MATH 331: THE LITTLE QUESTIONS: FALL 2014
HOMEWORK SOLUTION KEY

STEVEN J. MILLER (SIM1@WILLIAMS.EDU, STEVEN.MILLER.MC.6@AYA.YALE.EDU): MATH 331, FALL 2014

ABSTRACT. A key part of any math course is doing the homework. This earfgom reading the material in the book so that you can do the
problems to thinking about the problem statement, how yaghbtgo about solving it, and why some approaches work andtiwa’t. Another
important part, which is often forgotten, is how the problsinto math. Is this a cookbook problem with made up numbersfunctions to
test whether or not you've mastered the basic material, es @idhave important applications throughout math and img@sBelow I'll try and
provide some comments to place the problems and their spkiih context. Many of the comments below are from the TAsédé&seeman, or
members of the class.
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1. HW #2: DUE SEPTEMBER19, 2014

Note while we had two homeworks due (the comments on Usjaeéxk, what you want to get out of class, and what you can do
more efficiently) and those do count for 30 homework poihts shall be declared the first homework problem set.

1.1. Problems. Due Friday, September 19 (note additional problems may ded)d#0: Go to Project Euler
(https://projecteul er.net/)

and create an account for yourself, and solve the first pnobi&l to #4: Look at the problems above, and choose four thafigd
interesting and solve. It is important to learn how to gelieea problem; you want to get into this habit. You can chabsse four
problems from the links or from Project Euler, and do not neddand anything in. First problem to be submitted for grgdaw5s.
Looking at the problems on coveringRax n board withl x 2 dominoes, there are a lot of possibilities: #5: How many waygs
there to cover 8 x n board using just x 2 tiles? #6: What if now we haveZx 2 x n box and justl x 1 x 2 tiles? #7: Choose
at least one induction problem and at least one AM-GM prolitethink about; you do not need to write about it. Email me ifigb
like me to doitin class.


https://projecteuler.net/
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1.2. Solutions. #5: How many ways are there to cove3 & n board using just x 2 tiles?

Solution:
This problem will be easier after we cover recurrenceslais posed here to see how many of you wait till the last mirousgeart

a HW problem and have trouble trying to do too much too quickly

#6: What if now we have @ x 2 x n box and justl x 1 x 2 tiles?

Solution:
This problem will be easier after we cover recurrenceslais posed here to see how many of you wait till the last mirousgeart

a HW problem and have trouble trying to do too much too quickly
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2. HW #3: DUE SEPTEMBERZ26, 2014

#1: How many ways are there to cover & x n board using just1 x 2 tiles? #2: What if now we have & x 2 x n box and just
1 x 1 x 2 tiles? #3: Solve the double recurrence,, = f,,-1 + 39n—1,9n = —3fn_1 + 99,_1. #4: Define a set to be selfish if it
contains its cardinality (i.e., its number of elements) asmelement; thus{1, 3, 5} is selfish, while{1, 2, 3,5} is not. Find, with
proof, the number of subsets of{1, 2, ..., n} that are minimal selfish sets (that is, selfish sets none of whke subsets are selfish;
thus {1, 3,5} is not minimal selfish as{1} is a subset). This is a Putnam problem.....

BELOW ARE SOMVE SUGGESTI ONS / HI NTS FOR THE PROBLEMS. THEY ARE COVPLETE | N SOVE

PLACES, AND | NCOWPLETE I N OTHERS. | STRONGLY URGE YOU TO DRAW PI CTURES AND FI LL I'N ALL ARGUMENT
THAT NEED HELP. | ALSO TRIED TO WRITE A BI T ABOUT THE THOUGHT

PROCESS AND HOW TO APPROACH THESE.

#1: How many ways are there to cover & x n board using just 1 x 2 tiles?
Solution: We need to find a recurrence. Note thdias to be even, as otherwise we cannot cover as any numbex dtiles covers
an even number of squares. Thus, let us assume we tiaxea board. LetA,, be the number of ways to coveBax< 2n board with
1 x 2 tiles, and letB,, be the number of ways to coveBax 2n board where in the first column (in the far left) we only have tipper
left corner entry (and not the middle or bottom left corn®vk find a system of recurrences.

We have

A, = 2A,,_1+ B,.

Why? Consider the bottom left square: either it is covereti wivertical or a horizontal tile. If it is a horizontal tilhen we have
to cover the two rows of two blocks above it with two tiles heit vertically or horizontally; there are two ways to do tlaatd each
gives usA,, 1. If itis a vertical tile then we havé,, ways to finish, as that is the configuration we get.

