 1), and thus the candidate for the basic
feasible solution is (0, —1,1).

Note we can check to make sure these are feasible solutions. When we check, however, the first three all fail to
satisfy Az = b, though the last three do. What went wrong? The problem is that b is not a linear combination of fewer
than 2 columns of A, and when we try to take just one column it breaks down. This shouldn’t be surprising. In that
case A’TAis a1 x 1 matrix and b is not in the column space of A’. While the last three solve the constraints, they are
not basic feasible solutions as each has a negative entry. Thus, there are no basic feasible solutions.

One can do these calculations in a system such as Mathematica, though you have to be careful with the syntax.
Here’s the code for it.

A= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
Transpose[A];

b = Transpose[{{1l, 1, 1}}];

A.b

Ap = Transpose[{{1l, 4, 7}, {2, 5, 8}}1;
Transpose[Ap] .Ap

Inverse[Transpose[Ap] .Ap]
Inverse[Transpose[Ap]. Ap]. (Transposel[Ap] . b)

Now, for the promised one-line solution. Imagine there is a basic feasible solution. Then we have Ax = b with the
entries of z non-negative and each entry of b is 1. Notice that the second row of A dominates the first row (each matrix
element in the second row is larger than the corresponding entry in the first row), yet the constraints want the resulting
dot products to be equal. In other words, 1 + 2x5 + 3x3 = 1 and 4z; + bz + 623 = 1. This is impossible, as the
second constraint can be written as

(x1 + 229 + 3x3) + 3(x1 + 22 +23) = 1;

as x1 + 2w + 3xg = 1 this implies 3(z1 + 22 + x3) = 0, which implies each z:; = 0 (as they must be non-negative for
a feasible solution), clearly violating the weighted sum equalling 1.

#3: Let’s revisit the chess problem from class. Consider an n x n chess board. We want to put down n queens
and maximize the number of pawns that can be safely placed on the board. Set this up as a linear programming
problem.

Solution: Let z;; = 1 if we have a queen on the board in row ¢ and column j, and zero otherwise. Our first constraint

18
n n

Z Z'rij = n.
i=1 j=1
This constraint says we place exactly n queens on the board. In fact, this is the only ‘real’ constraint; the other
constraints come from helping to write the objective function.
For each point (i, j) on the chessboard, let A; ; denote the squares that a queen placed at (i, j) can attack (plus the
square (4, j)). For example, if (4,7) = (1,1) then A, ; is the first row, the first column, and the diagonal of all pairs
(d,d). We're going to introduce some new binary variables y;;. We should think of these as being 1 if we can place a
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TABLE 1. The 12 squares that attack (2,3) on a 4 x 4 board.

pawn safely at (7, j) and zero otherwise. Consider the constraints for all pairs (¢, j) such that there is a queen at (i, j)

we have
> vy =0
(,5)€Ai;
This means we cannot place a pawn in the kill zone caused by a queen at (¢, 7); the difficulty, though, is we don’t know

where the queens are. One solution is to multiply this constraint by x;; on the left, so it only comes into play if there is
a queen at (4, 7). In other words, consider
Tij Z vij = 0;

(1,7)€A:;
if ;; = 0 (so no queen at (¢, j)) then the y;;’s are free; if there is a queen there then each y;; = 0 (i.e., cannot place a
pawn there). Unfortunately, this is not linear. If it were, we’d be done, and we’d try to maximize the sum of the y;;’s,
as that would give us the most pawns placeable; technically, we need a minimization problem, so we minimize

n
-2 v
ij=1

This would give us a quadratic programming problem; the constraints are quadratic in places, although the objective
function is still linear. It is possible to do this problem, however, with linear constraints.

Let Q;; be the set of all pairs on the n x n chessboard that can attack square (4, j) and the square (¢, j) as well.
We’re using a script () to emphasize that these are the places to put a queen to eliminate the possibility of a pawn being
safely placed at (4, j). For example, if n = 4 then

Qs = {(2,1),(2,2),(2,3),(2,4),(1,3),(3,3), (4,3),(1,2),(3,4),(1,4), (3,2), (4, 1)}

(see Table[T]for a visualization).

