
MATH 331: THE LITTLE QUESTIONS: FALL 2018
HOMEWORK SOLUTION KEY

STEVEN J. MILLER (SJM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 331, FALL 2018

ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material in the book so that you can do the
problems to thinking about the problem statement, how you might go about solving it, and why some approaches work and others don’t. Another
important part, which is often forgotten, is how the problemfits into math. Is this a cookbook problem with made up numbersand functions to
test whether or not you’ve mastered the basic material, or does it have important applications throughout math and industry? Below I’ll try and
provide some comments to place the problems and their solutions in context.NOTE: IT IS NOT ALWAYS THE CASE THAT PROBLEMS
ARE WELL-STATED – SOMETIMES YOU NEED TO EMAIL ME AND SAY YOU TH INK IT IS TOO VAGUE!

CONTENTS

1. HW #2: Due Friday September 14, 2018 2
1.1. Problems: 2
1.2. Solutions: 2
2. HW #3: Due September 24, 2018 3
2.1. Problems 3
2.2. Solutions 3
3. HW #4: Due September 28, 2018 6
4. HW #5: Due Friday, October 5, 2018 8
5. HW #6: Due Friday, October 19, 2018 9
6. HW #7: Due October 26, 2018 11

Date: October 27, 2018.

1



2 STEVEN J. MILLER (SJM1@WILLIAMS.EDU, STEVEN.MILLER.MC.96@AYA.YALE.EDU): MATH 331, FALL 2018

FIGURE 1. Proof from the OEIS.

1. HW #2: DUE FRIDAY SEPTEMBER14, 2018

1.1. Problems: (1) Go to Project Euler (https://projecteuler.net/) and create an account for yourself, and solve the
first problem. You do not need to submit this, just email me when done. (2) Readhttp://www.math.ucla.edu/~radko/
circles/lib/data/Handout-142-159.pdf and do Problem #1: Ifn lines are drawn in a plane, and no two lines are
parallel, how many regions do they separate the plane into? (3) Prove that(1 − 1/4)(1− 1/9) · · · (1− 1/n2) = (n+ 1)/2n.

1.2. Solutions: (2): Readhttp://www.math.ucla.edu/~radko/circles/lib/data/Handout-142-159.pdf. Do
Problem #1: If n lines are drawn in a plane, and no two lines are parallel, how many regions do they separate the plane into?
Solution: The problem is not phrased well; it implies there is a unique answer, but if they all intersect in a common point the answer
is different than if they do not. One student said a good way torephrase is that no three lines may intersect in a common point. Doing
a little work, if we haven lines (starting at 0) the number of regions is 1, 2, 4, 7, 11. Plugging this into the OEIS yieldshttp://
oeis.org/A000124 (there were other suggestions but reading them it is clear this is the one we want!).

(3): (3) Prove that (1 − 1/4)(1− 1/9) · · · (1− 1/n2) = (n+ 1)/2n.
Solution: This follows by induction. LetP (n) be the statement(1 − 1/4)(1− 1/9) · · · (1 − 1/n2) = (n+ 1)/2n. The base case is
immediate. We now assumeP (n) holds and must showP (n+ 1) is true. We have
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as claimed, completing the proof.
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HW #3: Due September 24, 2018: (1) Make sure you have done the first 10 problems on Project Euler. (2) How many ways
are there to cover a3× n board using just 1× 2 tiles? (3) What if now we have a2× 2× n box and just 1× 2 tiles?

https://projecteuler.net/
http://www.math.ucla.edu/~radko/circles/lib/data/Handout-142-159.pdf
http://www.math.ucla.edu/~radko/circles/lib/data/Handout-142-159.pdf
http://www.math.ucla.edu/~radko/circles/lib/data/Handout-142-159.pdf
http://oeis.org/A000124
http://oeis.org/A000124
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FIGURE 2. The different configurations needed to study to find the recurrence forAn.