We now need a recurrence fét,,. Clearly we must have the first tile coming in from the uppétr ¢erner. If the next tile is
vertical underneath its overhang, we now hadexa2(n — 1) board and the number of ways to cover thatljs ;. If instead our tile
is horizontal then the one below is also horizontal, and wes lzaregion that looks like our original but is two shorterd @inus the
number of ways to coveriti®,, ;. Thus

Bn = Anfl‘i'anla

which impliesA,,_1 = B,, — B, _1, or shifting indicesA,, = B, 11 — B,,.
We can now find a recurrence for juBts by substituting for thed’s in the first relation, which yields

Bpi1 — Bn = 2B, —2By_1+ B, or Bnyi = 4B, —2B,_1.

The initial conditions are easyB; = 1 and B, = 4. We can now use this to solve fd@,, (try B,, = r™, get the characteristic
equation), and then get,,.

Of course, since we only care abolif we could instead note thatif,, = 2A4,,_1+ B, thenA,,_; =2A,,_ >+ B,,_1. Subtracting
the two yieldsA,, — A,,—1 = 24,1 — 2A,,_2 + (B,, — B,—1); however, from the recurrence f& we knowB,, — B,,_1 = A,,—1
and thus

An - Anfl = 2An71 - 2An72 + Anfl or An = 4An71 - 2An727

which is the same recurrence! The initial conditions die= 3 and A, = 11. We solve this using characteristic polynomials as
before. The Mathematica code is

RSol ve[{Aln] - 4 Aln - 1] + 2 Aln - 2] ==0, All] == 3, Al2] == 11}, Al n], n]

#2: What if now we have a2 x 2 x n boxand just1 x 1 x 2 tiles?

Solution: Let A,, be the number of ways to tileax 2 x n box. We again find a recurrence. There are 2 ways to tile theindevel
completely (both parallel to the-axis, or both parallel to thg-axis), and thus our recurrence begihs = 2A4,,_1 + - - -; we now
figure out the remainder. There are two possibilities. Tret igrall tiles in the bottom level point up; there is one wayeothis, and

it leaves us with a & x 2 x (n — 2) box, which has4,,_» ways to tile. ThusA,, =2A4,,_1+ A4,,_2+-- -, and the lone case remaining
is that we have two vertical tiles in the bottom row and oneaZutal (note the two vertical tiles must be next to each QthEhere
are four ways to choose where to place the one horizontalThels letB,, be the number of ways to tile a2ax 2 x n box where
there is a horizontal tile filled in the bottom row. We have

An - 2An71 + An72 + 4Bn71-
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We need a recurrence fd@#,,. If we add a horizontal tile in the last level, that gives usompleted level and now we have a
2 x 2 x (n — 1) box, and there arél,,_; ways to tile. If we add two vertical tiles then we have the saeggon as we started but
smaller, and the number of ways to fill thatf%,_;. Thus our second recurrence is

Bn - An71+Bn71 or Anfl - Bn_anl-

The initial conditions can be found by straightforward cartgtion.
We can now get a recurrence just involviig solve by looking at the characteristic polynomial and ddinear combinations,
and then deduce the one fdr

#3: Solve the double recurrencef,, = -1 +39n-1,9n = —3fn—1+9gn_1.
Solution: We solve for one in terms of the other. Using the second elatie getf,, 1 = —%gn +3¢,—1; as this holds for all indices
we can increment by 1 and findf,, = —%gnﬂ + 3¢g,. We now substitute these values into the first recurrenakfiad

1 1
(_ggn+1 + 3gn> - <_§gn + 3gn1> + 3gn71 or gn+1 = 1Ogn - 1897171-

We try g, = ™ and find a characteristic polynomial of
r? —10r + 18 = 0.

If instead we tried to write the’s in terms of thef’s we would again obtain this recurrence relation. We nowesoi the usual way.
Explicitly, we assume thaf, = r" to see if we can satisfy the equation. This gives

10" 418" = 0,
which means that non-trivial solutions are the roots of thadyatic equation
r?2 —10r 418 = 0,

which are given by

o= 5+V7

To = 5 - \/?
So, a general solution is of the form

a1y + aory.

