
MATH 331: THE LITTLE QUESTIONS: FALL 2024
HOMEWORK SOLUTION KEY

STEVEN J. MILLER (SJM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 331, FALL 2024

ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material in the book so that you can do the
problems to thinking about the problem statement, how you might go about solving it, and why some approaches work and others don’t. Another
important part, which is often forgotten, is how the problem fits into math. Is this a cookbook problem with made up numbers and functions to
test whether or not you’ve mastered the basic material, or does it have important applications throughout math and industry? Below I’ll try and
provide some comments to place the problems and their solutions in context. NOTE: IT IS NOT ALWAYS THE CASE THAT PROBLEMS
ARE WELL-STATED – SOMETIMES YOU NEED TO EMAIL ME AND SAY YOU THINK IT IS TOO VAGUE!
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FIGURE 1. Proof from the OEIS.

1. HW #2: DUE FRIDAY SEPTEMBER 13, 2024

1.1. Problems: (1) Go to Project Euler (https://projecteuler.net/) and create an account for yourself, and solve the
first problem. You do not need to submit this, just email me when done. (2) Read http://www.math.ucla.edu/~radko/
circles/lib/data/Handout-142-159.pdf and do Problem #1: If n lines are drawn in a plane, and no two lines are
parallel, how many regions do they separate the plane into? (3) Prove that (1− 1/4)(1− 1/9) · · · (1− 1/n2) = (n+ 1)/2n.

1.2. Solutions: (2): Read http://www.math.ucla.edu/~radko/circles/lib/data/Handout-142-159.pdf. Do
Problem #1: If n lines are drawn in a plane, and no two lines are parallel, how many regions do they separate the plane into?
Solution: The problem is not phrased well; it implies there is a unique answer, but if they all intersect in a common point the answer
is different than if they do not. One student said a good way to rephrase is that no three lines may intersect in a common point.
Doing a little work, if we have n lines (starting at 0) the number of regions is 1, 2, 4, 7, 11. Plugging this into the OEIS yields
http://oeis.org/A000124 (there were other suggestions but reading them it is clear this is the one we want!).

As a nice additional problem, is the minimum all lines intersecting in a common point, giving 2n regions with n lines? If yes, can
you show that you can get any number of intersections between 2n and Mn (call the maximum with n lines Mn)?

(3): (3) Prove that (1− 1/4)(1− 1/9) · · · (1− 1/n2) = (n+ 1)/2n.
Solution: This follows by induction. Let P (n) be the statement (1− 1/4)(1− 1/9) · · · (1− 1/n2) = (n+ 1)/2n. The base case is
immediate. We now assume P (n) holds and must show P (n+ 1) is true. We have(
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as claimed, completing the proof.
Another proof (from John Fan):
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http://oeis.org/A000124


MATH 409: SOLUTIONS TO HOMEWORK PROBLEMS 3

HW #3: Due September 27, 2024: (1) Make sure you have done the first 10 problems on Project Euler. (2) How many ways
are there to cover a 3 × n board using just 1 × 2 tiles? (3) What if now we have a 2 × 2 × n box and just 1 × 2 tiles? (For
fun, no need to write up, just email me: can you find the exact answer for n = 1000? 10,000? 100,000? 1,000,000? What is
the highest you can go in one hour of computing on your device?) (4) Let a, b be positive integers each at least 2. Prove that
the number of ways to tile an a x b x n box is given by a recurrence relation of finite depth and constant coefficients; can you
bound the size of the coefficients or the depth of the relation?
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FIGURE 2. The different configurations needed to study to find the recurrence for An.

2. HW #3: DUE SEPTEMBER 27, 2022

HW #3: Due September 27, 2024: (1) Make sure you have done the first 10 problems on Project Euler. (2) How many ways
are there to cover a 3 × n board using just 1 × 2 tiles? (3) What if now we have a 2 × 2 × n box and just 1 × 2 tiles? (For
fun, no need to write up, just email me: can you find the exact answer for n = 1000? 10,000? 100,000? 1,000,000? What is
the highest you can go in one hour of computing on your device?) (4) Let a, b be positive integers each at least 2. Prove that
the number of ways to tile an a x b x n box is given by a recurrence relation of finite depth and constant coefficients; can you
bound the size of the coefficients or the depth of the relation?

