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Abstract. We introduce the notion of stochastic linear programming, and discuss ways
to deal with uncertainty in the parameters of linear programs. We concentrate primarily
on the recourse approach, and describe an application in the context of the Oil Problem
with uncertain levels of demand.

In the linear programs we have seen thus far, of the form

min ~c

T
~x

A~x � ~

b

~x � ~0(1)

we have assumed that the parameters of the problem, A, ~b and ~c, are constant and that
we know these values. However, in many cases some or all of these parameters will either
be unknown at the time when we make our decisions for ~x, or will be random and follow
some joint distribution.

Here, we explore some of the approaches to dealing with these uncertainties, within the con-
text of the Oil Problem. Recall, then, that the Oil Problem could be summarized as follows.

We have R refineries, each with a given maximum capacity si, i 2 {1, 2, . . . , R}, and C

cities, each with a given level of demand for oil dj , j 2 {1, 2, . . . , C}. We are given costs
of shipping oil from each refinery i to each city j, ci,j , which we express as a vector ~c.
Our goal is to determine quantities of oil to ship xi,j from each refinery i to each city
j, which we summarize as the vector ~x, in order to minimize the total shipping cost ~cT~x,
while meeting demand in all of the cities and not exceeding capacity in any of the refineries.

As an example, for a situation with 2 refineries and 3 cities, we could express the above in
the standard form as in (1) by setting
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0
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0

BBBB@
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�s2

d1

d2

d3

1

CCCCA
,~c =

0

BBBBBB@
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c1,2

c1,3

c2,1

c2,2

c2,3

1

CCCCCCA
(2)

and solving the problem as in (1). We can refer to this as the Deterministic Problem, since
all parameter values are known in advance.

We can now explore an example of stochastic linear programming, by considering the above
problem with stochastic, or in other words, random, demand. We suppose that demand is
not known at the time we must make our decision about quantities ~x to ship, but that the
demand levels (d1, d2, d3) follow some known joint distribution. We make another simpli-
fying assumption, that the vector of demands can only take on some finite number of values.

From (2), we can see that in this particular case, only the vector ~b is stochastic, since
some of its elements are random, while the other parameters of the problem, A and ~c,
are known in advance. By assumption, we know that ~b takes on some finite number of
values ~bs, s 2 {1, 2, . . . , S}, with each ~

bs occurring with a known probability ps, such thatPS
s=1 ps = 1.

We note that it is possible that the other parameters of the problem, A and ~c, may also be
stochastic in nature. In this case, we make the same assumptions, that (A,~b,~c) follow some
joint distribution, and take on some finite number of values (As,

~

bs,~cs), s 2 {1, 2, . . . , S}.

We consider a simple example. Suppose we have two possible scenarios, such that ~cT =
(20, 20, 10, 50, 10, 15), and A is as shown in (2); however, suppose there are two possible
values for ~b:
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Scenario 1: ~b1 = (�300,�200, 300, 100, 100)T ; p(~b1) =
2

3

Scenario 2: ~b2 = (�300,�200, 200, 250, 50)T ; p(~b2) =
1

3
(3)

(where p(~bi) is the probability that ~b takes on the value ~bi).

We can now start to discuss various ways to address the uncertainty in this problem.

1. Expected Value approach

In the expected value approach, we compute the following:

AE =
SX

s=1

psAs

~

bE =
SX

s=1

ps
~

bs

~cE =
SX

s=1

ps~cs(4)

and then solve

min c

T
E~x

AE~x � ~

bE

~x � ~0(5)

This is a fairly straightforward approach, in the sense that the complexity of the problem
remains unchanged, since the dimensions of the parameters remain unchanged when we
compute their expected values.

However, this approach can be problematic, since its optimal ~x may not only be sub-
optimal in some (or all) scenarios, but may in fact not be feasible in some (or any) of the
individual scenarios.

Consider the two scenarios described as in (3): we obtain~bE = (�300,�200, 2662
3 , 150, 83

1
3)

T ,
while AE is the same as in (2), and the expected cost vector ~cTE = (20, 20, 10, 50, 10, 15)
similarly remains unchanged since the costs were determined in advance.
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Now, solving the problem as in (5), we obtain the solution ~x

⇤ = (2662
3 , 0, 33

1
3 , 0, 150, 50).