Our objective function is the same as before:

n
>
i,j=1
We want this to be as small as possible, which means we want the sum of the y;;’s to be as large as possible. In other
words, we want to have as many squares as possible not under attack by queens.
As we are placing n queens on the board, at most n queens can make the square (4, j) unsafe for a pawn. Consider
the constraint: for all (i, 5) € {1,...,n}? we have

2TL(1 — le) 2 Z ZTirg.

(ilvj/)egl.‘i
What does this do?

e If there are no queens on the board attacking the square (7, j) then the right hand side is zero and there is no
effect on y;;, as the left hand side is always non-negative. We thus have complete freedom in choosing y;; in
this case. As we are trying to minimize the negative of the sum of the y;;’s (or, equivalently, maximize the sum
of the y;;’s), we the program will take y;; = 1 and place a pawn safely there.

e What if there is at least one queen attacking the square (7, j)? Then the sum on the right hand side is positive.
Further, it is at most n as there are only n queens. If y;; = 1 then the left hand side is 0, which is smaller
than n and contradicts the inequality! Thus we cannot take y;; = 1, and this case forces y;; to be zero. This is
exactly what we want, as it now tells us we cannot have a pawn safely placed at (i, ).

As we took a long path to the answer, it’s worth writing down the constraints cleanly:
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e Parameters: Q;;: all the pairs (¢, j) on an n x n chessboard that can attacked a pawn located at (4, j), including
(4, j); equivalently, these are all the squares where a queen placed there would attack a pawn at (4, j).

e Variables: z;; = 1if a queen is at (¢, j) and O otherwise; y;; € {0, 1} (constraints chosen later will force y;;
to be 0 if the location of the queens prevents a pawn from being placed safely at (4, j)).

e Constraint: Location of Queens: Z;;l Z?:I x;; = n. This forces exactly n queens to be placed on the n x n
board.

e Constraint: Location of Pawns: 2n(1 — yi5) = > ;s ;eg,, Tij7- We may rewrite this in more standard form
as

2nyij + Z Tyt 4 < 2n.
(4',5")€Qij

If a queen is placed and attacks (¢, j) then y;; must be zero (as otherwise the left hand side exceeds the right
hand side). If no queen is placed that attacks square (¢, j) then y;; is free.

e Objective function: Minimize — |, Z;‘L:1 y;;. This is the negative of the number of pawns that may safely
be placed on the board.

Note that our choice of objective function will make us set y;; to 1 whenever possible. If we wanted to truly make
y;; indicate whether or not a pawn is safely placed at (¢, j), all we need to do is force ourselves to place a pawn at (4, j)
if possible. We can do this by adding the constraint: for all (3, j):

—ny;; + Z xi5) < 1/2.
(,4)€Qi;

Why does this work? If there are no queens placed that attack (4, j) then y;; is free. If, however, at least one queen is
there then we must have y;; = 1 as otherwise the inequality fails (note the sum is at most n, so taking y;; = 1 will
ensure it is satisfied).

#4: Exercise 6.6.30: Consider the following Linear Programming problem: x; > 0,

z1
1 4 5 8 1 To 311
2 2 3 8 0 T3 = 389 |, 5.1)
32 16 0 Ty 989
Ts
and we want to minimize
ox1 + 8xo + 93 + 224 + 1125 5.2)

Find (or prove one does not exist) an optimal solution.
Solution: There are several ways to go. We give a one-line solution from the TA at the end; as a large part of homework
is to learn the methods and techniques, it is good to see the straightforward approach.

We have 5 columns, and a basic optimal solution (if it exists) must come from a basic feasible solution. There
are (g) = 10 ways to choose 3 columns from 5 to find a basic feasible solution, and the basic feasible solution
must have exactly 3 non-zero entries. We could look at all of these candidates and see which, if any, is the optimal
solution. We know that our objective function will achieve a maximum and minimum on any compact subset of
{(z)2_; | 0 < x; < 989} using standard results from analysis (a continuous function on a compact set attains its
maximum and minimum). But are any solutions in such subsets feasible?

We need to find a basic feasible solution. If we try the first three columns of A, we get A’z = b. As Aisa3 x 3
matrix with linearly independent columns it is invertible, and we get z = A’~1'b. Unfortunately A’~'b has a negative
entry, and thus cannot be a basic feasible solution. Remember our method only generates candidates for basic feasible
solutions; it cannot ensure that they are basic feasible.