The problem doesn'’t give any initial values, so we cannopsifjnfurther. To highlight the method, let’'s assunfg = 0 and
f1 = 1. This givesa; = —as. Consequently,
1= —as(5+V7) + as(5 —V7)

and we have that

1
Qg = ———=
1
o = ——=,

which concludes the proof. A solution is of the form

Jn = (2—\1ﬁ) (5+V7)" - (%ﬁ) (5= V7",

and we can use similar methods to find a recursion fogthe

#4: Define a set to be selfish if it contains its cardinality (., its number of elements) as an element; thu§l, 3,5} is selfish,
while {1, 2, 3,5} is not. Find, with proof, the number of subsets of{1, 2, ..., n} that are minimal selfish sets (that is, selfish sets
none of whose subsets are selfish; thyd, 3, 5} is not minimal selfish as{1} is a subset). This is a Putnam problem.....

Solution: For problems like this, it's best to do a few cases and getla Begng this we find the number of minimal selfish sets, for
the first fewn, to be the Fibonacci numbers!

Let S,, denote the number of subsets{df,...,n} that are minimal selfish. Consider one of the minimal selfests;sit either
containsn, or it doesn’t. By definition the number of minimal selfishsef{1,...,n} not containing: is S,,—1. Imagine now we
have a minimal selfish set containing Note it's cardinality is its size, and it has no selfish stib$ts cardinality cannot be if
n > 1 (as that would mean we have all numbers, and thus selfishtsiibgeve subtract 1 from each element we now have a subset
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of {1,...,n — 1} (note we could not have had 1 andoth in our original set, and thus since we assume&hs in, 1 was not). We
removen — 1 now, and notice we've decreased all the elements by 1 andveghame element from the original set which hadnd
was minimal selfish; we now have a minimal selfish subsdtiof. ., n — 2} (its cardinality must be in here). Thus the number of
minimal selfish sets containinghere isS,,_», and we get the recurren&, = S,,_1 + S, _2. We just need the initial conditions,
which areS; = 1 andS; = 1, to see that it's the Fibonaccis.
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3. HW #4: DUE OCTOBER3, 2014

#1: Find the final digit (i.e., the ones digit) of2345. #2: Prove2"~! divides n! if and only if n is a power of 2. #3: How many
primes are there such that, if the prime is written in base 10jts digits are an alternating string of Os and 1s with first digt

and last digit 1? #4: Show that ifn divides a Fibonacci number that it divides infinitely many Fibonacci numbers. #5: For all
positive real numbersa, b, c show thata®b’c® >= a’bcc®. #6: Show that if a, b and c are positive numbers summing to 1 that
(a+1/a)*+ (b+1/b)* + (c+ 1/c)* is at least 100/3.

#1: Find the final digit (i.e., the ones digit) of23".
Solution: The powers of 2 g@, 4, 8, 16, 2, 64, 128, 256, 52, .... Notice that we just need to know the value of the expbmaaulo
4 to figure out the ones digit, as the pattern repeats every Tdws the problem reduces to whaBi§ modulo 4. As any multiple
of 100 is a multiple of 4, we just need to find the lasb digits of 347 Looking at powers of 3, we notice that it goes 3, 9, 27, 81,
and thus ever four powers returns us something that is 1 roetl@ little more work give$?° has last two digits 01, and all the
tens digits are even, so we just need to study the ones dig¥siie we could continue this analysi) is small enough to compute
directly — it equal®!® = 1024, and thus the ones digit 6f’ is just 1 (or, equivalently for us, it is 1 modulo 4). Of coursas is
overkill — clearly4® is a multiple of 4! Knowing this, we raise 2 to something whisii modulo 4, and thus we just get 2.

For the record3*’ equals

373391848741020043532959754184866588225409776783734007750636931722079040617265251
229993688938803977220468765065431475158108727054592160858581351336982809187314191
748594262580938807019951956404285571818041046681288797402925517668012340617298396
57473161915238672304623512593489605859058828465479354050593620237654 7807442730582
144527058988756251452817793413352141920744623027518729185432862375737063985485319
476416926263819972887006907013899256524297198527698749274196276811060702333710356481

(which is aboutl0%%8. How big would23" be? Well, let's say we hav#?"™*. As 210 ~ 103 (it's actually a bit more), we find
210488 _ (210)10487 < (103)10487 _ (1010487)3 .

This is what | could do on my computer; online WolframAlphaddetter an gives the answer directly (including the ongit! di

#2: Prove2”~! dividesn! if and only if n is a power of 2.