We note that A~x⇤ = ~

bE . Now, we see that if Scenario 1 were to occur, we would have failed
to meet the demand in city 1, and if Scenario 2 were to occur, we would have failed to
meet demand in city 2. This would imply that the solutions we obtain from the expected
value problem may not be feasible in any scenario.

2. Recourse Approach

The recourse approach is a more popular approach that the expected value approach, and
has many applications [1]. We will first describe the recourse approach in the context of
the same Oil Problem as above, and show how we can generalize it further to situations
where all the parameters of the problem might be random.

Suppose that demand is unknown, and we have the opportunity to ship quantities of oil
~x now, at costs ~c. Then, after demand, and hence ~bs, becomes known, we may need to
ship additional quantities of oil ~ys, at scenario-specific “recourse” costs ~rs, in order to meet
demand in all the cities; it would be realistic in many situations to have ~rs > ~c for all
s 2 {1, 2, . . . , S}.

The constraints for this recourse problem, as in the original Oil Problem, can be divided
into supply and demand constraints. Firstly, in any scenario s, the total amount shipped
out of a refinery over the initial and recourse stages must not exceed the capacity of the
refinery. Secondly, in any scenario, the total amount shipped into a city over the initial
and recourse stages must not fall short of demand in that scenario. Using the notation in
(2), we can express this as

A~x+A~ys � ~

bs

for each scenario s 2 {1, 2, . . . , S}.

A common objective function to use in this situation is to minimize the expected total cost.
For any scenario s, the total cost we would incur is ~cT~x + ~r

T
s ~ys. Therefore, the expected

total cost can be expressed as

SX

s=1

ps(~c
T
~x+ ~r

T
s ~ys) = ~c

T
~x+

SX

s=1

ps~r
T
s ~ys

=
�
~c

T
p1~r

T
1 . . . pS ~rS

T
�

0

BBB@

~x

~y1
...
~yS

1

CCCA

and hence, we obtain as the cost vector
�
~c

T
~r

T
1 . . . ~rS

T
�
.
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Suppose, for the Oil Problem we have discussed, we have as recourse costs ~rT1 = 2~cT and
~r

T
2 = 3~cT . We can summarize the recourse problem in block matrix form as

min
�
~c

T
p1~r

T
1 p2 ~r2

T
�
0

@
~x

~y1

~y2

1

A

✓
A A 0
A 0 A

◆0

@
~x

~y1

~y2

1

A �
 
~

b1
~

b2

!
;(6)

where 0 is a matrix of zeros of the same dimensions as A. A more extensive, and less concise,
description of this problem is provided in Section 5.1. This problem is of the same form as
in (1), and we obtain as a solution ~x = (200, 0, 0, 0, 100, 50)T , ~y1 = (100, 0, 0, 0, 0, 50)T , ~y2 =
(0, 100, 0, 0, 50, 0)T .

We could refine the problem further by incorporating storage costs in the objective function.
Consider that the vector A~x + A~ys �~

bs will have, in the first two entries, the quantities
of oil remaining in each of the two refineries, and will have for the remaining three entries
the quantities of oil in excess of demand that has been shipped to each of the three cities,
in scenario s; here, the vectors and matrices are of the same form as shown in (2). Now
suppose for the vector of storage costs in scenario s, we have ~

ts = (t1,s, . . . , t5,s)T , where
the first two entries are the storage costs for each of the refineries, and the next three are
the storage costs in each of the cities. Then, we can express the total cost in scenario s as

�
~c

T
~r

T
1 ~r2

T
�
0

@
~x

~y1

~y2

1

A+
�
~

t

T
1

~

t

T
2

� ✓
A A 0
A 0 A

◆0

@
~x

~y1

~y2

1

A�
 
~

b1
~

b2

!�

=

 �
~c

T
~r

T
1 ~r2

T
�
+
�
~

t

T
1

~

t

T
2

�✓
A A 0
A 0 A

◆�0

@
~x

~y1

~y2

1

A+
�
~

t

T
1

~

t

T
2

�
 
~

b1
~

b2

!

