
MATH 331: THE LITTLE QUESTIONS: FALL 2014
HOMEWORK SOLUTION KEY

STEVEN J. MILLER (SJM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 331, FALL 2014

ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material in the book so that you can do the
problems to thinking about the problem statement, how you might go about solving it, and why some approaches work and others don’t. Another
important part, which is often forgotten, is how the problemfits into math. Is this a cookbook problem with made up numbersand functions to
test whether or not you’ve mastered the basic material, or does it have important applications throughout math and industry? Below I’ll try and
provide some comments to place the problems and their solutions in context. Many of the comments below are from the TA, Jesse Freeman, or
members of the class.
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1. HW #2: DUE SEPTEMBER19, 2014

Note while we had two homeworks due (the comments on Uslan’s speech, what you want to get out of class, and what you can do
more efficiently) and those do count for 30 homework points, this shall be declared the first homework problem set.

1.1. Problems. Due Friday, September 19 (note additional problems may be added): #0: Go to Project Euler

(https://projecteuler.net/)

and create an account for yourself, and solve the first problem. #1 to #4: Look at the problems above, and choose four that you find
interesting and solve. It is important to learn how to generalize a problem; you want to get into this habit. You can choosethese four
problems from the links or from Project Euler, and do not needto hand anything in. First problem to be submitted for grading is #5.
Looking at the problems on covering a2 × n board with1 × x dominoes, there are a lot of possibilities: #5: How many waysare
there to cover a3 × n board using just1 × 2 tiles? #6: What if now we have a2 × 2 × n box and just1 × 1 × 2 tiles? #7: Choose
at least one induction problem and at least one AM-GM problemto think about; you do not need to write about it. Email me if you’d
like me to do it in class.

https://projecteuler.net/
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1.2. Solutions. #5: How many ways are there to cover a3× n board using just1× 2 tiles?
Solution:

This problem will be easier after we cover recurrences; thiswas posed here to see how many of you wait till the last minute to start
a HW problem and have trouble trying to do too much too quickly.

#6: What if now we have a2× 2× n box and just1× 1× 2 tiles?
Solution:

This problem will be easier after we cover recurrences; thiswas posed here to see how many of you wait till the last minute to start
a HW problem and have trouble trying to do too much too quickly.
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2. HW #3: DUE SEPTEMBER26, 2014

#1: How many ways are there to cover a3× n board using just 1× 2 tiles? #2: What if now we have a2× 2× n box and just
1 × 1× 2 tiles? #3: Solve the double recurrencefn = fn−1 + 3gn−1, gn = −3fn−1 + 9gn−1. #4: Define a set to be selfish if it
contains its cardinality (i.e., its number of elements) as an element; thus{1, 3, 5} is selfish, while{1, 2, 3, 5} is not. Find, with
proof, the number of subsets of{1, 2, ..., n} that are minimal selfish sets (that is, selfish sets none of whose subsets are selfish;
thus {1, 3, 5} is not minimal selfish as{1} is a subset). This is a Putnam problem.....

BELOW ARE SOME SUGGESTIONS / HINTS FOR THE PROBLEMS. THEY ARE COMPLETE IN SOME
PLACES, AND INCOMPLETE IN OTHERS. I STRONGLY URGE YOU TO DRAW PICTURES AND FILL IN ALL ARGUMENTS
THAT NEED HELP. I ALSO TRIED TO WRITE A BIT ABOUT THE THOUGHT
PROCESS AND HOW TO APPROACH THESE.

#1: How many ways are there to cover a3× n board using just 1× 2 tiles?
Solution: We need to find a recurrence. Note thatn has to be even, as otherwise we cannot cover as any number of1× 2 tiles covers
an even number of squares. Thus, let us assume we have a3× 2n board. LetAn be the number of ways to cover a3× 2n board with
1× 2 tiles, and letBn be the number of ways to cover a3× 2n board where in the first column (in the far left) we only have the upper
left corner entry (and not the middle or bottom left corner).We find a system of recurrences.

We have
An = 2An−1 +Bn.

Why? Consider the bottom left square: either it is covered with a vertical or a horizontal tile. If it is a horizontal tile,then we have
to cover the two rows of two blocks above it with two tiles, either vertically or horizontally; there are two ways to do that, and each
gives usAn−1. If it is a vertical tile then we haveBn ways to finish, as that is the configuration we get.