Undaunted, we continue. We find that there are no basic feasible solutions — all of the candidates have a negative
entry, and thus there are no solutions. Here is code to generate the matrices:

B = {{1, 4, 5}, {2, 2, 3}, {3, 2, 1}};
B = {{1, 4, 8}, {2, 2, 8}, {3, 2, 6}};
B = {{1, 4, 1}, {2, 2, 0}, {3, 2, O}};
B = {{1, 5, 8}, {2, 3, 8}, {3, 1, 6}};
B = {{1, 5, 1}, {1, 3, 0}, {3, 1, O}};
B = {{1, 8, 1}, {2, 8, 0}, {3, 6, 0}};
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FIGURE 8. Plot of the three inequalities. The valid points are below the first and third lines (gold
and blue) and above the middle (purple) line.

B = {{4, 5, 8}, {2, 3, 8}, {2, 1, 7}};
B = {{4, 5, 1}, {2, 3, 0}, {2, 1, 0}};
B = {{4, 8, 1}, {2, 8, 0}, {2, 6, 0}};
B = {{5 8, 1}, {3, 8, 0}, {1, 6, O}};

Here is code to check one of the cases:

B = {{4, 8, 1}, {2, 8, 0}, {2, 6, O}};

Print ["Our pruned matrix is ", MatrixForm[B]];

b = Transpose[{{311, 389, 989}1}1];

MatrixForm([b];

basicsoln = Inverse[B].b;

Print ["Candidate for basic feasible is ", MatrixForm[basicsoln]];

We can try and solve this directly:
Clear[x1]; Clear([x2]; Clear[x3]; Clear[x4]; Clear([x5];

Solve[xl + 4 x2 + 5 x3 + 8 x4 + x5 == 311 &&
2 x1 + 2 x2 + 3 x3 + 8 x4 == 389
&& 3 x1 + 2 x2 + x3 + 6 x4 == 989, {x1, x2, x3, x4, x5}]

The output is z1, 2 free and

{{x3 -> —-(2789/5) + (6 x1)/5 + (2 x2)/5,
x4 -> 1289/5 - (7 x1)/10 - (2 x2)/5,
x5 -> 5188/5 - (7 x1)/5 — (14 x2)/5}}

If we plot the three lines that arise from forcing z3, z4 and z5 to be non-negative, we see that there is no solution to
these inequalities that has all five variables positive. The Mathematica code is

Plot[{-x1 + 5188/14, (-7/4) x1 + 1289/2, -3 x1 + 2789/3}, {x1,0,400}]
and we give the plot in Figure|[§]

Now, the one-line solution. These numbers were not randomly chosen (though I forgot when initially looking at this
problem). I wanted something without any feasible solutions. If (x1, 9, 3, x4, x5) > (0,0,0,0,0) then there cannot
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be a solution to Az = b. To see this, note that the sum of the entries in the j™ column in the first and second rows
exceeds the value in the j th column in the third row, but the sum of the first two entries of b is less than the third. There
cannot be a solution. More mathematically, adding the first two constraints gives

311 + 6(E2 + 8$3 + 161’4 +x5 = 700,

while the third row is
3x1 + 229 + x3 + 64 = 989.
Subtracting yields
4o + Txg + 1024 + x5 = —289,
which is impossible as all the x; are supposed to be non-negative.

Remark: This (and the earlier problem with the 3 x 3 matrix) indicate the value of really looking at a problem and
its algebra first before ploughing away. Often we can make our lives much easier by studying the problem, looking at
symmetries, finding something to exploit. We can plug away, but we can save time. I consider Henry David Thoreau
the patron saint of mathematics for his sage advice of Simplify, simplify. (Of course, this should be simplified
to Simplify, but I’ll grant him this as he has a point to make.) Look for savings first before doing calculations; this is in
line with the spirit of duality and the savings available there.

5.1. Next Assignment: HW #7: Due Monday, November 7, 2022. To be done by the end of classes: Choose a per-
son in the class to write a letter of recommendation for, and ask them. Everyone must write one letter. Confirm
with me when you agree to write a letter for someone. You are not writing the letter now, just finding people. If
no one asks you to write a letter I will assign someone to you.