2. HW #3: DUE SEPTEMBER24, 2018

2.1. Problems. (1) Make sure you have done the first 10 problems on Project Euler. (2) How many ways are there to cover a3× n
board using just1× 2 tiles? (3) What if now we have a2× 2× n box and just1× 2 tiles?

2.2. Solutions. #2: How many ways are there to cover a3× n board using just 1× 2 tiles?
Solution: We need to find a recurrence. Note thatn has to be even, as otherwise we cannot cover as any number of1× 2 tiles covers
an even number of squares. Thus, let us assume we have a3× 2n board. LetAn be the number of ways to cover a3× 2n board with
1× 2 tiles, and letBn be the number of ways to cover a3× 2n board where in the first column (in the far left) we only have the upper
left corner entry (and not the middle or bottom left corner).We find a system of recurrences.

We have (note the re-grouping is to simplify some algebra later)

An = 2An−1 +An−2 +Bn +Bn−2 = 2An−1 +Bn + (An−2 +Bn−2) .

Why? Consider the bottom left square: either it is covered with a vertical or a horizontal tile. See Figure 2.

• If it is covered by a vertical tile then we are left with just one square in the upper left corner in the first column. By definition the number
of ways to cover what remains isBn.

• If it is covered by a horizontal tile we have several options.We could have two horizontal tiles above it, which would completely cover the
first two columns and leave us with a3× (2n− 2) board to cover; there areAn−1 ways to do this. We could have two vertical tiles, again
completely covering the first two columns and leaving us witha3× (2n− 2) board to cover, which again can be doneAn−1 ways. Finally
we could have a vertical tile for the last column, and then twohorizontal tiles. In that case we would need a horizontal in the bottom row
(so now the bottom four squares are covered). We either now have a vertical tile completing the covering of column four (which leaves
us with a3× (2n− 4) board, which can be covered inAn−2 ways), or we have two horizontal tiles and thus only the bottom element in
column 5 is left in the first five columns (and by definition there areBn−2 ways to tile what remains).

We now need a recurrence forBn; see Figure 3. Clearly we must have the first tile coming in from the upper left corner. If the next
tile is vertical underneath its overhang, we now have a3 × 2(n− 1) board and the number of ways to cover that isAn−1. If instead
our tile is horizontal then the one below is also horizontal,and we have a region that looks like our original but is two shorter, and
thus the number of ways to cover it isBn−1. Thus

Bn = An−1 +Bn−1,

which impliesAn−1 = Bn −Bn−1, or shifting indicesAn = Bn+1 −Bn.
We can now find a recurrence for justB’s by substituting for theA’s in the first relation (note we can replace the grouping we did

there withBn−1), which yields

Bn+1 −Bn = 2Bn − 2Bn−1 +Bn +Bn−1 or Bn+1 = 4Bn −Bn−1.
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FIGURE 3. The different configurations needed to study to find the recurrence forBn.

The initial conditions are easy:B1 = 1 andB2 = 4. We can now use this to solve forBn (try Bn = rn, get the characteristic
equation), and then getAn. The first few values forBn are 1, 4, 15, 56 and 209, and the general formula is
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)n
)

6
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) .

This can be found by using the Method of Divine Inspiration, or using RSolve in Mathematica:

RSolve[{B[n + 1] == 4 B[n] - B[n - 1], B[1] == 1, B[2] == 4}, B[n], n]

Of course, since we only care aboutAn we could instead note that ifAn = 2An−1 +Bn +Bn−1 thenAn−1 = 2An−2 +Bn−1 +
Bn−2. Subtracting the two yields

An −An−1 = 2An−1 − 2An−2 + (Bn −Bn−1) + (Bn−1 −Bn−2);

however, from the recurrence forB we knowBn −Bn−1 = An−1 and thus

An −An−1 = 2An−1 − 2An−2 +An−1 +An−2 or An = 4An−1 −An−2,

which is the same recurrence!