We now need a recurrence forBn. Clearly we must have the first tile coming in from the upper left corner. If the next tile is
vertical underneath its overhang, we now have a3× 2(n− 1) board and the number of ways to cover that isAn−1. If instead our tile
is horizontal then the one below is also horizontal, and we have a region that looks like our original but is two shorter, and thus the
number of ways to cover it isBn−1. Thus

Bn = An−1 +Bn−1,

which impliesAn−1 = Bn −Bn−1, or shifting indicesAn = Bn+1 −Bn.
We can now find a recurrence for justB’s by substituting for theA’s in the first relation, which yields

Bn+1 −Bn = 2Bn − 2Bn−1 +Bn or Bn+1 = 4Bn − 2Bn−1.

The initial conditions are easy:B1 = 1 andB2 = 4. We can now use this to solve forBn (try Bn = rn, get the characteristic
equation), and then getAn.

Of course, since we only care aboutAn we could instead note that ifAn = 2An−1+Bn thenAn−1 = 2An−2+Bn−1. Subtracting
the two yieldsAn −An−1 = 2An−1 − 2An−2 + (Bn −Bn−1); however, from the recurrence forB we knowBn −Bn−1 = An−1

and thus
An −An−1 = 2An−1 − 2An−2 +An−1 or An = 4An−1 − 2An−2,

which is the same recurrence! The initial conditions areA1 = 3 andA2 = 11. We solve this using characteristic polynomials as
before. The Mathematica code is

RSolve[{A[n] - 4 A[n - 1] + 2 A[n - 2] == 0, A[1] == 3, A[2] == 11}, A[n], n]

#2: What if now we have a2× 2× n box and just 1× 1× 2 tiles?
Solution: LetAn be the number of ways to tile a2× 2×n box. We again find a recurrence. There are 2 ways to tile the bottom level
completely (both parallel to thex-axis, or both parallel to they-axis), and thus our recurrence beginsAn = 2An−1 + · · · ; we now
figure out the remainder. There are two possibilities. The first is all tiles in the bottom level point up; there is one way todo this, and
it leaves us with a a2× 2× (n− 2)box, which hasAn−2 ways to tile. ThusAn = 2An−1+An−2+ · · · , and the lone case remaining
is that we have two vertical tiles in the bottom row and one horizontal (note the two vertical tiles must be next to each other). There
are four ways to choose where to place the one horizontal tile. Thus letBn be the number of ways to tile a a2 × 2 × n box where
there is a horizontal tile filled in the bottom row. We have

An = 2An−1 +An−2 + 4Bn−1.
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We need a recurrence forBn. If we add a horizontal tile in the last level, that gives us a completed level and now we have a
2 × 2 × (n − 1) box, and there areAn−1 ways to tile. If we add two vertical tiles then we have the sameregion as we started but
smaller, and the number of ways to fill that isBn−1. Thus our second recurrence is

Bn = An−1 +Bn−1 or An−1 = Bn −Bn−1.

The initial conditions can be found by straightforward computation.
We can now get a recurrence just involvingB, solve by looking at the characteristic polynomial and doing linear combinations,

and then deduce the one forA.

#3: Solve the double recurrencefn = fn−1 + 3gn−1, gn = −3fn−1 + 9gn−1.
Solution: We solve for one in terms of the other. Using the second relation we getfn−1 = − 1

3gn+3gn−1; as this holds for all indices
we can incrementn by 1 and findfn = − 1

3gn+1 + 3gn. We now substitute these values into the first recurrence, and find
(

−1

3
gn+1 + 3gn

)

=

(

−1

3
gn + 3gn−1

)

+ 3gn−1 or gn+1 = 10gn − 18gn−1.

We trygn = rn and find a characteristic polynomial of

r2 − 10r + 18 = 0.

If instead we tried to write theg’s in terms of thef ’s we would again obtain this recurrence relation. We now solve in the usual way.
Explicitly, we assume thatfn = rn to see if we can satisfy the equation. This gives

rn+1 − 10rn + 18rn−1 = 0,

which means that non-trivial solutions are the roots of the quadratic equation

r2 − 10r + 18 = 0,

which are given by

r1 = 5 +
√
7

r2 = 5−
√
7.

So, a general solution is of the form
α1r

n
1 + α2r

n
2 .

The problem doesn’t give any initial values, so we cannot simplify further. To highlight the method, let’s assumef0 = 0 and
f1 = 1. This givesα1 = −α2. Consequently,

1 = −α2(5 +
√
7) + α2(5 −

√
7)

and we have that

α2 = − 1

2
√
7

α1 =
1

2
√
7
,

which concludes the proof. A solution is of the form

fn =

(

1

2
√
7

)

(5 +
√
7)n −

(

1

2
√
7

)

(5−
√
7)n,

and we can use similar methods to find a recursion for thegn.