Due Monday November 4: Problem #1: Exercise 8.8.18. Frequently in problems we desire two distinct tuples, say
points (a1, ...,ax) # (a1,...,ak). Find a way to incorporate such a condition within the confines of integer linear
programming. Problem #2: Medical Residencies: Imagine there are P people who have just graduated from medical
school and H hospitals. We are trying to match medical students with hospitals. Each student ranks the hospitals and
each hospital ranks the students. Formulate this assignment problem as a linear programming problem; you may need
to make some assumptions to finish the modeling. There are a lot of ways to do this; what do you want to maximize?
Does a feasible solution always exist, and if so when? Does the existence of a feasible solution depend on the function
you want to optimize? Problem #3: Exercise 9.4.5. Modify the decomposition problem so that we write S as a sum
of non-negative summands, but now we want to maximize the product of the squares of the summands; what is the
answer? #4: Exercise 9.4.13. Generalize the knapsack problem so that in addition to needing the total weight to be
below a critical threshold, there is also a volume constraint. Set this up as a linear programming problem. #5: Write
down linear constraints for the event A or B or C' must happen. #6: Consider an n x n x n chesscube. Write down
a linear programming problem to figure out how many hyperpawns can safely be placed given that n hyperqueens are
placed in the chesscube. Note the hyperqueens can attack diagonally, horizontally, vertically, and forward-backly.
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6. HW #7: DUE MONDAY, NOVEMBER 7, 2022

6.1. Assignment. To be done by the end of classes: Choose a person in the class to write a letter of recommen-
dation for, and ask them. Everyone must write one letter. Confirm with me when you agree to write a letter for
someone. You are not writing the letter now, just finding people. If no one asks you to write a letter I will assign
someone to you.

Due Monday November 4: Problem #1: Exercise 8.8.18. Frequently in problems we desire two distinct tuples, say
points (ay,...,ar) # (a1,...,a). Find a way to incorporate such a condition within the confines of integer linear
programming. Problem #2: Medical Residencies: Imagine there are P people who have just graduated from medical
school and H hospitals. We are trying to match medical students with hospitals. Each student ranks the hospitals and
each hospital ranks the students. Formulate this assignment problem as a linear programming problem; you may need
to make some assumptions to finish the modeling. There are a lot of ways to do this; what do you want to maximize?
Does a feasible solution always exist, and if so when? Does the existence of a feasible solution depend on the function
you want to optimize? Problem #3: Exercise 9.4.5. Modify the decomposition problem so that we write S as a sum
of non-negative summands, but now we want to maximize the product of the squares of the summands; what is the
answer? #4: Exercise 9.4.13. Generalize the knapsack problem so that in addition to needing the total weight to be
below a critical threshold, there is also a volume constraint. Set this up as a linear programming problem. #5: Write
down linear constraints for the event A or B or C' must happen. #6: Consider an n x n x n chesscube. Write down
a linear programming problem to figure out how many hyperpawns can safely be placed given that n hyperqueens are
placed in the chesscube. Note the hyperqueens can attack diagonally, horizontally, vertically, and forward-backly.

6.2. Solutions. #1: Problem #1: Exercise 8.7.18. Frequently in problems we desire two distinct tuples, say points
(a1,...,ax) # (a1, ..., ). Find a way to incorporate such a condition within the confines of integer linear program-
ming.

Solution: There are many ways; here’s an easy way but a slow one. For each 7 we can form random variables z; and y;
such that z; is 1 if a; — a; > 0 and O otherwise, while y; is 1 if a; — a; > 0 and O otherwise. We then let z; = 1 if z;
and y; are both 1, and zero otherwise. Then look at (n — 1) — x1 + - - - + x,,; if the two points are equal the sum is -1,
otherwise it is non-negative. Thus if we let w = 1 if this sum is non-negative and 0 otherwise, w will encode whether
or not the two points are distinct.

#2: Medical Residencies: Imagine there are P people who have just graduated from medical school and H hospitals.
We are trying to match medical students with hospitals. Each student ranks the hospitals and each hospital ranks
the students. Formulate this assignment problem as a linear programming problem; you may need to make some
assumptions to finish the modeling. There are a lot of ways to do this; what do you want to maximize? Does a feasible
solution always exist, and if so when? Does the existence of a feasible solution depend on the function you want to
optimize?