=

 �
~c

T
~r

T
1 ~r2

T
�
+
�
~

t

T
1

~

t

T
2

�✓
A A 0
A 0 A

◆�0

@
~x

~y1

~y2

1

A+ C

where C is constant, and can be disregarded in the objective function. Including storage
costs in the example we have discussed leaves the results unchanged, since in each scenario
the total supply and total demand are equal, and there is consequently no opportunity to
store any extra oil in any of the cities or refineries. For an example in which total supply
across the refineries exceeds total demand across the cities, and hence the inclusion of stor-
age costs can potentially alter the results of the algorithm, see Section 5.2 of the Appendix.
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Note, however, that the problem described in (6) has a much higher dimensionality than
that described in (2). We started with RC variables and R + C constraints for the deter-
ministic problem. If we consider S di↵erent scenarios, we end up with (R+C)S constraints,
and RC first stage variables, plus S(RC) second stage variables, giving a total of RC(1+S)
variables. Therefore, we see that the problem will increase in complexity as we consider
more scenarios.

In the more general case of recourse problems, each scenario would be comprised not only
of a di↵erent ~bs, but of a set of parameters (As, Bs,

~

bs,~cs,~rs), with s 2 {0, 1, . . . , S}, such
that we can express the recourse problem as

min
�
p1(~cT1 + ~r

T
1 ) . . . pS(cTS + ~r

T
S )
�

0

BBB@

~x

~y1
...
~yS

1

CCCA

subject to
0

BBB@

A0 . . . . . .

A1 B1 . . .

...
. . .

AS . . . BS

1

CCCA

0

BBB@

~x

~y1
...
~yS

1

CCCA
�

0

BBB@

~

b0
~

b1
...
~

bS

1

CCCA
(7)

2.1. Multistage Recourse. In many applications, it is likely that we will have to make
decisions at multiple stages in the future, as new information is revealed to us. For exam-
ple, we might extend the Oil Problem to a case where we might be supplying oil to a set
of cities each month, subject to unknown levels of demand, and possibly also of supply.
Here, we discuss a simple case where we have three stages. For the sake of clarity, we will
refer to Figure 1, which illustrates the possible sequences of scenarios.

At each stage, the decision vector we need to pick depends on the decisions we made leading
up to that stage. Each possible scenario at each stage will, therefore, comprise a set of
parameters that define the relationship between that decision, and the decisions preceding
it, as well as some set of costs associated with that decision. We can, therefore, express
the general three-stage problem in the following form:

min
�
~c

T
1 (p1 + p2 + p3)~cT2 p4~c

T
3 p1~c

T
4 p2~c

T
5 p3~c

T
6 p4~c

T
7

�

0

BBBBBBBB@

~y1

~y2

~y3

~y4

~y5

~y6

~y7

1

CCCCCCCCA
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Stage 1 Stage 2 Stage 3

p1
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p4

Figure 1. A simple scenario tree with three stages. Each pi refers to the
probability of that sequence occurring.
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0
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~
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~
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~
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~
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~
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~

b6
~

b7

1
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2.2. Cost of Perfect Information. A metric that is sometimes taken into consideration
in problems with uncertain parameters is known as the Cost of Perfect Information.
We can think about this in the following way: supposing we knew in advance the value
of all our parameters (in the case of the Oil Problem, the demand in each city) before we
made the first-stage decisions. Then, we would have a deterministic linear program of the
type shown in (1), where we choose ~x to minimize total cost ~cT~x. Since the recourse costs
~rs will generally be higher than the first stage costs ~c, it follows that knowing the demand
levels beforehand would yield a minimum cost at least as low as when we used the recourse
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approach.

In order to measure the cost of perfect information, we first compute the optimal costs
c

⇤
s = ~c

T
~xs for the linear programming problems

min ~c

T
~xs

A~xs � ~

bs

~xs � ~0

for s = 1, 2, . . . , S.

We then consider the average of these values, weighted by the probability of each scenario
being realized, and hence obtain the expected shipping cost, assuming we could know
demand beforehand. In other words, we compute

SX

s=1

psc
⇤
s.

Subtracting from this the optimal total expected cost c

⇤
R from the two-stage recourse

problem shown in (6), we calculate the cost of perfect information to be

c

⇤
R �

SX

s=1

psc
⇤
s.

Using the example of the Oil Problem, we could compute the minimal cost for scenario 1 as
$8500 and for scenario 2 as $7500, giving us an expected cost of $8166.67. Subtracting this
from the expected total cost of $11916.67, which we obtained from solving (6), we compute,
for the cost of perfect information, $11916.67�$8166.67 = $3750. These computations are
shown in Section 5.2.

This metric would give us an idea of the cost we incur by having to hedge against di↵er-
ent scenarios occurring. While in many applications, the parameter values are not only
unknown but unknowable, in others the parameter values may be known to other parties,
but are revealed only at a certain time, after which we can make the recourse decisions.
The cost of perfect information would give us a measure of how much we might be willing
to pay for knowledge of the parameter values (demand, in this case) before we make our
first-stage decisions.