#4: Define a set to be selfish if it contains its cardinality (i.e., its number of elements) as an element; thus{1, 3, 5} is selfish,
while {1, 2, 3, 5} is not. Find, with proof, the number of subsets of{1, 2, ..., n} that are minimal selfish sets (that is, selfish sets
none of whose subsets are selfish; thus{1, 3, 5} is not minimal selfish as{1} is a subset). This is a Putnam problem.....
Solution: For problems like this, it’s best to do a few cases and get a feel. Doing this we find the number of minimal selfish sets, for
the first fewn, to be the Fibonacci numbers!

Let Sn denote the number of subsets of{1, . . . , n} that are minimal selfish. Consider one of the minimal selfish sets; it either
containsn, or it doesn’t. By definition the number of minimal selfish sets of {1, . . . , n} not containingn is Sn−1. Imagine now we
have a minimal selfish set containingn. Note it’s cardinality is its size, and it has no selfish subset. Its cardinality cannot ben if
n > 1 (as that would mean we have all numbers, and thus selfish subsets). If we subtract 1 from each element we now have a subset
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of {1, . . . , n− 1} (note we could not have had 1 andn both in our original set, and thus since we assumedn was in, 1 was not). We
removen− 1 now, and notice we’ve decreased all the elements by 1 and removed one element from the original set which hadn and
was minimal selfish; we now have a minimal selfish subset of{1, . . . , n − 2} (its cardinality must be in here). Thus the number of
minimal selfish sets containingn here isSn−2, and we get the recurrenceSn = Sn−1 + Sn−2. We just need the initial conditions,
which areS1 = 1 andS2 = 1, to see that it’s the Fibonaccis.
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3. HW #4: DUE OCTOBER 3, 2014

#1: Find the final digit (i.e., the ones digit) of23
4
5

. #2: Prove2n−1 dividesn! if and only if n is a power of 2. #3: How many
primes are there such that, if the prime is written in base 10,its digits are an alternating string of 0s and 1s with first digit
and last digit 1? #4: Show that ifn divides a Fibonacci number that it divides infinitely many Fibonacci numbers. #5: For all
positive real numbersa, b, c show thataabbcc >= abbcca. #6: Show that if a, b and c are positive numbers summing to 1 that
(a+ 1/a)2 + (b + 1/b)2 + (c+ 1/c)2 is at least 100/3.

#1: Find the final digit (i.e., the ones digit) of23
4
5

.
Solution: The powers of 2 go2, 4, 8, 16, 32, 64, 128, 256, 512, .... Notice that we just need to know the value of the exponent modulo
4 to figure out the ones digit, as the pattern repeats every four. Thus the problem reduces to what is34

5

modulo 4. As any multiple
of 100 is a multiple of 4, we just need to find the lasttwo digits of 34

5

Looking at powers of 3, we notice that it goes 3, 9, 27, 81,
and thus ever four powers returns us something that is 1 modulo 4 (a little more work gives320 has last two digits 01, and all the
tens digits are even, so we just need to study the ones digits). While we could continue this analysis,45 is small enough to compute
directly – it equals210 = 1024, and thus the ones digit of34

5

is just 1 (or, equivalently for us, it is 1 modulo 4). Of course, this is
overkill – clearly45 is a multiple of 4! Knowing this, we raise 2 to something whichis 1 modulo 4, and thus we just get 2.

For the record,34
5

equals

373391848741020043532959754184866588225409776783734007750636931722079040617265251

229993688938803977220468765065431475158108727054592160858581351336982809187314191

748594262580938807019951956404285571818041046681288797402925517668012340617298396

574731619152386723046235125934896058590588284654793540505936202376547807442730582

144527058988756251452817793413352141920744623027518729185432862375737063985485319

476416926263819972887006907013899256524297198527698749274196276811060702333710356481

(which is about10488. How big would23
4
5

be? Well, let’s say we have210
488

. As 210 ≈ 103 (it’s actually a bit more), we find

210
488

= (210)10
487

> (103)10
487

=
(

1010
487
)3

.

This is what I could do on my computer; online WolframAlpha does better an gives the answer directly (including the ones digit!).