Solution: First, the existence of a feasible solution is independent on whether or not an optimal solution exists. Let z,p,
equal 1 if we assign student p to hospital h, and 0 otherwise. What are the constraints?

e No student can be assigned to more than one hospital: for all p € {1,..., P} we have Zthl Tpn < 1. We
write less than or equal to and not equal to as perhaps some students will not be assigned to hospitals!.

e Perhaps each hospital has a certain number of students needed, say d;. Then for all h € {1,..., H} we have
25:1 ZTpn = d;. We might want equality here (no need to hire people you don’t need, unless you want to keep
them in the labor pool and have them gain experience for later).

That’s it! This is all we need to determine whether or not we can assign students to hospitals! The difficulty is in
choosing an objective function. What do we want to minimize? A simple possibility is to have each student rank the
H hospitals and each hospital rank each student, giving a 1 for first choice, 2 for second and so on. We then want to
minimize the total score. Letting r,,;, be the rank person p attaches to working at hospital H, and p,y, the rank hospital
h attaches to having person p, we need to minimize >, >, (rph + pph)Tph. Notice that this assumes the students
and the hospitals are equally important; if not we can introduce weights (non-negative and summing to 1). In fact, we
can even go further and say some hospitals are more important than others, and perhaps some students are too (those
coming from a ‘good’ school). We reach

Z Z(wp’rph, + Wh,pph)xph;
p h
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while we need the w,, and w,, to be non-negative, it’s fine if they don’t sum to 1 (all that does is rescale the objective
function).

There are other rankings we can use. Perhaps each person gets 100 points and must assign them among the H
hospitals. Or perhaps each person writes down how happy they would be working at each hospital, with 100 high and
0 low. There are lots of tweaks like this that we can do that will keep the objective function linear. Note something
similar to this is used in assigning doctors to residency programs.

Good podcast found by classmate:
http://freakonomics.com/podcast/make—-me—a-match-a—-new-freakonomics—-radio—-episode/.

#3: Problem #3: Exercise 9.3.5. Modify the decomposition problem so that we write .S as a sum of non-negative
summands, but now we want to maximize the product of the squares of the summands; what is the answer?
Solution: Maximizing a square is the same as maximizing the original value (if it is non-negative, as is the case here).
Thus it is the same answer as before! To see this more formally, there are no new critical points as our expression is
never zero, and the answer is not on the boundary.

#4: Exercise 9.3.13. Generalize the knapsack problem so that in addition to needing the total weight to be below a
critical threshold, there is also a volume constraint. Set this up as a linear programming problem.
Solution: There are a lot of ways to do this. The simplest is to assume that all that matters is the total volume; we cannot
shrink the volume of items as we place them, but we can squish and twist the pieces. If this is the case, all we need is
a constraint saying the sum of the volumes in the bag is at most the total volume of the bag: vix1 + - + v, < v.
If we want a more complicated one, we would need to have variables for the location of each object and the orientation
as we place it, and make sure nothing overlaps.

#5: Write down linear constraints for the event A or B or C' must happen.
Solution: We start with decision variables x 4, xp, x¢c where xp = 1 if event E happens and 0 if event £ does not
occur. We have the inclusive or; thus our constraint is simply x4 + 5 + z¢ > 1. The only way this constraint fails is
ifzy = xp = ¢ = 0, in other words, if none of the events happen.

#6: Consider an n X n X n chesscube. Write down a linear programming problem to figure out how many hyperpawns

can safely be placed given that n hyperqueens are placed in the chesscube. Note the hyperqueens can attack diagonally,
horizontally, vertically, and forward-backly.
Solution: We need to slightly generalize our arguments from the last assignment. Let x;;, = 1 if we place a queen
at (i, j, k) and O otherwise, and let y;;;, = 1 if there is a pawn at (4, j, k) and O otherwise. Let Qi be the set of all
locations that can attack (4, j, k).