Solution: Assumen = 27 is a perfect power of 2. We count how many times 2 goes intoerag ofn!. Of the2” numbers 1, 2, 3,
..., 21, half of them (or2”—1) are multiples of 2 once, one-fourth of them @r—2) are multiples of 2 twice, one-eight of them (or
2L=3) are multiples of 2 thrice, and so on until one of them %0y is a multiple of 2 a total of times. By writing it like this, we
count certain numbers multiple times; thus 8 and 24 are bmihted exactly three times as each is a multiple of 2, 4 and Bdither
are multiples of 16 or anything higher. Thus the total nundi&’s in n! is

ol 4 9b=2 4 ob=3 4 ... 490 — ol 1 — p—1;

this follows from using the geometric series formula to st geometric series (or just add one and see how everythmgdup,
so one more than the sum3$ or the sum i2” — 1), and then noting that = 2°. Thus ifn = 2” we do have" ! dividesn!.

What about the other case? We have to show that we have toopoamgyrs of 2 in2"~!. Here'’s a plan of attack. i, = 27 it
just works. Now look what happens as you increasEvery time you hit an odd numbet,increases by 1 and you get no additional
powers of 2. Thus it fails when = 2” + 1. Keep track as you move up and you see there’s always a d@liiitgs get better when
you hit big powers of 2, but you don’t overcome the deficit Lydiu hit 2>+, Obviously you should make this more rigorous. You
can also note that if you go frof + 1 to 2” + k the powers of 2 that you gain are exactly what you would getgéiom 1 tok,
and you can then argue by induction.

#3: How many primes are there such that, if the prime is written in base 10, its digits are an alternating string of Os and 1s
with first digit and last digit 1?

Solution: The only number that works is 101. If we have an even numbeisdf 5 a multiple of 101, and this can be seen by using
numbers of the form 10001000100010001; when you multiplg®¥ it fills things in and gives 1010101010101010101.
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We are left with an odd number of 1's. At first | tried breakimgd cases. If we have a multiple of 3 as the number of 1's then it
divisible by 3 (one of the old divisibility rules), but we'sarting to break into too many cases. | then tried factotingge if there’s
something that goes into all the odd number of 1 cases, butako Here’s code to create a number with a given number ofsigid
test for primality:

f[n] := Print[Sunf10”(2 k), {k, O, Prine[n] - 1}], " ",
Prime Sunf 10"(2 k), {k, 0, Prime[n] - 1}]1]1]

What next? We could try factoring the numbers to eégthey are composite.
f[n] := Print[Sunf10”(2 k), {k, O, Prine[n] - 1}], " ",
Factorlnteger[ Suni10”(2 k), {k, O, Prinme[n] - 1}]1]1]

Rather than looking at the prime factors, it's better to lablall the divisors — maybe it's how wgroupthe primes that will be
enlightening.

f[n] := Print[Sunf10”(2 k), {k, O, Prine[n] - 1}], " ",
Di vi sors[ Sunf 10~(2 k), {k, O, Prine[n] - 1}]1]

Playing with some oda we see that if the number of 1's isthen our number appears to be divisiblehyl . .. 1, where the
number of 1's in this number is. A little more work shows that when we divide we get 909090808here the number of 9's in
general appears to je — 1)/2. This now gives us something very concrete to work with apddprove, and we can try and prove

it by induction, or maybe use the geometric series formutatie sums. Another good suggestion from a student was torap lo
division....

#4: Show that if n divides a Fibonacci number that it divides infinitely many Fibonacci numbers.
Solution: Note that the Fibonacci numbers are periodic moduléor any m. The reason is the pigeonhole principle. Moduto
there are onlyn possible residues, and thus only possible pairs of two numbers moduta Once we look atn? + 2 consecutive
Fibonacci numbers we have? + 1 pairs, and thus at least two pairs are the same.

For our problem, let’s look at the Fibonacci numbers modul®y assumption we know divides one of them; we now prove it
divides infinitely many as the pattern repeats. To see tiiagine we have repeating pairs at indi¢gsi; + 1) and(is, i + 1), and
let's assuméF), is our given multiple ofw. If k is one of these indices, or between them, it's clear. Whatsh't? Well, we had to hit
k as we walked from indice®), 1) to (41,41 + 1); thus if we run backwards frorti;, i1 + 1) we must hitk; however, this will give
us the same residues as we would get walking backwards gy + 1), and so we must have something between our two pairs
that’s a multiple ofn.