#2: Prove2n−1 dividesn! if and only if n is a power of 2.
Solution: Assumen = 2L is a perfect power of 2. We count how many times 2 goes into the terms ofn!. Of the2L numbers 1, 2, 3,
..., 2L, half of them (or2L−1) are multiples of 2 once, one-fourth of them (or2L−2) are multiples of 2 twice, one-eight of them (or
2L−3) are multiples of 2 thrice, and so on until one of them (or20) is a multiple of 2 a total ofL times. By writing it like this, we
count certain numbers multiple times; thus 8 and 24 are both counted exactly three times as each is a multiple of 2, 4 and 8 but neither
are multiples of 16 or anything higher. Thus the total numberof 2’s in n! is

2L−1 + 2L−2 + 2L−3 + · · ·+ 20 = 2L − 1 = n− 1;

this follows from using the geometric series formula to sum the geometric series (or just add one and see how everything bumps up,
so one more than the sum is2L or the sum is2L − 1), and then noting thatn = 2L. Thus ifn = 2L we do have2n−1 dividesn!.

What about the other case? We have to show that we have too manypowers of 2 in2n−1. Here’s a plan of attack. Ifn = 2L it
just works. Now look what happens as you increasen. Every time you hit an odd number,n increases by 1 and you get no additional
powers of 2. Thus it fails whenn = 2L + 1. Keep track as you move up and you see there’s always a deficit.Things get better when
you hit big powers of 2, but you don’t overcome the deficit until you hit 2L+1. Obviously you should make this more rigorous. You
can also note that if you go from2L + 1 to 2L + k the powers of 2 that you gain are exactly what you would get going from 1 tok,
and you can then argue by induction.

#3: How many primes are there such that, if the prime is written in base 10, its digits are an alternating string of 0s and 1s
with first digit and last digit 1?
Solution: The only number that works is 101. If we have an even number of 1’s it is a multiple of 101, and this can be seen by using
numbers of the form 10001000100010001; when you multiply by101 it fills things in and gives 1010101010101010101.
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We are left with an odd number of 1’s. At first I tried breaking into cases. If we have a multiple of 3 as the number of 1’s then it’s
divisible by 3 (one of the old divisibility rules), but we’restarting to break into too many cases. I then tried factoringto see if there’s
something that goes into all the odd number of 1 cases, but no luck. Here’s code to create a number with a given number of digits and
test for primality:

f[n_] := Print[Sum[10^(2 k), {k, 0, Prime[n] - 1}], " ",
PrimeQ[Sum[10^(2 k), {k, 0, Prime[n] - 1}]]]

What next? We could try factoring the numbers to seewhythey are composite.

f[n_] := Print[Sum[10^(2 k), {k, 0, Prime[n] - 1}], " ",
FactorInteger[Sum[10^(2 k), {k, 0, Prime[n] - 1}]]]

Rather than looking at the prime factors, it’s better to lookat all the divisors – maybe it’s how wegroup the primes that will be
enlightening.

f[n_] := Print[Sum[10^(2 k), {k, 0, Prime[n] - 1}], " ",
Divisors[Sum[10^(2 k), {k, 0, Prime[n] - 1}]]]

Playing with some oddn we see that if the number of 1’s isn then our number appears to be divisible by111 . . .1, where the
number of 1’s in this number isn. A little more work shows that when we divide we get 9090909091, where the number of 9’s in
general appears to be(n− 1)/2. This now gives us something very concrete to work with and try to prove, and we can try and prove
it by induction, or maybe use the geometric series formula for the sums. Another good suggestion from a student was to do long
division....

#4: Show that if n divides a Fibonacci number that it divides infinitely many Fibonacci numbers.
Solution: Note that the Fibonacci numbers are periodic modulom for anym. The reason is the pigeonhole principle. Modulom
there are onlym possible residues, and thus onlym2 possible pairs of two numbers modulom. Once we look atm2 + 2 consecutive
Fibonacci numbers we havem2 + 1 pairs, and thus at least two pairs are the same.

For our problem, let’s look at the Fibonacci numbers modulon. By assumption we known divides one of them; we now prove it
divides infinitely many as the pattern repeats. To see this, imagine we have repeating pairs at indices(i1, i1 + 1) and(i2, i2 +1), and
let’s assumeFk is our given multiple ofn. If k is one of these indices, or between them, it’s clear. What ifk isn’t? Well, we had to hit
k as we walked from indices(0, 1) to (i1, i1 + 1); thus if we run backwards from(i1, i1 + 1) we must hitk; however, this will give
us the same residues as we would get walking backwards from(i2, i2 + 1), and so we must have something between our two pairs
that’s a multiple ofn.

#5: For all positive real numbersa, b, c show thataabbcc >= abbcca.
Solution: If we wanted, we could rescale and assumeabc = 1. Why? If we multiply each byr we get each side increases by
rr(a+b+c), and thus the relation still holds or doesn’t hold. It doesn’t help us, but for awhile I thought about making their product1,
or settingb equal to 1.... What is more useful is there is a cyclic symmetry, and without loss of generality we may assumea ≤ b ≤ c.
Some ordering exists, the left hand side is independent of the ordering, and seeing the cyclicity (the right hand side is also bccaab or
caabbc) there is no harm in assuming an ordering.