2.1. Solutions. #2: How many ways are there to cover a 3× n board using just 1× 2 tiles?
Solution: We need to find a recurrence. Note that n has to be even, as otherwise we cannot cover as any number of 1× 2 tiles covers
an even number of squares. Thus, let us assume we have a 3× 2n board. Let An be the number of ways to cover a 3× 2n board with
1× 2 tiles, and let Bn be the number of ways to cover a 3× 2n board where in the first column (in the far left) we only have the upper
left corner entry (and not the middle or bottom left corner). We find a system of recurrences.

We have (note the re-grouping is to simplify some algebra later)

An = 2An−1 +An−2 +Bn +Bn−2 = 2An−1 +Bn + (An−2 +Bn−2) .

Why? Consider the bottom left square: either it is covered with a vertical or a horizontal tile. See Figure 2.
• If it is covered by a vertical tile then we are left with just one square in the upper left corner in the first column. By definition the number

of ways to cover what remains is Bn.
• If it is covered by a horizontal tile we have several options. We could have two horizontal tiles above it, which would completely cover the

first two columns and leave us with a 3× (2n− 2) board to cover; there are An−1 ways to do this. We could have two vertical tiles, again
completely covering the first two columns and leaving us with a 3× (2n− 2) board to cover, which again can be done An−1 ways. Finally
we could have a vertical tile for the last column, and then two horizontal tiles. In that case we would need a horizontal in the bottom row
(so now the bottom four squares are covered). We either now have a vertical tile completing the covering of column four (which leaves
us with a 3 × (2n − 4) board, which can be covered in An−2 ways), or we have two horizontal tiles and thus only the bottom element in
column 5 is left in the first five columns (and by definition there are Bn−2 ways to tile what remains).

We now need a recurrence for Bn; see Figure 3. Clearly we must have the first tile coming in from the upper left corner. If the next
tile is vertical underneath its overhang, we now have a 3 × 2(n − 1) board and the number of ways to cover that is An−1. If instead
our tile is horizontal then the one below is also horizontal, and we have a region that looks like our original but is two shorter, and
thus the number of ways to cover it is Bn−1. Thus

Bn = An−1 +Bn−1,

which implies An−1 = Bn −Bn−1, or shifting indices An = Bn+1 −Bn.
We can now find a recurrence for just B’s by substituting for the A’s in the first relation (note we can replace the grouping we did

there with Bn−1), which yields

Bn+1 −Bn = 2Bn − 2Bn−1 +Bn +Bn−1 or Bn+1 = 4Bn −Bn−1.
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FIGURE 3. The different configurations needed to study to find the recurrence for Bn.

The initial conditions are easy: B1 = 1 and B2 = 4. We can now use this to solve for Bn (try Bn = rn, get the characteristic
equation), and then get An. The first few values for Bn are 1, 4, 15, 56 and 209, and the general formula is

Bn = −
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3 + 3

) ((
2−

√
3
)n −

(√
3 + 2

)n)
6
(√

3 + 2
) .

This can be found by using the Method of Divine Inspiration, or using RSolve in Mathematica:
RSolve[{B[n + 1] == 4 B[n] - B[n - 1], B[1] == 1, B[2] == 4}, B[n], n]

Of course, since we only care about An we could instead note that if An = 2An−1 +Bn +Bn−1 then An−1 = 2An−2 +Bn−1 +
Bn−2. Subtracting the two yields

An −An−1 = 2An−1 − 2An−2 + (Bn −Bn−1) + (Bn−1 −Bn−2);

however, from the recurrence for B we know Bn −Bn−1 = An−1 and thus

An −An−1 = 2An−1 − 2An−2 +An−1 +An−2 or An = 4An−1 −An−2,

which is the same recurrence!