#3: What if now we have a2× 2× n box and just 1× 1× 2 tiles?
Solution: LetAn be the number of ways to tile a2× 2×n box. We again find a recurrence. There are 2 ways to tile the bottom level
completely (both parallel to thex-axis, or both parallel to they-axis), and thus our recurrence beginsAn = 2An−1 + · · · ; we now
figure out the remainder. There are two possibilities. The first is all tiles in the bottom level point up; there is one way todo this, and
it leaves us with a a2× 2× (n− 2)box, which hasAn−2 ways to tile. ThusAn = 2An−1+An−2+ · · · , and the lone case remaining
is that we have two vertical tiles in the bottom row and one horizontal (note the two vertical tiles must be next to each other). There
are four ways to choose where to place the one horizontal tile. Thus letBn be the number of ways to tile a a2 × 2 × n box where
there is a horizontal tile removed from the bottom row. We have

An = 2An−1 +An−2 + 4Bn−1.

We need a recurrence forBn. If we add a horizontal tile in the last level, that gives us a completed level and now we have a
2 × 2 × (n − 1) box, and there areAn−1 ways to tile. If we add two vertical tiles then we have the sameregion as we started but
smaller, and the number of ways to fill that isBn−1. Thus our second recurrence is

Bn = An−1 +Bn−1 or An−1 = Bn −Bn−1.

The initial conditions can be found by straightforward computation.
We can now get a recurrence just involvingB, solve by looking at the characteristic polynomial and doing linear combinations,

and then deduce the one forA. Using2Bn = 2An−1 + 2Bn−1 we find

An = An−2 + 2Bn + 2Bn−1 or Bn+1 = 3Bn + 3Bn−1 −Bn−2,

with initial conditionsB1 = 1, B2 = 3 andB3 = 11 (this last takes a bit of counting). Typing

RSolve[{B[n+1] == 3 B[n] + 3 B[n-1] - B[n-2], B[1] == 1, B[2] == 3, B[3] == 11}, B[n], n]

yields
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and hence the first few values ofAn are 0, 2, 8, 30 and 112, or
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Homework #4: Due Sept 28, 2018: #1: Prove forai > 0 that (1 + a1) · · · (1 + an) ≥ 2n
√
a1 · · · an. #2: Prove for a, b > 0
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that a/b + b/a ≥ 2, both by using an inequality approachand without using an inequality! #3: Solve the double recurrence
fn = fn−1 + 3gn−1, gn = −3fn−1 + 9gn−1. #4: Define a set to be selfish if it contains its cardinality (i.e., its number of
elements) as an element; thus{1, 3, 5} is selfish, while{1, 2, 3, 5} is not. Find, with proof, the number of subsets of{1, 2, ..., n}
that are minimal selfish sets (that is, selfish sets none of whose subsets are selfish; thus{1, 3, 5} is not minimal selfish as{1} is
a subset). This is a Putnam problem..... Also, make sure you have done the first 15 Project Euler Problems.
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3. HW #4: DUE SEPTEMBER28, 2018

#1: Prove for ai > 0 that (1 + a1) · · · (1 + an) ≥ 2n
√
a1 · · · an. #2: Prove for a, b > 0 that a/b + b/a ≥ 2, both by

using an inequality approachand without using an inequality! #3: Solve the double recurrence fn = fn−1 + 3gn−1, gn =
−3fn−1 + 9gn−1. #4: Define a set to be selfish if it contains its cardinality (i.e., its number of elements) as an element; thus
{1, 3, 5} is selfish, while{1, 2, 3, 5} is not. Find, with proof, the number of subsets of{1, 2, ..., n} that are minimal selfish sets
(that is, selfish sets none of whose subsets are selfish; thus{1, 3, 5} is not minimal selfish as{1} is a subset). This is a Putnam
problem..... Also, make sure you have done the first 15 Project Euler Problems.
#1: Prove for ai > 0 that (1 + a1) · · · (1 + an) ≥ 2n

√
a1 · · ·an.