It is possible to enhance this idea to consider, for example, the value of market research
which might, rather than give us the true parameter values in advance, at least narrow the
possibilities for the parameter values, giving us fewer scenarios to consider in the problem.
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2.3. Alternative Objective Functions. While the standard objective function in re-
course problems is the expected total cost, it is certainly possible to consider other objec-
tive functions that might be more relevant to specific applications. One possibility is to
minimize the maximum total cost that could occur in any scenario:

Tmax = max
s

{~cT~x+ ~r

T
s ~ys}.

Then, we would seek to minimize Tmax in the linear programming problem.

This approach gives us an upper bound on the total cost, and may be more applicable than
the expected value approach in situations where the tolerance for risk is low.

2.4. Network flows. Another possible refinement of the Oil Problem would be to allow
oil to be shipped between cities. In this case, we would not explicitly di↵erentiate between
refineries and cities, and would instead consider these to be N nodes in a network, rather
than R refineries and C cities. We would require the 1

2N(N � 1) costs of shipping between
any two nodes, and would need to solve for the 1

2N(N � 1) quantities to ship between any
two nodes.

We can modify our constraints slightly to implicitly di↵erentiate between nodes and cities.
The idea is to include initial supplies Si and demands Di in each node i in the network.
We would, then, set initial demand to 0 for refineries, and set initial supply to 0 in cities.

In this case, the supply and demand constraints can be summarized as conservation of
flow:

NX

i=1

xj,i  Sj +
NX

i=1

xi,j �Dj , for j = 1, 2, . . . , N

The above implies that the total amount shipped out of node j cannot exceed the initial
supply at node j, plus the total shipped into node j, minus the demand in node j.

For the deterministic Oil Problem, this approach is e↵ectively no di↵erent from the earlier
definition of the constraints, in which we di↵erentiated between refineries and cities ex-
plicitly. However, for the Oil Problem with stochastic demand, we could potentially find
a lower optimal if we allow oil to be shipped between cities. One example to consider
would be if we had two cities j and k with low shipping costs between them, but with high
storage costs in each. Suppose that total demand across the two cities is always constant
in all scenarios, so that Dj,s + Dk,s = C for s = 1, 2, . . . , S; we may find that the cost
is lower when we allow oil to be shipped between cities, since we could ship oil from the
low demand city to the high demand city at a cost which is lower than storing in the low
demand city. Suppose, on the other hand, that storage costs in city j are very high, while
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it is very low in city k. In this case, we could potentially find a lower total cost in some
scenarios by shipping any excess oil in city j to city k, and thereby incurring lower storage
costs.

It should be noted, of course, that the network flow problem will be more complex than
the recourse problem as in (6), having additional variables in the form of the quantities to
ship between cities.

2.5. Vector Autoregressions and Scenario Generation. In many situations, it can
be di�cult to obtain the joint distribution of the parameters of the problem, particularly
because in many cases, the parameters are not independent. An example of dependent
parameters might be the demand levels we have discussed for the Oil Problem - since high
demand for oil in one city is often associated with high levels of economic activity in that
city, it is likely that this will a↵ect the level of economic activity, and therefore the demand
for oil, in other cities.

This problem of finding the distribution of the parameters becomes even more complex
when we consider the multistage recourse problems, since, for example, demand levels in
one city in one stage will likely depend not only on demand levels of the other cities at
that stage, but also on demand levels in all cities in previous stages. In other words, the
elements of ~bt are correlated not only with each other, but also with the elements of ~bt�i,
with i = 1, 2, . . . .

A statistical method for modeling the relationship of ~bt and previous values of ~b is through
a Vector Autoregression (VAR) of order P , which is of the form

~

bt = R1
~

bt�1 +R2
~

bt�2 + · · ·+RP
~

bt�P + ~µt,

where ~bt 2 Rn for t = 1, 2, . . . , and R1, . . . , RP 2 Rn⇥n. We make the assumption that
the error terms in ~µt all have mean 0, may be correlated at time t (which captures the
contemporaneous e↵ects of one city’s demand on another), but are uncorrelated across time.

Using, for example, T periods of historical data, it is possible to first estimate, using a
number of possible criteria, the appropriate order P for the VAR model, and then to find
estimates of the coe�cient matrices R1, . . . , RP using the method of least squares for each
of the n individual linear regressions, to obtain the estimates R̂1, . . . , R̂P , as well as esti-
mates of the errors ~̂µt.