#3: What if now we have a 2× 2× n box and just 1× 1× 2 tiles?
Solution: Let An be the number of ways to tile a 2× 2×n box. We again find a recurrence. There are 2 ways to tile the bottom level
completely (both parallel to the x-axis, or both parallel to the y-axis), and thus our recurrence begins An = 2An−1 + · · · ; we now
figure out the remainder. There are two possibilities. The first is all tiles in the bottom level point up; there is one way to do this, and
it leaves us with a a 2×2× (n−2) box, which has An−2 ways to tile. Thus An = 2An−1+An−2+ · · · , and the lone case remaining
is that we have two vertical tiles in the bottom row and one horizontal (note the two vertical tiles must be next to each other). There
are four ways to choose where to place the one horizontal tile. Thus let Bn be the number of ways to tile a a 2 × 2 × n box where
there is a horizontal tile removed from the bottom row. We have

An = 2An−1 +An−2 + 4Bn−1.

We need a recurrence for Bn. If we add a horizontal tile in the last level, that gives us a completed level and now we have a
2 × 2 × (n − 1) box, and there are An−1 ways to tile. If we add two vertical tiles then we have the same region as we started but
smaller, and the number of ways to fill that is Bn−1. Thus our second recurrence is

Bn = An−1 +Bn−1 or An−1 = Bn −Bn−1.

The initial conditions can be found by straightforward computation.
We can now get a recurrence just involving B, solve by looking at the characteristic polynomial and doing linear combinations,

and then deduce the one for A. Using 2Bn = 2An−1 + 2Bn−1 we find

An = An−2 + 2Bn + 2Bn−1 or Bn+1 = 3Bn + 3Bn−1 −Bn−2,

with initial conditions B1 = 1, B2 = 3 and B3 = 11 (this last takes a bit of counting). Typing
RSolve[{B[n+1] == 3 B[n] + 3 B[n-1] - B[n-2], B[1] == 1, B[2] == 3, B[3] == 11}, B[n], n]

yields
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and hence the first few values of An are 0, 2, 8, 30 and 112, or
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.
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Problem #4: Let a, b be positive integers each at least 2. Prove that the number of ways to tile an a x b x n box is given by
a recurrence relation of finite depth and constant coefficients; can you bound the size of the coefficients or the depth of the
relation?
Solution: If we look at an a×b×2 box there are only finitely many possibilities for which cells are filled and which are unfilled when
using 1× 1× 2 tiles; clearly there are at most 2ab possibilities. We thus have at most finitely many states to consider. Unfortunately
the recurrence could be hard to determine as starting with nothing filled we could have double counting as we add the tiles, but
we can always remove that at the cost of a more complicated relation. Thus the number of auxiliary variables to introduce is at
most 2ab (not all of which will be possible), and the coefficients are bounded (a trivial bound should be the tower of 2ab!, where
T1(x) = x, T2(x) = xx and Tk+1(x) = xTk(x).

Homework #4: Due Oct 4, 2024: #1: Prove for ai > 0 that (1 + a1) · · · (1 + an) ≥ 2n
√
a1 · · · an. #2: Prove for a, b > 0

that a/b + b/a ≥ 2, both by using an inequality approach and without using an inequality! #3: Solve the double recurrence
fn = fn−1 + 3gn−1, gn = −3fn−1 + 9gn−1. #4: Define a set to be selfish if it contains its cardinality (i.e., its number of
elements) as an element; thus {1, 3, 5} is selfish, while {1, 2, 3, 5} is not. Find, with proof, the number of subsets of {1, 2, ..., n}
that are minimal selfish sets (that is, selfish sets none of whose subsets are selfish; thus {1, 3, 5} is not minimal selfish as {1} is
a subset). This is a Putnam problem..... Also, make sure you have done the first 15 Project Euler Problems.
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3. HW #4: DUE OCT 4, 2024

#1: Prove for ai > 0 that (1 + a1) · · · (1 + an) ≥ 2n
√
a1 · · · an. #2: Prove for a, b > 0 that a/b + b/a ≥ 2, both by

using an inequality approach and without using an inequality! #3: Solve the double recurrence fn = fn−1 + 3gn−1, gn =
−3fn−1 + 9gn−1. #4: Define a set to be selfish if it contains its cardinality (i.e., its number of elements) as an element; thus
{1, 3, 5} is selfish, while {1, 2, 3, 5} is not. Find, with proof, the number of subsets of {1, 2, ..., n} that are minimal selfish sets
(that is, selfish sets none of whose subsets are selfish; thus {1, 3, 5} is not minimal selfish as {1} is a subset). This is a Putnam
problem..... Also, make sure you have done the first 15 Project Euler Problems.
#1: Prove for ai > 0 that (1 + a1) · · · (1 + an) ≥ 2n

√
a1 · · · an.