#5: For all positive real numbersa, b, c show thata®’c® >= abb¢c®.

Solution: If we wanted, we could rescale and assume = 1. Why? If we multiply each by we get each side increases by
rr(etbte) “and thus the relation still holds or doesn't hold. It doeselp us, but for awhile | thought about making their product
or settingb equal to 1.... What is more useful is there is a cyclic symynatrd without loss of generality we may assumg b < c.
Some ordering exists, the left hand side is independenobttiering, and seeing the cyclicity (the right hand siddsie & c®a® or
c®a®b°) there is no harm in assuming an ordering.

In some sense, if you look at this problem the right way it'bvimus”. Why? Imagine our numbers are integers. We're majki
about having some number of powers:0b andc. We can choose + b + ¢ numbers. Clearly you want to have as many powets of
as possible, so give it the exponentThen let’s take as mariys as we can, namelyof them, and finally let's take the rest to be

More formally, we have the following chain (which holds fargitive real numbers < b < ¢):

aabbcc _ aabbccf(bfa)qt(bfa)
> aa+(b7a)bbcc7(b7a)
_ abbbc(c—b)+b—(b—a)
> abbb-l—(c—b)cb—(b—a) _ abbcca'

Note that all the exponents are positive, and the inegesléie true as we replace larger numbers in the product wihesrones.
For another good inequality to know, see Jensen’s inegualit

ht t p: /7 www. ar t of pr obl ensol vi ng. comi WKi /1 ndex. php/ Jensen” s [ nequal ity

#6: Show that if a, b and ¢ are positive numbers summing to 1 thatla + 1/a)? + (b + 1/b)? + (¢ + 1/c)? is at least 100/3.


http://www.artofproblemsolving.com/Wiki/index.php/Jensen's_Inequality
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Solution: | tried lots of approaches. First | multiplied things outdagot
a?+a 2+ +b 2+ +c?+6.

| tried to attack this with the arithmetic mean - geometricaménequality, sometimes writng6as 1 +1+1+1+ 1+ 1, or as
6(a + b+ ¢). These all gave bounds, but not the desired ones. The prablérat this doesn’t seem to bring in the sam- b + ¢
equals 1, so it's probably not the right way.

Early on | also checked to see if the claimed lower bound isarable. In problems like this we see that if one of the teragsg
to 0 then the expression goes to infinity, so we're lookingdaninimum value. That often happens when all variables anelgf
it's symmetric), and taking = b = ¢ = 1/3 gives3(10/3)? = 100/3, as claimed.

| tried doing Lagrange multipliers, as that'ggeatway to work in constraints. Unfortunately while having &letterms equal is a

solution, there could be others. Explicitly, we'd lookfd, b, ¢) = a? + a=2 + b2 + b=2 + ¢ + ¢—2 (we can make our life a little
easier and remove the @), b, c) = a + b + ¢ — 1, and then extrema of(a, b, ¢) subject tog(a, b, ¢) = 0 satisfy

Vf(a,bc) = 2(a—a3b—b3c—c? = A1,1,1) = Vg(a,b,c), a+b+c = 1.

This implies

a—a 3 =b-b3=c—c° a+b+c =1,
again, clearlys = b = ¢ = 1/3 is a solution, but is there another? We are looking to see hamym can satisfyr — 22 = r for
some fixedr. This is the same ast® — = + 1 = 0. This is a cubic equation, it has three roots (either oneardltwo complex
conjugate, or three real; it dependsignWe could try using the cubic formula.... Remember we havedk at both > 0 andr < 0
(if » = 0 there are two solutions; 1, but remember we are only looking for solutions in the pesiiumbers). A better approach is
to show the function is strictly increasing (or strictly deasing) for positiver; if f(x) = x — 1/23 is strictly increasing for positive
2 then we cannot have two suetgiving the same value, and thus the minimum will occur whéara 1/3. Agr eat way to show
that a function is strictly increasing (or decreasing) iaalyze the derivative. Here we find

) =142,

which is clearly positive for: > 0. Thusf is strictly increasing, and there cannot be two inputs withdame output. This completes
the proof using Lagrange Multipliers.