In some sense, if you look at this problem the right way it’s “obvious”. Why? Imagine our numbers are integers. We’re talking
about having some number of powers ofa, b andc. We can choosea+ b+ c numbers. Clearly you want to have as many powers ofc
as possible, so give it the exponentc. Then let’s take as manyb’s as we can, namelyb of them, and finally let’s take the rest to bea.

More formally, we have the following chain (which holds for positive real numbersa ≤ b ≤ c):

aabbcc = aabbcc−(b−a)+(b−a)

≥ aa+(b−a)bbcc−(b−a)

= abbbc(c−b)+b−(b−a)

≥ abbb+(c−b)cb−(b−a) = abbcca.

Note that all the exponents are positive, and the inequalities are true as we replace larger numbers in the product with smaller ones.
For another good inequality to know, see Jensen’s inequality:

http://www.artofproblemsolving.com/Wiki/index.php/Jensen’s_Inequality

#6: Show that if a, b and c are positive numbers summing to 1 that(a+ 1/a)2 + (b+ 1/b)2 + (c+ 1/c)2 is at least 100/3.

http://www.artofproblemsolving.com/Wiki/index.php/Jensen's_Inequality
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Solution: I tried lots of approaches. First I multiplied things out, and got

a2 + a−2 + b2 + b−2 + c2 + c−2 + 6.

I tried to attack this with the arithmetic mean - geometric mean inequality, sometimes writing 6 as 1 + 1 + 1 + 1 + 1 + 1, or as
6(a + b + c). These all gave bounds, but not the desired ones. The problemis that this doesn’t seem to bring in the suma + b + c
equals 1, so it’s probably not the right way.

Early on I also checked to see if the claimed lower bound is reasonable. In problems like this we see that if one of the terms goes
to 0 then the expression goes to infinity, so we’re looking fora minimum value. That often happens when all variables are equal (if
it’s symmetric), and takinga = b = c = 1/3 gives3(10/3)2 = 100/3, as claimed.

I tried doing Lagrange multipliers, as that’s agreatway to work in constraints. Unfortunately while having all the terms equal is a
solution, there could be others. Explicitly, we’d look atf(a, b, c) = a2 + a−2 + b2 + b−2 + c2 + c−2 (we can make our life a little
easier and remove the 6),g(a, b, c) = a+ b+ c− 1, and then extrema off(a, b, c) subject tog(a, b, c) = 0 satisfy

∇f(a, b, c) = 2(a− a−3, b− b−3, c− c−3 = λ(1, 1, 1) = ∇g(a, b, c), a+ b+ c = 1.

This implies

a− a−3 = b− b−3 = c− c−c, a+ b+ c = 1;

again, clearlya = b = c = 1/3 is a solution, but is there another? We are looking to see how manyx can satisfyx − x−3 = r for
some fixedr. This is the same asrx3 − x + 1 = 0. This is a cubic equation, it has three roots (either one realand two complex
conjugate, or three real; it depends onr). We could try using the cubic formula.... Remember we have to look at bothr > 0 andr < 0
(if r = 0 there are two solutions,±1, but remember we are only looking for solutions in the positive numbers). A better approach is
to show the function is strictly increasing (or strictly decreasing) for positivex; if f(x) = x− 1/x3 is strictly increasing for positive
x then we cannot have two suchx giving the same value, and thus the minimum will occur when all are 1/3. Agreat way to show
that a function is strictly increasing (or decreasing) is toanalyze the derivative. Here we find

f ′(x) = 1 +
3

x4
,

which is clearly positive forx > 0. Thusf is strictly increasing, and there cannot be two inputs with the same output. This completes
the proof using Lagrange Multipliers.

Here is a more standard inequality approach. We start using the Cauchy-Schwarz Inequality; see for example

http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

which says
∣

∣

∣

∣

∣

n
∑

i=1

xiyi

∣

∣

∣

∣

∣

2

≤
n
∑

i=1

x2
i ·

n
∑

i=1

y2i .

A very good time to use an inequality like this is to replacea2 with sums ofa · 1 (or a−2 with a−1 · 1), as we then get a sum of 1’s,
which is easily handled.