Solution: This follows by the AM-GM inequality applied to each factor: (1 + ai)/2 ≥
√
1 · ai. The claim now follows by multi-

plication. Note there is an asymmetry here in that, for the first time, our quantities are not all of the same dimension. We can’t just
rescale the ai’s without changing things. The solution is to introduce b1, . . . , bn and see this is the same as (b1 + a1) · · · (bn + an) ≥
2n

√
a1b1 · · · anbn, and now if each variable is in meters, both sides are in metersn. See http://www.aam.org.in/site/st_

material/14.pdf for more.

#2: Prove for a, b > 0 that a/b+ b/a ≥ 2, both by using an inequality approach and without using an inequality!
Solution: We can do this via the AM-GM: we would get

a/b+ b/a

2
≥

√
a

b

b

a
= 1.

We can also do this with one variable calculus: let x = a/b. Then we must show, for x > 0, that x + 1/x ≥ 2. It’s nice to have
a compact set (closed and bounded) so we can use the wonderful result from real analysis that a continuous function on a closed and
bounded set attains its maximum and minimum. Without loss of generality we may assume x ∈ [1, 2]; the claim is clearly true for
x ≥ 2, and for x < 1 we just consider 1/x instead. We now have the function f(x) = x + 1/x on [1, 2] and we want to find its
minimum.

Since f ′(x) = 1 − 1/x2, we see the critical points (where it equals zero) in our set is just x = 1, which also happens to be an
endpoint!. We find f(1) = 2, f(2) = 2.5, and thus the minimum is 2.

Notice if we tried to do this by scaling, we can say without loss of generality ab = 1; to see this, replace a by a′ = a
√
t and b by

b′ = b
√
t, which doesn’t change the sum of the fractions but now a′b′ = t. So, using ab = 1 leads to showing a2 + 1/a2 ≥ 2. While

we could differentiate or apply results to this expression, we can of course just replace a2 with x and use the previous argument.

#3: Solve the double recurrence fn = fn−1 + 3gn−1, gn = −3fn−1 + 9gn−1.
Solution: We solve for one in terms of the other. Using the second relation we get fn−1 = − 1

3gn+3gn−1; as this holds for all indices
we can increment n by 1 and find fn = − 1

3gn+1 + 3gn. We now substitute these values into the first recurrence, and find(
−1

3
gn+1 + 3gn

)
=

(
−1

3
gn + 3gn−1

)
+ 3gn−1 or gn+1 = 10gn − 18gn−1.

We try gn = rn and find a characteristic polynomial of

r2 − 10r + 18 = 0.

If instead we tried to write the g’s in terms of the f ’s we would again obtain this recurrence relation. We now solve in the usual way.
Explicitly, we assume that fn = rn to see if we can satisfy the equation. This gives

rn+1 − 10rn + 18rn−1 = 0,

which means that non-trivial solutions are the roots of the quadratic equation

r2 − 10r + 18 = 0,

which are given by

r1 = 5 +
√
7

r2 = 5−
√
7.

So, a general solution is of the form

α1r
n
1 + α2r

n
2 .

http://www.aam.org.in/site/st_material/14.pdf
http://www.aam.org.in/site/st_material/14.pdf
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The problem doesn’t give any initial values, so we cannot simplify further. To highlight the method, let’s assume f0 = 0 and
f1 = 1. This gives α1 = −α2. Consequently,

1 = −α2(5 +
√
7) + α2(5−

√
7)

and we have that

α2 = − 1

2
√
7

α1 =
1

2
√
7
,

which concludes the proof. A solution is of the form

fn =

(
1

2
√
7

)
(5 +

√
7)n −

(
1

2
√
7

)
(5−

√
7)n,

and we can use similar methods to find a recursion for the gn.