Here is a more standard inequality approach. We start ussn@auchy-Schwarz Inequality; see for example
http://en.w Ki pedi a. or g/ w ki / Cauchy%E2¥80%93Schwar z_1 nequal ity
which says

2 n n
2
=1 3

A very good time to use an inequality like this is to replaéewith sums ofa - 1 (or a=2 with a=* - 1), as we then get a sum of 1's,
which is easily handled.
Specifically, if we remove the 6 from the cross terms, we neexitdy

n
=1

2
1

3 3
S i=a+b*+F+a?+b i 4c? = Zx?—i—Zx;Q
i=1 i=1

(in hopefully obvious notation). Applying the Cauchy-S@winequality to each gives

T e
(;xl : 1) +% <i_1 vy 1)

oL 1 1 1y
3 3\a b ¢)

We now need to determine the largest valué 6f + 1/b + 1/c subjecttoa + b + ¢ = 1 anda, b, ¢ > 0. This can easily be done
with Lagrange multipliers. We get all terms must be equaljoyrmetry, and are thus 1/3; thus the maximum value here is 9.

S

IV
Wl =


http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
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Putting everything together, and remembering the 6, gives

1 1 100
(a+1/a)*+ (b+1/b)*+ (c+1/c)* > 6+§-1+§-92 -5
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4. HW #5: DUE OCTOBER10, 2014
The 1992 Green Chicken Exam:

http: /7 web. wi [ 11 ans. edu/ Mat henat i ¢s/sj m [ 1 er/ publ i ¢_htm / gr eenchi cken/ exams/ gcexanl992. pdf

#1: First, we will show this can be done in three turns. Then, wieskiow that it cannot be done in two turns.

Break the coins into three groups given by

g11 = {1721374}
g12 = {5767778}
g13 = {97 105 117 12}

We will use the notatio;; > g to articulate thay;; weighs more thag,;. Weighgi1, g12. We use similar notation fat-tuples
{klv s 7kn}

Case 1g11 = gi12- In this case, we know that the special coin igip. So, weigh{9, 10,11} against{1, 2, 3}.
Case 1&{9,10,11} = {1, 2, 3}. Then, we know that the special coin is 12 and we are done.

Case 1b{9,10,11} # {1,2,3}. Without loss of generality, assun{é, 10,11} > {1,2,3}. Then, we know that the special coin
is heavy. So, weigh 9 against 10. If these coins have the saighty11 is special. If they have different weights, theuyaane is
special.

Case 2911 # g12. Without loss of generality, assume thaf > g12. Then, we will weigh{1, 5,6} agains{2, 7, 8}.

Case 2a{1,5,6} = {2,7,8}. Then, the special coin can be in neither set. So, it is eBhmr4. This means that the special coin
lies in g11, which is heavier thag,2. So, the special coin is heavy. Weigh 3 against 4; the heamieis the special coin.

Case 2b{1,5,6} # {2,7,8}. Without loss of generality, assunfé, 5,6} > {2,7,8}. This implies that 2,5,and 6 cannot be
special coins. All were in both a heavy and a light set. Nowgw& against 8. If their weights are equal, 1 is the special.dbtheir
weights are not equal, then the special coin i$an7, 8}, which means it is light. So, choose the lighter of 7 and 8.

Now, we will argue that we cannot find the special coin in twove®m We will argue that after one move, one cannot in general
have fewer than 4 candidates or know whether the speciaisbghter or heavier. It is clear that one cannot use one iegto de-
termine whether the coin is special when there are 4 caretidaitd no knowledge of whether the coin is heavier or lightem bthers.

Break the 12 coins into three groufgs,, G2, G3. Suppose that we weigh;, G, and that those two groups are unequal in size.
If the larger group is heavier, we cannot conclude anythifige coin could be heavy or light in any groups, provided ita$ &an
extremely heavy coin idr.

So, assuméG,| = |Gz|. No individual outcome gives us guaranteed knowledge ofthérethe coin is heavy or light. If the
weights are equal, we get nowhere in this regard, and we dmléft with as many aR7s| coins. So, the optimal case is when

|G1| = |G2| = |G3]. But then, we are left with not knowing whether the coin is\year light hand having at least 4 candidates to
choose from.

#2: Let W = wiwowzws. We know thatw, satisfies3w, = 3 mod 10. As 3 is relatively prime to 10, it has order 10 Zf,.
Therefore, the only solution is, = 1 because we require, to be a 1-digit number.
The third digit satisfie9 + 3ws = 9. By the same reasoning, we must hawe= 0.