Solution: This follows by the AM-GM inequality applied to each factor:(1 + ai)/2 ≥
√
1 · ai. The claim now follows by multi-

plication. Note there is an asymmetry here in that, for the first time, our quantities are not all of the same dimension. We can’t just
rescale theai’s without changing things. The solution is to introduceb1, . . . , bn and see this is the same as(b1 + a1) · · · (bn + an) ≥
2n

√
a1b1 · · ·anbn, and now if each variable is in meters, both sides are inmetersn. Seehttp://www.aam.org.in/site/

st_material/14.pdf for more.

#2: Prove for a, b > 0 that a/b+ b/a ≥ 2, both by using an inequality approachand without using an inequality!
Solution: We can do this via the AM-GM: we would get

a/b+ b/a

2
≥

√

a

b

b

a
= 1.

We can also do this with one variable calculus: letx = a/b. Then we must show, forx > 0, thatx + 1/x ≥ 2. It’s nice to have
a compact set (closed and bounded) so we can use the wonderfulresult from real analysis that a continuous function on a closed and
bounded set attains its maximum and minimum. Without loss ofgenerality we may assumex ∈ [1, 2]; the claim is clearly true for
x ≥ 2, and forx < 1 we just consider1/x instead. We now have the functionf(x) = x + 1/x on [1, 2] and we want to find its
minimum.

Sincef ′(x) = 1 − 1/x2, we see the critical points (where it equals zero) in our set is justx = 1, which also happens to be an
endpoint!. We findf(1) = 2, f(2) = 2.5, and thus the minimum is 2.

Notice if we tried to do this by scaling, we can say without loss of generalityab = 1; to see this, replacea by a′ = a
√
t andb by

b′ = b
√
t, which doesn’t change the sum of the fractions but nowa′b′ = t. So, usingab = 1 leads to showinga2 + 1/a2 ≥ 2. While

we could differentiate or apply results to this expression,we can of course just replacea2 with x and use the previous argument.

#3: Solve the double recurrencefn = fn−1 + 3gn−1, gn = −3fn−1 + 9gn−1.
Solution: We solve for one in terms of the other. Using the second relation we getfn−1 = − 1

3gn+3gn−1; as this holds for all indices
we can incrementn by 1 and findfn = − 1

3gn+1 + 3gn. We now substitute these values into the first recurrence, and find
(

−1

3
gn+1 + 3gn

)

=

(

−1

3
gn + 3gn−1

)

+ 3gn−1 or gn+1 = 10gn − 18gn−1.

We trygn = rn and find a characteristic polynomial of

r2 − 10r + 18 = 0.

If instead we tried to write theg’s in terms of thef ’s we would again obtain this recurrence relation. We now solve in the usual way.
Explicitly, we assume thatfn = rn to see if we can satisfy the equation. This gives

rn+1 − 10rn + 18rn−1 = 0,

which means that non-trivial solutions are the roots of the quadratic equation

r2 − 10r + 18 = 0,

which are given by

r1 = 5 +
√
7

r2 = 5−
√
7.

So, a general solution is of the form

α1r
n
1 + α2r

n
2 .

http://www.aam.org.in/site/st_material/14.pdf
http://www.aam.org.in/site/st_material/14.pdf
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The problem doesn’t give any initial values, so we cannot simplify further. To highlight the method, let’s assumef0 = 0 and
f1 = 1. This givesα1 = −α2. Consequently,

1 = −α2(5 +
√
7) + α2(5−

√
7)

and we have that

α2 = − 1

2
√
7

α1 =
1

2
√
7
,

which concludes the proof. A solution is of the form

fn =

(

1

2
√
7

)

(5 +
√
7)n −

(

1

2
√
7

)

(5−
√
7)n,

and we can use similar methods to find a recursion for thegn.