Specifically, if we remove the 6 from the cross terms, we need to study

S := a2 + b2 + c2 + a−2 + b−2 + c−2 =

3
∑

i=1

x2
i +

3
∑

i=1

x−2
i

(in hopefully obvious notation). Applying the Cauchy-Schwarz inequality to each gives

S =

(

3
∑

i=1

x2
i

)(

3
∑

i=1

1

)

· 1
3
+

(

3
∑

i=1

x−2
i

)(

3
∑

i=1

1

)

· 1
3

≥ 1

3

(

3
∑

i=1

x1 · 1
)2

+
1

3

(

3
∑

i=1

x−1 · 1
)2

=
1

3
· 12 + 1

3

(

1

a
+

1

b
+

1

c

)2

.

We now need to determine the largest value of1/a+ 1/b+ 1/c subject toa+ b+ c = 1 anda, b, c > 0. This can easily be done
with Lagrange multipliers. We get all terms must be equal by symmetry, and are thus 1/3; thus the maximum value here is 9.

http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
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Putting everything together, and remembering the 6, gives

(a+ 1/a)2 + (b + 1/b)2 + (c+ 1/c)2 ≥ 6 +
1

3
· 1 + 1

3
· 92 =

100

3
.
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4. HW #5: DUE OCTOBER10, 2014

The 1992 Green Chicken Exam:

http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/exams/gcexam1992.pdf

#1: First, we will show this can be done in three turns. Then, we will show that it cannot be done in two turns.

Break the coins into three groups given by

g11 = {1, 2, 3, 4}
g12 = {5, 6, 7, 8}
g13 = {9, 10, 11, 12}.

We will use the notationgij > gik to articulate thatgij weighs more thangjk. Weighg11, g12. We use similar notation forn-tuples
{k1, . . . , kn}.

Case 1g11 = g12. In this case, we know that the special coin is ing13. So, weigh{9, 10, 11} against{1, 2, 3}.

Case 1a{9, 10, 11} = {1, 2, 3}. Then, we know that the special coin is 12 and we are done.

Case 1b{9, 10, 11} 6= {1, 2, 3}. Without loss of generality, assume{9, 10, 11} > {1, 2, 3}. Then, we know that the special coin
is heavy. So, weigh 9 against 10. If these coins have the same weight, 11 is special. If they have different weights, the heavy one is
special.

Case 2g11 6= g12. Without loss of generality, assume thatg11 > g12. Then, we will weigh{1, 5, 6} against{2, 7, 8}.

Case 2a{1, 5, 6} = {2, 7, 8}. Then, the special coin can be in neither set. So, it is either3 or 4. This means that the special coin
lies ing11, which is heavier thang12. So, the special coin is heavy. Weigh 3 against 4; the heavierone is the special coin.

Case 2b{1, 5, 6} 6= {2, 7, 8}. Without loss of generality, assume{1, 5, 6} > {2, 7, 8}. This implies that 2,5,and 6 cannot be
special coins. All were in both a heavy and a light set. Now, weigh 7 against 8. If their weights are equal, 1 is the special coin. If their
weights are not equal, then the special coin is in{2, 7, 8}, which means it is light. So, choose the lighter of 7 and 8.

Now, we will argue that we cannot find the special coin in two moves. We will argue that after one move, one cannot in general
have fewer than 4 candidates or know whether the special coinis lighter or heavier. It is clear that one cannot use one weighing to de-
termine whether the coin is special when there are 4 candidates and no knowledge of whether the coin is heavier or lighter than others.

Break the 12 coins into three groups,G1, G2, G3. Suppose that we weighG1, G2 and that those two groups are unequal in size.
If the larger group is heavier, we cannot conclude anything.The coin could be heavy or light in any groups, provided it is not an
extremely heavy coin inG1.

So, assume|G1| = |G2|. No individual outcome gives us guaranteed knowledge of whether the coin is heavy or light. If the
weights are equal, we get nowhere in this regard, and we couldbe left with as many as|G3| coins. So, the optimal case is when
|G1| = |G2| = |G3|. But then, we are left with not knowing whether the coin is heavy or light hand having at least 4 candidates to
choose from.

#2: Let W = w1w2w3w4. We know thatw4 satisfies3w4 ≡ 3 mod 10. As 3 is relatively prime to 10, it has order 10 inZ×
10.

Therefore, the only solution isw4 = 1 because we requirew4 to be a 1-digit number.

The third digit satisfies9 + 3w3 ≡ 9. By the same reasoning, we must havew3 = 0.

The second digit satisfies7 + 3w2 ≡ 9, which forcesw2 = 4.

http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/exams/gcexam1992.pdf
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Finally, the first digit satisfies8 + 3w1 = 1, which forcesw1 = 1.

So, our number is 1401.