Our first constraint is o

HHUIEE
i=1 j=1k=1
this ensures we place exactly n queens on the board.
The second constraint is for the location of the pawns: for 1 <, j,k < n:

QTL(]. — yijk) 2 Z xi’j’k“
(4,37 ,k")€Qijk
If no queens attack (i, j, k) then the sum on the right is zero and there is no effect on y;;z. If however there is at least
one queen attacking the location (4, j, k) then the only way the inequality is satisfied is to have y;;; = 0 (note in this
case the sum on the right is non-zero, and is at most n as there are only n queens on the board).
n

The objective function to minimize is — Z?:l 2?21 > k—1 Yij- This is the negative of the number of pawns that
may safely be placed on the board. Note now that if we can place a pawn at (i, j, k) we will.

Homework for next week: TBD: Work on Project, start letter of Rec.


http://freakonomics.com/podcast/make-me-a-match-a-new-freakonomics-radio-episode/
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7. HW #8: DUE MONDAY, NOVEMBER 14, 2022

7.1. Assignment. #1. In the plane we have /(9 = (3, -2), 7)) = (1,5) and ¥ = (—7,1). Let 7’ have cartesian
coordinates (¢, c2) and barycentric coordinates (xq, x1, 22). Write the cartesian coordinates in terms of the barycentric
coordinates, and vice versa. #2: Consider the map from the unit circle (all points (z,y) : 2% + y* < 1 to itself given
by f(z,y) = ((y — 1/2)?/8, (x — 1/2)?/8). Does this map have any fixed points? Why or why not. If yes find or
approximate it. #3: Consider x,, = cos(n) (measured in radians). The Bolzano-Weierstrass Theorem asserts it has a
subsequence which converges to a point in [—1, 1]. Explicitly find such a subsequence. Is it easier, harder or the same
to prove the analogous statement for y,, = sin(n)? Do so. Hint: you may use properties of , such as its decimal or
continued fraction expansion. Also, if you have a homework exemption could be a good time to use it....

7.2. Solutions. Solution: #1: First remember the x;’s are in [0,1] and sum to 1, so 2 = 1 — 23 — 29. We have a
system of equations and find

c1 . 3xg + 11 — Txo - 10xg +8x1 — 7
Co o —2x0 + 51 + 1ao o —3zg +4r1 +1 ’
Thus we have two equations with two unknowns. As written, it is very easy to get the cartesian from the barycentric:

cp = 10z +8x1 —7, co = —3x9+ 4z + 1.

For the other direction, after some algebra we find

10 8 o _ c1+8
-3 4 1 - co—1 )
The matrix is invertible, and thus
X0 . 1/16 —1/8 c1+8 . (8+Cl)/16+(1—62)/8
T - 3/64 5/32 c—1 - 3(84¢1)/64+5(—14¢2)/32 )"

Solution: #2: Yes, it has a fixed point. To see this note that it is a continuous map from the unit circle to itself (the
largest either component can be is (—1 — 1/2)?/8 = 9/32, and (9/32)% 4 (9/32)? < 1). Thus the Brouwer fixed point
theorem applies, and a fixed point exists. To find the fixed point, we must solve

x = (y—1/2)*/8, y = (x—1/2)°/8.
Using Mathematica we find x = y = % — 2v/5 ~ 0.027864. The code is
(

y - 1/2)72/8, y == (x - 1/2)"2/8}, {x, y}]]

We could also find this directly. We have 8z = (y — 1/2)? and 8y = (x — 1/2)2. While we could square both sides
or directly replace one variable with another, we can directly try looking for a solution with = = y. That gives us

1
8¢ = (x—1/2)* or 1‘279x+1 = 0;
this is a simple quadratic equation, and the root is the claimed % —2+/5. We could show this is the unique fixed point by
showing that the above is a contraction map — doing so would possibly require some multivariable calculus and looking
at the gradient, or just directly showing that two distinct points are moved closer.