Now, based on the assumption that R1, . . . , RP will remain unchanged in the future, and
that the errors ~µt are uncorrelated across time, it is possible to make forecasts for future
values of ~b. Supposing that we estimated the coe�cients for periods t = 1, . . . , T , where we
can think of T as the present period, we could, for example, generate a forecast for ~bT+1
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by drawing randomly from our set of estimated errors ~̂µt and computing

~

bT+1 = R1
~

bT +R2
~

bT�1 + · · ·+RP
~

bT+1�P + ~̂µt,

since, by assumption, the errors are uncorrelated across time, and, provided we have speci-
fied the number of lags P appropriately, will give us an idea of the joint distribution of the
errors. In this manner, drawing randomly and with replacement from the set of estimated
~̂µt vectors, we can generate a forecast for several periods into the future, with the sequences
of estimated forecasts ~bT+1, . . . ,

~

bT+n comprising a single scenario for an n stage recourse
problem.

In order to obtain a more accurate picture of the possible evolution of the process, we could
compute a large number of forecasts, each time drawing randomly and with replacement
from the set of estimated errors. As we compute a large number of forecasts, we can,
under our assumptions, obtain a better idea of the possible evolution of the process, with
each of the forecasts corresponding to a single scenario to consider in the stochastic linear
program. For a more detailed description of these “time series” methods, see [3].

It should be noted that there is a di�cult tradeo↵ to make when using this approach:
on the one hand, having a large number of forecasts gives us a more accurate idea of the
likelihood of each scenario occurring, yet on the other hand, generating a large number of
forecasts, or generating forecasts for more periods into the future, can result in a massive
increase in the complexity of the stochastic linear program. Having, for example, N fore-
casts, looking T periods into the future, would lead to a program with up to NT + 1 sets

of variables for the problem, which could prove to be impractical to solve, owing to the
computational time required.

3. Probabilistic Constraints

In the recourse approach we were required to meet demand - or more generally, satisfy all
constraints - regardless of the scenario that was realized. However, we may be willing to
fail to satisfy some of our constraints a given proportion of the time. Then, we might ap-
proach a stochastic linear programming problem such as the Oil Problem described, using
probabilistic constraints rather than the recourse approach.

Suppose that some of our constraints must be satisfied in any scenario - a good example in
the Oil Problem might be the supply constraints. We can include these constraints in the
linear program as we did in (2), so these remain binding. On the other hand, we might be
willing to have a demand shortfall perhaps 5% of the time in each city, and would satisfy
demand in the remaining 95% of scenarios.
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In this situation, we could create binary indicator variables tj,s for each city j and scenario
s such that

tj,s =

⇢
1 if demand is satisfied in city j in scenario s

0 otherwise.

Then, for each city j, we would want

SX

s=1

tj,s � 0.95(S).

Subject to these constraints, we would want to maximize the standard objective function
~c

T
~x, the total shipping cost.

There are, of course, refinements we might make to the approach described. One possibility
might be to ensure that not more than N cities face shortfalls concurrently in any scenario.
One way to implement such a constraint would be to require that

CX

j=1

tj,s � N

for each scenario s = 1, 2, . . . , S. In addition, it is possible to set di↵erent “tolerance levels”
↵j for each city, with

SX

s=1

tj,s � ↵j(S).

Thus, we might require, for example, that we meet demand at least 99% of the time in one
city, and only 80% in another.

This approach could be, in many applications, more appealing than the recourse approach,
particularly if we are in reality willing to violate some of the constraints a small percentage
of the time. However, we should bear in mind that these constraints do not take into
account the extent of the failure to meet any constraint. In the context of the Oil Problem,
we would be indi↵erent between a small shortfall in demand in some scenario, and an ex-
tremely large shortfall. The recourse approach, in contrast, does account for the extent of
shortfalls, e↵ectively through the recourse costs, since a large shortfall would require us to
ship a greater recourse quantity at a higher cost. In this case, we can think of the recourse
costs ~rs as being the penalty per unit shortfall in demand, rather than the recourse cost of
shipping. In addition to this, using probabilistic constraints will mean that we now must
solve an Integer Linear Program, which, when combined with a large number of scenarios
to consider, can become computationally di�cult to solve.
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4. Conclusion

We have shown a number of the more common approaches to dealing with linear program-
ming problems where some or all of the parameters are random. The common theme of
the methods described are that they seek to convert a problem with random parameters,
which we may not know how to solve, into a similar problem with known parameters,
which we do know how to solve. It should be borne in mind, however, that these related
problems can be highly complex in terms of the number of variables and constraints, and
consequently can be computationally more di�cult and time-consuming to solve.