#3: We make 3 remarks:

Remark1. If f ≥ g,
∫ 1

0 f ≥
∫ 1

0 g

This is true by the definition of the integral as a positive linear functional. Namely,
∫ 1

0
(f − g) ≥ 0 becausef ≥ g.

Remark2. For0 ≤ α ≤ β ≤ π, cos(α) ≥ cos(β)

This holds becausecos is monotonically decreasing on[0, π].

Remark3. Forx ∈ [0, 1], πx3 ≤ πx2

This is obvious. Forx ≤ 1, x3 ≤ x2.

Using remarks 3,2,1 in that order, the desred inequality follows immediately, namely
∫ 1

0

cos(πx3) dx ≥
∫ 1

0

cos(πx2) dx (4.1)

Can also solve with trig identities. We have

cos(A)− cos(B) = −2 sin((A+B)/2) sin((A−B)/2).

For usA = πx3 andB = πx2. The first sine term is positive, the second negative. Thus we’re integrating a non-negative function....

#4: Consider then-digit numbers, of which there are9 × 10n−1. As a fraction, we have that89
(

9
10

)n−1
of these contain no 7s. In

particular, the contribution from eachn digit number is at most 1
10n−1 . So, we have

∑

n≥1
n 7-free

1

n
≤ 9 ∗ 8

9

∞
∑

n=1

(

9

10

)n−1

< ∞
where the final equality comes from the geometric series formula.

#5:
Part I: “I am a poor knave”.

Claim: Nobody on this island can say “I am a knave”.
Proof: If a knave says so, it is true, violating knave-ness. If a knight says, so, it is false, violating the knight’s code. 2

Let N denote knave,K denote knight,P denote poor andR denote rich. These are all mutually exclusive in the contextof this
problem. We are given the statementP ∩N . By Lemma??, our lady knows this statement is false. So, she is left withR ∪K. If K
is true, then the original statement was a lie. But, that is not possible because knights only tell the truth. So,K must be false,N must
be true andR must be true because eitherR orK is true.
Part II: “I am not a poor knight”

We will first show that this statement cannot be false. Suppose the author is either rich or a knave. If the author is a knave,thenS
is true, a contradiction. If the author is not a knave, but poor, the statement is false, another contradiction.

The author must then be a knight. So,S must be true. In order for this to be the case, the author must be rich.
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#6: Let S(R) denote the side length of a regular polygon or figureR. We begin with a proposition:

Proposition4. LetR be a square of side lengthk. If T1, . . . , Tn aren squares that tileR such thatS(Ti) 6= S(Tj) for i 6= j, then

min {S(T1), . . . , S(Tn)} <
S(R)

2
(4.2)

Proof. Divide R into four quadrants and place tiles in the corners. If one tile has side length at leastS(R)/2, the other three
cannot. �

We also note the following fact:

Lemma5. LetR be a square andT1, . . . , Tn be a finite tiling of the square by squares of different size. Then, the tile of smallest size
cannot lie in the corner or on an edge ofR

Proof. Suppose the smallest tile,T ∗ were in the corner. To fix ideas, suppose it is in the lower righthand corner ofR. Then, the
tile lying aboveT ∗ overhangs the top edge ofT ∗ to the left. This implies that the square immediately to the left of T ∗ can be no
taller thanT ∗. And, because no two squares have the same size, it must have smaller side length thanT ∗. But, this contradicts the
minimality of T ∗.

If T ∗ were on an edge but not a corner, the tiles to the left and rightwould be larger, forcing us to put a smaller tile on top of
T ∗. �

Without loss of generality, supposeC has volume 1. Assume thatC has a tiling by finitely many smaller cubes. Then, the bottom
face ofC is tiled by the bottom faces of cubes lying inC. There is a cube of minimum side length on this bottom face. Call it C1. By
proposition 4.2,S(C1) ≤ 1/2.

Now, consider the top face ofC1. Note that all tiles surroundingC1 are taller thanC1 because our tiles are cubes. IfC is tiled,
then the top face ofC1 is tiled by squares contained entirely in the top face ofC1. This tiling cannot have any spillover onto the faces
of other cubes, because those other cubes have a higher elevation thanC1. So, we have some cube of minimal volume lying on the
top face ofC1. Call this cubeC2. We know

S(C2) ≤
S(C1)

2
. (4.3)

Proceed to constructCn as the tile of minimal side length on top ofCn−1. If Cn−1 were in a corner, and had just jumped over two
cubes boundingCn−2, we might be able to constructCn to be a large cube that has its corner lying inCn−1 and mostly overhangs
the two bounding cubes. However, lemma 5 tells us that this cannot happen becauseCn−1 cannot lie in a corner or on an edge. In
particular, we have

Lemma6. As defined above, any cube that covers part of the top face ofCn−1 is contained entirely within the top face ofCn−1.