#4: Define a set to be selfish if it contains its cardinality (i.e., its number of elements) as an element; thus{1, 3, 5} is selfish,
while {1, 2, 3, 5} is not. Find, with proof, the number of subsets of{1, 2, ..., n} that are minimal selfish sets (that is, selfish sets
none of whose subsets are selfish; thus{1, 3, 5} is not minimal selfish as{1} is a subset). This is a Putnam problem.....
Solution: For problems like this, it’s best to do a few cases and get a feel. Doing this we find the number of minimal selfish sets, for
the first fewn, to be the Fibonacci numbers!

Let Sn denote the number of subsets of{1, . . . , n} that are minimal selfish. Consider one of the minimal selfish sets; it either
containsn, or it doesn’t. By definition the number of minimal selfish sets of {1, . . . , n} not containingn is Sn−1. Imagine now we
have a minimal selfish set containingn. Note it’s cardinality is its size, and it has no selfish subset. Its cardinality cannot ben if
n > 1 (as that would mean we have all numbers, and thus selfish subsets). If we subtract 1 from each element we now have a subset
of {1, . . . , n− 1} (note we could not have had 1 andn both in our original set, and thus since we assumedn was in, 1 was not). We
removen− 1 now, and notice we’ve decreased all the elements by 1 and removed one element from the original set which hadn and
was minimal selfish; we now have a minimal selfish subset of{1, . . . , n − 2} (its cardinality must be in here). Thus the number of
minimal selfish sets containingn here isSn−2, and we get the recurrenceSn = Sn−1 + Sn−2. We just need the initial conditions,
which areS1 = 1 andS2 = 1, to see that it’s the Fibonaccis.

Homework #5: Due Friday, October 5, 2018: (0) Show that no matter what 5 points are chosen on the surface of a unit sphere,
there is at least one closed hemisphere containing at least 4of the points. (1) Prove the law of cosines: if a, b and c are the
sides of a triangle andθ is the angle betweena and b, then c2 = a2+ b2− 2ab cos(θ). (2-21) Complete the first 20 Project Euler
Problems, and include in your HW a screenshot showing that you have completed all of these. Note this problem is worth 200
points (20 questions), and is thus giving you credit for all the work you have been doing. We will spend Friday discussing the
coding and these problems, so let me know in advance ones you find particularly interesting. Homework (optional): Geometry
problems typically invoke extreme reactions: some love, and some hate. If you like geometry problems look at the resources
above, and choose 1-2 problems to do and submit. You may use these are HW exemptions for problems in future weeks (i.e.,
if you get full credit on either of these, you can skip a futureproblem and receive full credit).
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4. HW #5: DUE FRIDAY, OCTOBER5, 2018

(1) Prove the law of cosines: if a, b and c are the sides of a triangle andθ is the angle betweena and b, then c2 = a2 + b2 −
2ab cos(θ). (2-21) Complete the first 20 Project Euler Problems, and include in your HW a screenshot showing that you have
completed all of these. Note this problem is worth 200 points(20 questions), and is thus giving you credit for all the workyou
have been doing. We will spend Friday discussing the coding and these problems, so let me know in advance ones you find
particularly interesting. Homework (optional): Geometry problems typically invoke extreme reactions: some love, and some
hate. If you like geometry problems look at the resources above, and choose 1-2 problems to do and submit. You may use these
are HW exemptions for problems in future weeks (i.e., if you get full credit on either of these, you can skip a future problem
and receive full credit).

FIGURE 4. Proof fromhttps://en.wikipedia.org/wiki/Law_of_cosines.