#4: Define a set to be selfish if it contains its cardinality (i.e., its number of elements) as an element; thus {1, 3, 5} is selfish,
while {1, 2, 3, 5} is not. Find, with proof, the number of subsets of {1, 2, ..., n} that are minimal selfish sets (that is, selfish sets
none of whose subsets are selfish; thus {1, 3, 5} is not minimal selfish as {1} is a subset). This is a Putnam problem.....
Solution: For problems like this, it’s best to do a few cases and get a feel. Doing this we find the number of minimal selfish sets, for
the first few n, to be the Fibonacci numbers!

Let Sn denote the number of subsets of {1, . . . , n} that are minimal selfish. Consider one of the minimal selfish sets; it either
contains n, or it doesn’t. By definition the number of minimal selfish sets of {1, . . . , n} not containing n is Sn−1. Imagine now we
have a minimal selfish set containing n. Note it’s cardinality is its size, and it has no selfish subset. Its cardinality cannot be n if
n > 1 (as that would mean we have all numbers, and thus selfish subsets). If we subtract 1 from each element we now have a subset
of {1, . . . , n− 1} (note we could not have had 1 and n both in our original set, and thus since we assumed n was in, 1 was not). We
remove n− 1 now, and notice we’ve decreased all the elements by 1 and removed one element from the original set which had n and
was minimal selfish; we now have a minimal selfish subset of {1, . . . , n − 2} (its cardinality must be in here). Thus the number of
minimal selfish sets containing n here is Sn−2, and we get the recurrence Sn = Sn−1 + Sn−2. We just need the initial conditions,
which are S1 = 1 and S2 = 1, to see that it’s the Fibonaccis.

Homework #5: Due Friday, October 11, 2024: (0) Show that no matter what 5 points are chosen on the surface of a unit
sphere, there is at least one closed hemisphere containing at least 4 of the points. (1) Prove the law of cosines: if a, b and
c are the sides of a triangle and θ is the angle between a and b, then c2 = a2 + b2 − 2ab cos(θ). (2-21) Complete the first
20 Project Euler Problems, and include in your HW a screenshot showing that you have completed all of these. Note this
problem is worth 200 points (20 questions), and is thus giving you credit for all the work you have been doing. We will spend
Friday discussing the coding and these problems, so let me know in advance ones you find particularly interesting. Homework
(optional): Geometry problems typically invoke extreme reactions: some love, and some hate. If you like geometry problems
look at the resources above, and choose 1-2 problems to do and submit. You may use these are HW exemptions for problems
in future weeks (i.e., if you get full credit on either of these, you can skip a future problem and receive full credit).
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4. HW #5: DUE FRIDAY, OCTOBER 11, 2024

(0) Show that no matter what 5 points are chosen on the surface of a unit sphere, there is at least one closed hemisphere
containing at least 4 of the points. (1) Prove the law of cosines: if a, b and c are the sides of a triangle and θ is the angle
between a and b, then c2 = a2 + b2 − 2ab cos(θ). (2-21) Complete the first 20 Project Euler Problems, and include in your
HW a screenshot showing that you have completed all of these. Note this problem is worth 200 points (20 questions), and is
thus giving you credit for all the work you have been doing. We will spend Friday discussing the coding and these problems,
so let me know in advance ones you find particularly interesting. Homework (optional): Geometry problems typically invoke
extreme reactions: some love, and some hate. If you like geometry problems look at the resources above, and choose 1-2
problems to do and submit. You may use these as HW exemptions for problems in future weeks (i.e., if you get full credit on
either of these, you can skip a future problem and receive full credit).
(0) Show that no matter what 5 points are chosen on the surface of a unit sphere, there is at least one closed hemisphere
containing at least 4 of the points.
Solution: This should hopefully feel like a pigeonhole principle, but what are the boxes and pigeons? The pigeons are almost surely
related to the five points, but what are the boxes? Sometimes it helps to try to look at a simpler case first. What would the two-
dimensional version on a circle be? Perhaps it is if we have 4 points on a unit circle, at least 3 are on the same semicircle. There are
unfortunately infinitely many semi-circles. One excellent choice is to take a point at random and look at all the semi-circles generated
from it. Without loss of generality we may assume our point is at (1, 0), and our family of semi-circles containing that range from
the semi-circle in the left half of the circle (with points at (−1, 0) and (0,−1)) to the semi-circle on the right half of the circle (with
points at (1, 0) and (0,−1)). Notice the two extreme semi-circles separate the circle into two pieces (that overlap at our point (0, 1)
and at (0,−1)), and each of our three points is in either the left, the right or both. Thus by the Pigeonhole Principle either the left or
the right must get at least two of the three additional points, and thus either the left or the right must have at least 4 of the 5 points.
Notice if two points are at (0, 1) and two are at (0,−1) then we still have a semi-circle containing at least 3 points but only if we use
the endpoints; if we don’t use the endpoints there is no way to do it!