Simplify[Solve[{x ==

Solution: #3: The two problems are equally hard. A beautiful theorem of Dirichlet (usually proved using the pigeon-
hole principle) states that if « is irrational then there are infinitely many relatively prime p,,, g, such that | — p,, /¢, | <
C/q? forafixed C > 0 and q,, < q,,+1. (It is a nice exercise to prove this. Interestingly, the number which requires the
largest C' is the golden mean!) As 7 is irrational, we find a sequence {p,,, ¢,, } as above. Thus |¢,m — p,| < C/qy, so
for each » we may find €,, at most 1 in absolute value such that p,, = ¢, 7 + €,C/qy,. Thus

Sin(pn) = Sin(Qnﬂ— + 6nCY/Qn) = SiH(GnC/qn);

as sin(z) = z — 23/3! + ---, we see the above sine tends to zero. If we wanted to work with cosine we could
approximate /2.

Note this problem requires a lot of input. We need Dirichlet’s theorem, which can be proved elementarily, but we
also need 7 is irrational. For fun, let’s prove a bit more. Fix a large n (how large n must be will be determined later).
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Let f(z) = “ 0" Show f attains its maximum at & = L, for z € (0,1),0 < f(z) < -, and all the derivatives of

evaluated at 0 or 1 are integers. Assume 72 is rational; thus we may write 72 = < for integers a, b. Consider
g y b g

G(z) = b Y (=1)FfER) () =2k, (7.1)
k=0
Show G(0) and G(1) are integers and
% [G'(2)sin(mx) — 7G(z) cos(nx)] = 72a™f(x)sin(rx). (7.2)

Deduce a contradiction (to the rationality of 72) by showing that

71'/0 a” f(z)sin(rx)dr = G(0) + G(1), (7.3)

which cannot hold for n sufficiently large. The contradiction is the usual one, namely the integral on the left is in (0, 1)
and the right hand side is an integer. Thus 72 is irrational (and hence so too is 7!).

f[n_] := Numerator[FromContinuedFraction[ContinuedFraction[Pi, n]]]
gln_] := 1.0 Sin[f[n]]
For[n = 1, n <= 10, n++,
Print["n =", n, ", x_n =", f[n], " and sin(x_n) =", glnlll;
n=1, X_n = 3 and sin(x_n) = 0.14112
n =2, X_n = 22 and sin(x_n) = -0.00885131
n = 3, X_n = 333 and sin(x_n) = —-0.00882117
n = 4, X_n = 355 and sin(x_n) = -0.0000301444
n =25 xn= 103993 and sin(x_n) = -0.0000191293
n =26, x_n= 104348 and sin(x_n) = -0.000011015
n=7, x_n = 208341 and sin(x_n) = 8.11432x10"-6
n = 8, x n = 312689 and sin(x_n) = 2.9007+x10"-6
n =29, x_n = 833719 and sin(x_n) = 2.31292x10"-6
n =10, x_.n = 1146408 and sin(x_n) = -5.8778x10"-7

Why do we care about the irrationality of 72? Another beautiful result is Euler’s solution to the Basel problem:

72 = —.
—n 6
However, by the Fundamental Theorem of Arithmetic we have the Euler product representation of the zeta function: if
the real part of s is greater than 1, then

oo -1
1 1
w=a- I (-5)
n . D
n=1 p prime
Taking s = 2 yields
w2 1\ ! P2
6 H <1_192> - H =1
p prime p prime
If there were only finitely many primes than the product is rational, but we just showed 7 is irrational; thus we have

just shown the irrationality of 2 implies the infinitude of primes! (Yes, this is the danger, or benefit, of having a number
theorist teach operations research!)

7.3. Homework Due Monday November 21, 2022. Read: Chapter 16, http://www.maa.org/sites/default/
files/pdf/upload_library/22/Hasse/00029890.di011943.01p0581t.pdf

Homework: Should have a draft of your letter of recommendation, hand in or email outline of project to me, keep
working on project if doing one.


http://www.maa.org/sites/default/files/pdf/upload_library/22/Hasse/00029890.di011943.01p0581t.pdf
http://www.maa.org/sites/default/files/pdf/upload_library/22/Hasse/00029890.di011943.01p0581t.pdf
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8. HW #9: DUE MONDAY, NOVEMBER 21, 2022

8.1. Assignment. Textbook: Page 271: #1. Also: Consider the map from the unit circle (all points (x, ) : 22 +3y? < 1
to itself given by f(z,y) = ((y — 1/2)2/8, (x — 1/2)?/8). Does this map have any fixed points? Why or why not. If
yes find or approximate it.
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