Proof. Lemma 5 tells usCn−1 must live in the interior ofCn−2. So,Cn−1 is surrounded by 4 taller cubes. So, any cube in its top
face must have its base completely contained in that top face. �

Lemma 6 reduces the problem to that of tiling the top face ofCn as if it were a square. This allows us to apply lemma 4 to show
that there is a stackC1, . . . , Cn, . . . where the base ofCn+1 is contained entirely within the top face ofCn and moreover

S(Cn+1) ≤
S(Cn)

2
However, no finite substack of this stackC1, . . . , Cn, . . . can ever reach the ceiling because

∞
∑

n=1

S(Cn) ≤ (1/2− ε)

∞
∑

n=1

1

2n
< 1. (4.4)

So, such a tiling necessarily involves infintely many tiles.
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5. HW #6: DUE OCTOBER24, 2014

1993 Green Chicken exam:

http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/exams/gcexam1993.pdf

#1: Reflect the isoceles triangle over itself to form a quadrilateral. We optimize the area of the triangle if and only if we optimize the
area of the quadrilateral. However, the quadrilateral withoptimal area is a square. So, the angle between the to sides oflength 10 is a
right angle. Thus the base has length10

√
2.

#2: By calculation, we have

a1 = 1

a2 = 1

a3 = 106 + 103

a4 = 109 + 2 106

a5 =
1012 + 2 109 + 106

106 + 103

=
(106 + 103)2

(106 + 103)

= 106 + 103

a6 =
109 + 2 106

109 + 2 106

= 1

a7 =
106 + 103

106 + 103

= 1

so by induction, this cycle repeats. Therefore, we only careabout the congruence of 1993 mod 5. This is 3. So,a1993 = 106 + 103.
This is a nice example of getting a few data points and lookingfor the pattern!

#3: We claim that the number of students in the three classes willalways occupy the congruence class of(0, 1, 2) (in some order)
mod 3. Observe that it is true initially. Now, note that when we rearrange students by changing classes, we subtract one from each
congruence mod 3. This is just a permutation of the congruence classes mod 3.This is a nice example of an invariant / mono-invariant
problem!

#4: We will assume knowledge of the relation

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1) (5.1)

Using this, we have

lim
h→0

fn(x+ h)− fn(x)

h
= lim

h→0

(f(x+ h)− f(x))
(

∑n−1
i=0 fn−i(x+ h)f i(x)

)

h

= lim
h→0

(

f(x+ h)− f(x)

h

)

(

n−1
∑

i=0

fn−1−i(x+ h)f i(x)

)

= f ′(x)nfn−1(x)

where the final equality holds by continuity and differentiability.

#5: LetB denote the number of black marbles,W the number of white marbles, andT the total number of marbles. By the statement
of the problem, we have

(

2BW

T (T − 1)

)

=
1

2
(5.2)

http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/exams/gcexam1993.pdf
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from this we immediately have

0 = (B +W ) ((B +W )− 1)− 4BW

= (B +W )2 − 4BW − (B +W )

= (B −W )2 − (B +W )

which proves thatB +W is a perfect square.

Without loss of generality, assumeB > W (If B = W , then by the previous part we have 0 total marbles, in which case the
problem does not make sense) To show thatB,W are triangle numbers, note that

(B −W ) ((B −W )− 1)

2
=

(B −W )2 − (B −W )

2

=
(B +W )− (B −W )

2
= W

A similar argument shows that

B =
|(W −B)||((W −B)− 1)|

2
(5.3)

which is also a triangle number.

#6: We are given the following equation:
F (x)F (x + 1) + F (x+ 1) + 1 = 0 (5.4)

First, note that it can never hold thatF (x) = 0. If this were true, then0 = 1 by our equation in the problem.

We will use the intermediate value theorem to show that ifF is continuous,F must have a zero. This will be a contradiction and
will showF cannot be continuous.

SupposeF (0) > 0. Then, by (5.4),F (−1) must be negative. This gives our zero.

Now, suppose−1 ≤ F (0) ≤ 0. If F (0) = −1, then (5.4) shows thatF (−1) = 0. If F (0) > −1, then we haveF (−1)F (0) = −ε
for ε > 0. Thus,F (−1) > 0. Finally, supposeF (0) < −1. Then,|1 + F (x+ 1)| < |F (x+ 1) and so by (5.4), we have|F (x)| < 1,
which reduces the proof to a previous case.
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