Building on this we now return to the sphere. Without loss of generality we may assume one point is at the north pole, (0, 0, 1).
No matter what point we take next, those two points lie on a great circle and split the sphere into two halves, let’s call then the ‘top’
and ‘bottom’. We now have 3 = 5-2 points left to add, and by the Pigeonhole Principle at least two of the three must go to either the
top or the bottom, proving the claim.

(1) Prove the law of cosines: if a, b and c are the sides of a triangle and θ is the angle between a and b, then c2 = a2 + b2 −
2ab cos(θ).
Solution: Not surprisingly, the idea is to reduce to applications of the Pythagorean Theorem. See Figure 4.

FIGURE 4. Proof from https://en.wikipedia.org/wiki/Law_of_cosines.

HW #6: Due Friday, October 18: #1: Let a1, a2, . . . , an be positive integers. Show a subset sums to a multiple of n. #2: Given
any n, show there is a number xn whose digits are only 0’s and 7’s such that n divides xn. #3: Consider the previous problem.
Find such a number for n = 2017; what is the smallest such number? #4: Show that if n divides a Fibonacci number that it
divides infinitely many Fibonacci numbers. #5: For all positive real numbers a, b, c show that aabbcc >= abbcca.

https://en.wikipedia.org/wiki/Law_of_cosines
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5. HW #6: DUE FRIDAY, OCTOBER 18, 2024

HW #6: Due Friday, October 18: #1: Let a1, a2, . . . , an be positive integers. Show a subset sums to a multiple of n. #2: Given
any n, show there is a number xn whose digits are only 0’s and 7’s such that n divides xn. #3: Consider the previous problem.
Find such a number for n = 2017; what is the smallest such number? #4: Show that if n divides a Fibonacci number that it
divides infinitely many Fibonacci numbers. #5: For all positive real numbers a, b, c show that aabbcc >= abbcca.

#1: Let a1, a2, . . . , an be positive integers. Show a subset sums to a multiple of n.
Solution: As we are trying to prove a sum is a multiple of n, it is natural to look at sums modulo n. For pigeon hole problems we need
to identify the boxes and the pigeons. The boxes should be the n residue classes modulo n. What about the pigeons? There are 2n

possible sums, but that’s a lot more than n. Let’s try looking at something smaller such as a1, a1+a2, a1+a2+a3, . . . , a1+ · · ·+an.
Either one of these n sums is zero modulo n and we win, or else two by the Pigeon Hole Principle have the same remainder, say
i > j − 1. If we subtract, we get ai + · · ·+ aj = 0 mod n, completing the claim.

#2: Given any n, show there is a number xn whose digits are only 0’s and 7’s such that n divides xn.
Solution: This problem is very similar to the previous. We start looking at the numbers 7, 77, 777 and so on; if we look at n+1 then
two must have the same remainder modulo n. Subtracting the smaller from the larger leaves 777 · · · 77000 · · · 0, which is congruent
to zero modulo n and thus is our desired solution.