5. Appendix

5.1. Extensive form for the Linear Program described in (6): The extensive form
of the problem we described in (6) is shown here.

Minimize

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

20
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10
50
10
15

40 ⇤ 2/3
40 ⇤ 2/3
20 ⇤ 2/3
100 ⇤ 2/3
20 ⇤ 2/3
30 ⇤ 2/3
60 ⇤ 1/3
60 ⇤ 1/3
30 ⇤ 1/3
150 ⇤ 1/3
30 ⇤ 1/3
45 ⇤ 1/3

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

T 0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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5.2. Mathematica code:

M = {{-1, -1, -1, 0, 0, 0},

{0, 0, 0, -1, -1, -1},

{1, 0, 0, 1, 0, 0},

{0, 1, 0, 0, 1, 0},

{0, 0, 1, 0, 0, 1}

}

b1 = {-300, -200, 300, 100, 100}

b2 = {-300, -200, 200, 250, 50}

bE = (2/3)*b1 + (1/3)*b2

c = {20, 20, 10, 50, 10, 15}

rE = LinearProgramming[c, M, bE]

M.rE

bigM = {

{-1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0,0, 0, 0, 0, 0, 0},

{0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0},

{1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0},

{-1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0},

{0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1},

{1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0},

{0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0},

{0, 0, 1, 0, 0, 1,0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}

}

B = {-300, -200, 300, 100, 100, -300, -200, 200, 250, 50}

shippingcost = {20, 20, 10, 50, 10, 15,

40*2/3, 40*2/3, 20*2/3, 100*2/3, 20*2/3, 30*2/3,

60*1/3, 60*1/3, 30*1/3, 150*1/3, 30*1/3, 45*1/3}

result2 = LinearProgramming[shippingcost, bigM, B]

This gives us the optimal expected total cost:

shippingcost.result2

Now compute the costs we would have incurred had we known demand beforehand:

r1 = LinearProgramming[{20, 20, 10, 50, 10, 15},

M, {-300, -200, 300, 100, 100}]
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{20, 20, 10, 50, 10, 15}.r1

r2 = LinearProgramming[{20, 20, 10, 50, 10, 15},

M, {-300, -200, 200, 250, 50}]

{20, 20, 10, 50, 10, 15}.r2

2/3*8500 + 1/3*7500

Modify the supplies so that total capacity exceeds total demand,

and we could potentially oversupply:

r = LinearProgramming[

{20, 20, 10, 50, 10, 15,

200*2/3, 200*2/3, 100*2/3, 500*2/3, 100*2/3, 150*2/3,

200*1/3, 200*1/3, 100*1/3, 500*1/3, 100*1/3, 150*1/3},

bigM,

{-350, -220, 300, 100, 100, -350, -220, 200, 250, 50}

]

city 2 gets an oversupply in s1, city 1 gets an oversupply in s2:

bigM.r

Now create very high storage costs:

storagecosthigh = {0, 0, 4000*2/3, 30000*2/3, 20000*2/3, 0, 0,

50000*1/3, 20000*1/3, 50*1/3}

shippingcosthigh = {20, 20, 10, 50, 10, 15,

200*2/3, 200*2/3, 100*2/3, 500*2/3, 100*2/3, 150*2/3,

200*1/3, 200*1/3, 100*1/3, 500*1/3, 100*1/3, 150*1/3}

totalexpectedcost2 = shippingcosthigh + storagecosthigh.bigM

r2 = LinearProgramming[totalexpectedcost2,

bigM, {-350, -220, 300, 100, 100, -350, -220, 200, 250, 50}]

We see that the extent of the possible oversupply is a bit less in the cities

where we put in the absurdly high storage costs:

bigM.r2



INTRODUCTION TO STOCHASTIC LINEAR PROGRAMMING 17

In this case, we’re dropping the constant in the objective function (storage

costs are incurred only for amounts in excess of demand), so actually

interpreting something like

totalexpectedcost2.r2

will give an overestimate. This was just to illustrate how storage costs can change

the optimal values.
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