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Introduction / Objectives

Main Topic: Optimization: Linear Programming.

Objectives

@ Obviously learn linear programming.

@ Emphasize techniques / asking the right questions.
@ Model problems and analyze model.

e Elegant solutions vs brute force.

@ Writing textbook for AMS.
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Types of Problems
@ Diet problem.

@ Banking (asset allocation).
@ Scheduling (movies, airlines, TSP, MLB).
@ Elimination numbers.

@ Sphere packing....
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My (applied) experiences

e Marketing: parameters for linear programming
(SilverScreener).

e Data integrity: detecting fraud with Benford’s Law
(IRS, Iranian elections).

e Sabermetrics: Pythagorean Won-Loss Theorem.
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Grading / Administrative

e HW: 15%. Midterm 40%. Final/Project 40%. Class
Participation 5%. May change a bit. A large portion of
work/grade from a group project: you'll give a talk,
prepare a well-crafted manuscript, and respectfully
listen to reports of others.

@ Pre-regs: linear algebra (analysis, stats, programming
a plus).

Office hours / feedback
@ TBD and when I'm in my office (schedule online).

e Feedback ephsmath@gmail.com, password first 8
Fibonacci numbers (011235813).
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@ Webpage: numerous handouts, additional comments
each day (mix of review and optional advanced
material).

@ Opportunity to help write a book.

e PREPARE FOR CLASS! Must do readings before
each class.
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Other: Advice from Jeff Miller

o Party less than the person next to you.



http://joshua.smcvt.edu/linalg.html/book.pdf
http://joshua.smcvt.edu/linalg.html/book.pdf
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Other: Advice from Jeff Miller
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e Take advantage of office hours / mentoring.
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Other: Advice from Jeff Miller

o Party less than the person next to you.
e Take advantage of office hours / mentoring.

@ Learn to manage your time: no one else wants to.
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Other: Advice from Jeff Miller

o Party less than the person next to you.
e Take advantage of office hours / mentoring.
@ Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Linear algebra textbooks online: http:
//joshua.smcvt.edu/linalg.html/book.pdf
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LaTeX and Mathematica Tutorials and Templates

http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm

Has templates for using LaTeX for papers, talks, posters,
and a Mathematica tutorial.

Also videos on each.



http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm
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Alabama vs Auburn: 2013

https:
//www.youtube.com/watch?v=sLO2SmM9gPw
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Log ruler (and WCMA)
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Log ruler (and WCMA)

estimate the usable

output of wood Lumberjacks distrusted the
mathematically trained scaler in protection

of their daily wages, which were basc
individual production
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Scheduling: Baseball Tournaments, Swim Lessons
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Inefficiencies from Location
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Year distribution of sunrise and sunset timesin North Adams, MA-2019

https: // sunrise - sunset.org/us/north - adams - ma




Examples / Jobs
°

Who America is rooting for in the

Super Bow!:
¥
9 W a VL%
P ERR-g ),
A% !

4




Pascal’s Triangle
o

Pascal’s Triangle




Pascal’s Triangle
L]

Pascal’s Triangle

Video on Pascal’s Triangle

https:
//www.youtube.com/watch?v=tt4_4Ya jgRM



https://www.youtube.com/watch?v=tt4_4YajqRM
https://www.youtube.com/watch?v=tt4_4YajqRM
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Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f(x) = 3x° — 8x* 4+ 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.




Fast Multiplication
L]

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f(x) = 3x° — 8x* 4+ 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

Sd) = 1+2+---4+d
Sd) = d+(@d—-1)+---1
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Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f(x) = 3x° — 8x* 4+ 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

Sd) = 1+2+---4+d
Sd) = d+(@d—-1)+---1

Thus 25(d) = d - (d + 1) and claim follows.

QR
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Horner’s Algorithm
f(x) = 3x®> — 8x* + 7x% 4+ 6x2 — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

Horner’s algorithm:

(( 3x —-8)x+7 +6)x—9>x+2.
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Horner’s Algorithm
f(x) = 3x®> — 8x* + 7x% 4+ 6x2 — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

Horner’s algorithm:

(( 3x —-8)x+7 +6)x—9>x+2.

Cost is degree d multiplications!

Useful also in fractal plotting.... Shows can often do
common tasks faster.
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Fast Multiplication

Horner is best in general, but maybe for special
polynomials can do better?

Try polynomials of the form f(x) =
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Horner is best in general, but maybe for special
polynomials can do better?

Try polynomials of the form f(x) = x".

Write nin binary: Say n =100 =64 +32+4 = 1100100,.
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Horner takes us from order d? to order d.
Fast multiplication takes us to order log, d, but only for

special polynomials; these though are the ones used in
RSA!

AR
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Preliminaries

Input x, y with y > x.
Goals: find ged(x, y), find a, b so that ax + by = gcd(x, y).