#3: Consider the previous problem. Find such a number for n = 2017; what is the smallest such number?
We could of course apply the method from above; as 10 is a multiple of just 2 and 5 we see there can be no trailing 7’s in our

answer. Instead, as we are asked to find the smallest such number, we just write a simple code to do that.
findsmallestsevenzero[max_, target_] := Module[{},

smallest = Infinity;
For[n = 1, n <= max, n++,
{
(* next line converts n to binary, multiples all digits by 7 *)
digits = 7 IntegerDigits[n, 2];
numdigits = Length[digits];
number = Sum[digits[[d]] 10^(numdigits - d), {d, 1, numdigits}];
If[Mod[number, target] == 0,
{
If[number < smallest, smallest = number];
n = max + 10; (* exit for loop if found soln *)
}];

}]; (* end of n for loop *)
If[smallest < Infinity, Print[smallest]];
];

This generates the answer 70077077707007; i.e., this is the first non-zero number whose digits are just 0’s and 7’s which is con-
gruent to 0 modulo 2017. It might be interesting to see how the length of the smallest number varies as a function of the target. If
we did 2016 we would find 77777777700000 (same number of digits), while 2018 is 700700077777770 and 2019 is the significantly
shorter 700700007.

#4: Show that if n divides a Fibonacci number that it divides infinitely many Fibonacci numbers.
Solution: Note that the Fibonacci numbers are periodic modulo m for any m. The reason is the pigeonhole principle. Modulo m
there are only m possible residues, and thus only m2 possible pairs of two numbers modulo m. Once we look at m2 + 2 consecutive
Fibonacci numbers we have m2 + 1 pairs, and thus at least two pairs are the same.

For our problem, let’s look at the Fibonacci numbers modulo n. By assumption we know n divides one of them; we now prove it
divides infinitely many as the pattern repeats. To see this, imagine we have repeating pairs at indices (i1, i1 + 1) and (i2, i2 + 1), and
let’s assume Fk is our given multiple of n. If k is one of these indices, or between them, it’s clear. What if k isn’t? Well, we had to hit
k as we walked from indices (0, 1) to (i1, i1 + 1); thus if we run backwards from (i1, i1 + 1) we must hit k; however, this will give
us the same residues as we would get walking backwards from (i2, i2 + 1), and so we must have something between our two pairs
that’s a multiple of n.
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#5: For all positive real numbers a, b, c show that aabbcc ≥ abbcca.
Solution: If we wanted, we could rescale and assume abc = 1. Why? If we multiply each by r we get each side increases by
rr(a+b+c), and thus the relation still holds or doesn’t hold. It doesn’t help us, but for awhile I thought about making their product 1,
or setting b equal to 1.... What is more useful is there is a cyclic symmetry, and without loss of generality we may assume a ≤ b ≤ c.
Some ordering exists, the left hand side is independent of the ordering, and seeing the cyclicity (the right hand side is also bccaab or
caabbc) there is no harm in assuming an ordering.

In some sense, if you look at this problem the right way it’s “obvious”. Why? Imagine our numbers are integers. We’re talking
about having some number of powers of a, b and c. We can choose a+ b+ c numbers. Clearly you want to have as many powers of c
as possible, so give it the exponent c. Then let’s take as many b’s as we can, namely b of them, and finally let’s take the rest to be a.

More formally, we have the following chain (which holds for positive real numbers a ≤ b ≤ c):

aabbcc = aabbcc−(b−a)+(b−a)

≥ aa+(b−a)bbcc−(b−a)

= abbbc(c−b)+b−(b−a)

≥ abbb+(c−b)cb−(b−a) = abbcca.

Note that all the exponents are positive, and the inequalities are true as we replace larger numbers in the product with smaller ones.
For another good inequality to know, see Jensen’s inequality:

http://www.artofproblemsolving.com/Wiki/index.php/Jensen’s_Inequality

Homework #7: Due October 25, 2024: #1, #2, #3, #4 (counts as four problems): Show
that any decomposition of N as a sum of Fibonacci numbers cannot have fewer sum-
mands than the Zeckendorf decomposition. Is there a monovariant that can help?

ALSO: For Monday, think about which is larger: eπ or πe. You are NOT allowed to use
a computer to calculate anything; try to prove elementarily which wins.

http://www.artofproblemsolving.com/Wiki/index.php/Jensen's_Inequality
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