HW #6: Due Friday, October 19: #1: Let a1, a2, . . . , an be positive integers. Show a subset sums to a multiple ofn. #2: Given
anyn, show there is a numberxn whose digits are only 0’s and 7’s such thatn dividesxn. #3: Consider the previous problem.
Find such a number for n = 2017; what is the smallest such number? #4: Show that ifn divides a Fibonacci number that it
divides infinitely many Fibonacci numbers. #5: For all positive real numbersa, b, c show thataabbcc >= abbcca.

https://en.wikipedia.org/wiki/Law_of_cosines
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5. HW #6: DUE FRIDAY, OCTOBER 19, 2018

HW #6: Due Friday, October 19: #1: Let a1, a2, . . . , an be positive integers. Show a subset sums to a multiple ofn. #2: Given
anyn, show there is a numberxn whose digits are only 0’s and 7’s such thatn dividesxn. #3: Consider the previous problem.
Find such a number for n = 2017; what is the smallest such number? #4: Show that ifn divides a Fibonacci number that it
divides infinitely many Fibonacci numbers. #5: For all positive real numbersa, b, c show thataabbcc >= abbcca.

#1: Let a1, a2, . . . , an be positive integers. Show a subset sums to a multiple ofn.
Solution: As we are trying to prove a sum is a multiple ofn, it is natural to look at sums modulon. For pigeon hole problems we need
to identify the boxes and the pigeons. The boxes should be then residue classes modulon. What about the pigeons? There are2n

possible sums, but that’s a lot more thann. Let’s try looking at something smaller such asa1, a1+a2, a1+a2+a3, . . . , a1+ · · ·+an.
Either one of thesen sums is zero modulon and we win, or else two by the Pigeon Hole Principle have the same remainder, say
i > j − 1. If we subtract, we getai + · · ·+ aj = 0 mod n, completing the claim.

#2: Given anyn, show there is a numberxn whose digits are only 0’s and 7’s such thatn dividesxn.
Solution: This problem is very similar to the previous. We start looking at the numbers 7, 77, 777 and so on; if we look atn+ 1 then
two must have the same remainder modulon. Subtracting the smaller from the larger leaves777 · · ·77000 · · ·0, which is congruent
to zero modulon and thus is our desired solution.

#3: Consider the previous problem. Find such a number forn = 2017; what is the smallest such number?
We could of course apply the method from above; as 10 is a multiple of just 2 and 5 we see there can be no trailing 7’s in our

answer. Instead, as we are asked to find the smallest such number, we just write a simple code to do that.

findsmallestsevenzero[max_, target_] := Module[{},
smallest = Infinity;
For[n = 1, n <= max, n++,
{
(* next line converts n to binary, multiples all digits by 7 *)
digits = 7 IntegerDigits[n, 2];
numdigits = Length[digits];
number = Sum[digits[[d]] 10^(numdigits - d), {d, 1, numdigits}];
If[Mod[number, target] == 0,
{
If[number < smallest, smallest = number];
n = max + 10; (* exit for loop if found soln *)
}];

}]; (* end of n for loop *)
If[smallest < Infinity, Print[smallest]];
];

This generates the answer 70077077707007; i.e., this is thefirst non-zero number whose digits are just 0’s and 7’s which is con-
gruent to 0 modulo 2017. It might be interesting to see how thelength of the smallest number varies as a function of the target. If
we did 2016 we would find 77777777700000 (same number of digits), while 2018 is 700700077777770 and 2019 is the significantly
shorter 700700007.

#4: Show that if n divides a Fibonacci number that it divides infinitely many Fibonacci numbers.
Solution: Note that the Fibonacci numbers are periodic modulom for anym. The reason is the pigeonhole principle. Modulom
there are onlym possible residues, and thus onlym2 possible pairs of two numbers modulom. Once we look atm2 + 2 consecutive
Fibonacci numbers we havem2 + 1 pairs, and thus at least two pairs are the same.