The second digit satisfigs+ 3wy = 9, which forcesw, = 4.


http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/exams/gcexam1992.pdf
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Finally, the first digit satisfie8 + 3w; = 1, which forcesw; = 1.

So, our number is 1401.

#3: We make 3 remarks:

RemarkL. If f >g, [ f> [}g

This is true by the definition of the integral as a positivedinfunctional. Namel%l(f —g) > 0 becausg > g.

Remark2. For0 < a < 8 <, cos(a) > cos(B)

This holds becauses is monotonically decreasing d, .
Remarlk3. Forz € [0, 1], m2® < ma?
This is obvious. For: < 1, 2% < 22.
Using remarks 3,2,1 in that order, the desred inequalitpdicd immediately, namely

1 1
/ cos(mx?) dr > / cos(mx?) dx (4.1)
0 0

Can also solve with trig identities. We have
cos(A) — cos(B) = —2sin((A+ B)/2)sin((4A — B)/2).
For usA = 7z andB = 7z2. The first sine term is positive, the second negative. Thusvmegrating a non-negative function....

#4: Consider the:-digit numbers, of which there afex 10"~!. As a fraction, we have th% (%)"71 of these contain no 7s. In
particular, the contribution from eaehdigit number is at mos{%. So, we have

1 9x8 X/ 9\""
E - < i
n 9 10
n>1
n 7-free

where the final equality comes from the geometric series titam

#5:
Partl: “l am a poor knave”.

Claim: Nobody on this island can say “| am a knave”.

Proof: If a knave says so, it is true, violating knave-ness. If a kh&ays, so, it is false, violating the knight’s code. o

Let N denote knaveK denote knightP denote poor and denote rich. These are all mutually exclusive in the conbéxhis
problem. We are given the stateménih N. By Lemma??, our lady knows this statement is false. So, she is left With K. If K
is true, then the original statement was a lie. But, that tossible because knights only tell the truth. Somust be falseN- must
be true and? must be true because eithRror K is true.
Part Il: “l am not a poor knight”

We will first show that this statement cannot be false. Supplos author is either rich or a knave. If the author is a knidnax S
is true, a contradiction. If the author is not a knave, butrpthe statement is false, another contradiction.

The author must then be a knight. $omust be true. In order for this to be the case, the author neusth.
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#6: Let S(R) denote the side length of a regular polygon or fighréNVe begin with a proposition:

Proposition4. Let R be a square of side length If T, ..., T,, aren squares that til& such thatS(T;) # S(7}) for i # j, then

min {S(T1),...,S(Tn)} < @ (4.2)

Proof. Divide R into four quadrants and place tiles in the corners. If ore his side length at least( R)/2, the other three
cannot. il

We also note the following fact:

Lemmab. Let R be a square antl, . .., T, be afinite tiling of the square by squares of different sizeer, the tile of smallest size
cannot lie in the corner or on an edgefof

Proof. Suppose the smallest til&* were in the corner. To fix ideas, suppose it is in the lowerthighd corner ofR. Then, the
tile lying aboveT™* overhangs the top edge @f* to the left. This implies that the square immediately to #f¢ &f 7* can be no
taller thanT™. And, because no two squares have the same size, it mustmallersside length thafi’™*. But, this contradicts the
minimality of 7.

If T* were on an edge but not a corner, the tiles to the left and vightid be larger, forcing us to put a smaller tile on top of
T*. O

Without loss of generality, supposéhas volume 1. Assume thathas a tiling by finitely many smaller cubes. Then, the bottom
face ofC is tiled by the bottom faces of cubes lyingdh There is a cube of minimum side length on this bottom facdl.iC&’,. By
propositiof4.2S(Cy) < 1/2.

Now, consider the top face @f,. Note that all tiles surrounding’, are taller tharC; because our tiles are cubes.dfis tiled,
then the top face of; is tiled by squares contained entirely in the top fac€'of This tiling cannot have any spillover onto the faces
of other cubes, because those other cubes have a highdiaiavanC,. So, we have some cube of minimal volume lying on the
top face ofC;. Call this cube’;. We know
S(C
s(cn) < 20, (4.3)

Proceed to construct,, as the tile of minimal side length on top 6f,_;. If C,,_; were in a corner, and had just jumped over two
cubes bounding’,,_», we might be able to construct, to be a large cube that has its corner lyinglip_; and mostly overhangs
the two bounding cubes. However, lemiia 5 tells us that this@happen becaugg, _; cannot lie in a corner or on an edge. In
particular, we have

Lemmab. As defined above, any cube that covers part of the top facg, of is contained entirely within the top face 6f, ;.