Lot of ways to go: non-constructive proofs of a, b but need
values; Euclidean algorithm is very fast.

A7
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Euclidean Algorithm

Letnn=y,n =x.

hh = gin+nrn, 0<n<n.
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Euclidean Algorithm

Letnn=y,n =x.
hh = gin+nrn, 0<n<n.

r = Qal + I3, 0<n<r.
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Euclidean Algorithm

Letrnn=y,n = x.
h = qih+r 0<n<rn.
r = Qal + I3, 0<n<r.

Continue until....
lrn = Qnitlfnst + Mny2, e € {0,1}.
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Euclidean Algorithm

Letrnn=y,n = x.
h = qih+r 0<n<rn.
r = Qal + I3, 0<n<r.

Continue until....
lrn = Qnitlfnst + Mny2, e € {0,1}.

Note gcd(ro, 1) = ged(ry, r2) = ged(rz, 13), - - - -
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Euclidean Algorithm

Letrnn=y,n = x.
h = qih+r 0<n<rn.
r = Qal + I3, 0<n<r.

Continue until....
lrn = Qnitlfnst + Mny2, e € {0,1}.

Note gcd(ro, 1) = ged(ry, r2) = ged(rz, 13), - - - -

Can ‘climb upwards’ to get a, b such that
ax + by = ged(x, y).

[
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Fermat’s little Theorem
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Euler totient function

¢(n) is the number of integers from 1 to n relatively prime
to n.

¢(p) = p—1and ¢(pq) = (p—1)(qg— 1) if p, g distinct
primes.

Do not need, but ¢(mn) = ¢(m)¢(n) if gcd(m, n) =1, and
$(p*) = p* —p .

A lot of group theory lurking in the background, only doing
what absolutely need.

BA



Fermat's littl
°

Fermat’s little Theorem

Fermat’s little Theorem (FIT)

Let a be relatively prime to n. Then a*(”) = 1 mod n.

Special cases: @' = 1 mod p, aP~(~1) = 1 mod pq.

Will only prove these two cases....

L
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Proof of Fermat’s little Theorem: n=p

Proof: Let n = p, let gcd(a, p) = 1.
Consider1,2,...,p—1and a,2a,...,(p—1)a.

Claim both sets are all residues modulo p.

R
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Proof of Fermat’s little Theorem: n=p

Proof: Let n = p, let gcd(a, p) = 1.
Consider1,2,...,p—1and a,2a,...,(p—1)a.
Claim both sets are all residues modulo p.

If ia = ja mod pthen (i — j)a= 0 mod pso i =j mod p.
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Proof of Fermat’s little Theorem: n=p

Proof: Let n = p, let gcd(a, p) = 1.
Consider1,2,...,p—1and a,2a,...,(p—1)a.
Claim both sets are all residues modulo p.

If ia = ja mod pthen (i — j)a= 0 mod pso i =j mod p.
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Proof of Fermat’s little Theorem: n=p

Proof: Let n = p, let gcd(a, p) = 1.
Consider1,2,...,p—1and a,2a,...,(p—1)a.
Claim both sets are all residues modulo p.

If ia = ja mod pthen (i — j)a= 0 mod pso i =j mod p.
Thus (p—1)! = (p—1)!'a@°' mod p, s0o &' =1 mod p. O

Note: General case: X, ..., Xyn and axi, ..., axyn)-

[
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.
Apply FIT with a9-" and p: (a%")P~!" = 1 mod p.

Apply FIT with @°~' and q: (&~ ")9~' = 1 mod q.
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Apply FIT with a9-" and p: (a%")P~!" = 1 mod p.
Apply FIT with @°~' and q: (&~ ")9~' = 1 mod q.
Thus aP~1(@" is 1 mod p and is 1 mod q.

aP-Ma-1 =1 +ap=1+3q.
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Apply FIT with a9-" and p: (a%")P~!" = 1 mod p.
Apply FIT with @°~' and q: (&~ ")9~' = 1 mod q.
Thus aP~1(@" is 1 mod p and is 1 mod q.
aP-Ma-1 =1 +ap=1+3q.

Thus ap = 3q so gla and p|3, so aP~1@1) = 1 mod pq.
]
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Primality Tests from FIT

If gcd(a,n) =1 and &"' # 1 mod n then n cannot be
prime.

If equalled 1 then n might be prime.
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Primality Tests from FIT

If gcd(a,n) =1 and &"' # 1 mod n then n cannot be
prime.

If equalled 1 then n might be prime.
e If can take high powers, very fast!

e Can suggest candidate primes, and then use better,
slower test for certainty.

e Carmichael numbers: Composites that are never
rejected: 561, 1105, 1729, 2465, 2821, 6601, 8911,
10585, 15841, 29341, ... (OEIS A002997).
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