For our problem, let’s look at the Fibonacci numbers modulon. By assumption we known divides one of them; we now prove it
divides infinitely many as the pattern repeats. To see this, imagine we have repeating pairs at indices(i1, i1 + 1) and(i2, i2 +1), and
let’s assumeFk is our given multiple ofn. If k is one of these indices, or between them, it’s clear. What ifk isn’t? Well, we had to hit
k as we walked from indices(0, 1) to (i1, i1 + 1); thus if we run backwards from(i1, i1 + 1) we must hitk; however, this will give
us the same residues as we would get walking backwards from(i2, i2 + 1), and so we must have something between our two pairs
that’s a multiple ofn.
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#5: For all positive real numbersa, b, c show thataabbcc ≥ abbcca.
Solution: If we wanted, we could rescale and assumeabc = 1. Why? If we multiply each byr we get each side increases by
rr(a+b+c), and thus the relation still holds or doesn’t hold. It doesn’t help us, but for awhile I thought about making their product1,
or settingb equal to 1.... What is more useful is there is a cyclic symmetry, and without loss of generality we may assumea ≤ b ≤ c.
Some ordering exists, the left hand side is independent of the ordering, and seeing the cyclicity (the right hand side is also bccaab or
caabbc) there is no harm in assuming an ordering.

In some sense, if you look at this problem the right way it’s “obvious”. Why? Imagine our numbers are integers. We’re talking
about having some number of powers ofa, b andc. We can choosea+ b+ c numbers. Clearly you want to have as many powers ofc
as possible, so give it the exponentc. Then let’s take as manyb’s as we can, namelyb of them, and finally let’s take the rest to bea.

More formally, we have the following chain (which holds for positive real numbersa ≤ b ≤ c):

aabbcc = aabbcc−(b−a)+(b−a)

≥ aa+(b−a)bbcc−(b−a)

= abbbc(c−b)+b−(b−a)

≥ abbb+(c−b)cb−(b−a) = abbcca.

Note that all the exponents are positive, and the inequalities are true as we replace larger numbers in the product with smaller ones.
For another good inequality to know, see Jensen’s inequality:

http://www.artofproblemsolving.com/Wiki/index.php/Jensen’s_Inequality

Homework #7: Due October 26, 2018: #1, #2, #3, #4 (counts as four problems): Show
that any decomposition ofN as a sum of Fibonacci numbers cannot have fewer sum-
mands than the Zeckendorf decomposition. Is there a monovariant that can help?

ALSO: For Monday, think about which is larger: e
π or πe. You are NOT allowed to use

a computer to calculate anything; try to prove elementarilywhich wins.

http://www.artofproblemsolving.com/Wiki/index.php/Jensen's_Inequality
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6. HW #7: DUE OCTOBER26, 2018

Homework #7: Due October 26, 2018: #1, #2, #3, #4 (counts as four problems): Show that any decomposition ofN as a sum of
Fibonacci numbers cannot have fewer summands than the Zeckendorf decomposition. Is there a monovariant that can help?
Solution: The solution below is a note I wrote to myself in summer 2014 after talking to one of my SMALL students as we drove
back from a talk I gave at Hampshire College. I find it useful tojot things down and email them so I have them on file; pieces of
paper are easily lost! (If you write it up and don’t want to TeXit up, just scan the papers and email yourself the .pdf.) I then discussed
this further with some colleagues a year later at West Point,and we submitted a short note on it a few weeks ago. This past summer
I gave the problem to some of my then current SMALL students and they ran with it, greatly generalizing the result (seehttps://
arxiv.org/pdf/1608.08764.pdf).

Given a decomposition ofm into a sum of Fibonacci numbers, consider the sum of indices of terms in the decomposition (start
F1 = 1, F2 = 2). If you ever have two adjacent summands you do not increase the index sum by combining. If you haveF1 twice use
F2. If you haveF2 twice useF1 andF3. In general, if you haveFk twice use2Fk = Fk−2 + Fk−1 + Fk = Fk−2 + Fk+1, which has
decreased the index sum fork ≥ 3 and you now have a larger Fibonacci summand. You can only do this a bounded number of times
or you’ll end up with Fibonacci number larger than the largest Fibonacci number less thanm, so when you terminate you cannot have
any repeats or adjacencies, and thus must be a legal Zeckendorf decomposition!

https://arxiv.org/pdf/1608.08764.pdf
https://arxiv.org/pdf/1608.08764.pdf
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