Proof. Lemma® tells ug”,,_; must live in the interior of”,, _>. So,C,,_; is surrounded by 4 taller cubes. So, any cube in its top

face must have its base completely contained in that top face O
Lemmd® reduces the problem to that of tiling the top fac€pfas if it were a square. This allows us to apply lenitha 4 to show
that there is a staok’, ..., C,, ... where the base af,,,; is contained entirely within the top face 6f, and moreover
S(Cy
§(Cuin) < 250

However, no finite substack of this sta€k, ..., C,,, ... can ever reach the ceiling because

o0 o0 1

S(Cp) < (1/2—¢ — < 1. 4.4
; (Cn) < (1/ >; on (4.4)

So, such a tiling necessarily involves infintely many tiles.
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5. HW #6: DUE OCTOBER?24, 2014

1993 Green Chicken exam:
http://web. w11 ans. edu/ Mat hemati cs/sym 1l er/public htm/greenchi cken/ exans/ gcexanl993. pdf
#1: Reflect the isoceles triangle over itself to form a quadgilat \We optimize the area of the triangle if and only if weimyite the

area of the quadrilateral. However, the quadrilateral wiitimal area is a square. So, the angle between the to sitksghi 10 is a
right angle. Thus the base has length/2.

#2: By calculation, we have

a1:1
a2:1
as = 10% +10°

as =107 +210°
10" +210% 4 10°
B 106 + 103
(105 +10%)?
(106 +103)
=10°% + 10°

~ 102 +210°
10942106
=1

~10°+10°
106 + 103

=1

as

ae

ar

so by induction, this cycle repeats. Therefore, we only ed@ut the congruence of 1993 mod 5. This is 3. Ggg3 = 10° + 103.
This is a nice example of getting a few data points and loofanthe pattern!

#3: We claim that the number of students in the three classesaimitiys occupy the congruence clasq@f1, 2) (in some order)
mod 3. Observe that it is true initially. Now, note that whea rgarrange students by changing classes, we subtractanefich
congruence mod 3. This is just a permutation of the congruelasses mod 3 his is a nice example of an invariant/ mono-invariant
problem!

#4: We will assume knowledge of the relation
A" =" =(a—b)(@"t+a" 2+ a2+ " (5.1)
Using this, we have
Pt - ) T = @) (S e b))
lim = lim

h—0 h h—0 h

n—1
~ lin (f(:v+hf)b —f(m) (Z EE—— fi(x)>

=0
= f'(@)nf" " (x)
where the final equality holds by continuity and differehtiiy.

#5: Let B denote the number of black marblég,the number of white marbles, afidthe total number of marbles. By the statement

of the problem, we have
2BW 1
(ztr=m) =2 62


http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/exams/gcexam1993.pdf
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from this we immediately have
0=(B+W)(B+W)—-1)—4BW
=(B+W)?> —4BW — (B+ W)
=(B-W)*—(B+W)
which proves thaB + W is a perfect square.

Without loss of generality, assunie¢ > W (If B = W, then by the previous part we have 0 total marbles, in whice ¢he
problem does not make sense) To show #all” are triangle numbers, note that

B-W)(B-W)-1) (B-W)—(B-W)

2 2
_ (B+W)—(B-W)
B 2
=W
A similar argument shows that
p= W= BIW - B) - 1) 53
which is also a triangle number.
#6: We are given the following equation:
F)Fzx+ 1)+ F(z+1)+1=0 (5.4)

First, note that it can never hold th&{xz) = 0. If this were true, thel® = 1 by our equation in the problem.

We will use the intermediate value theorem to show th&t i§ continuousJ’ must have a zero. This will be a contradiction and
will show F' cannot be continuous.

Supposé’(0) > 0. Then, by[[5.#)F(—1) must be negative. This gives our zero.
Now, suppose-1 < F(0) < 0. If F(0) = —1, then [5.#) shows thdf(—1) = 0. If F(0) > —1, then we havé’(—1)F(0) = —¢

fore > 0. Thus,F(—1) > 0. Finally, supposé’(0) < —1. Then,|1 + F(z + 1)| < |F(z + 1) and so by[(5}), we hayé'(z)| < 1,
which reduces the proof to a previous case.
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