
Chapter 19

Generating Functions and Convolutions

A common complaints in mathematics is the ubiquitous: I can follow the proof when

you do it line by line, but how could anyone ever think of doing this! Of all the

areas in probability, one of the most appropriate for sounding this complaint is in

generating functions. At first glance, it seems like it’s making our lives needlessly

complex; however, at the end of the chapter you’ll have learned how many different

problems generating functions solve. Further, the time you spend learning these

techniques will continue to pay dividends as you continue your studies, as these are

used not just in probability, but throughout mathematical physics.

The reason for their helpfulness is that they allow us to package neatly a lot of

information about a problem. You should be skeptical as to whether or not this is

worthwhile; however, we’ll see that time and time again that this new viewpoint

simplifies the algebra we need to do. We’ll give several motivating examples from

previous courses of how a change in viewpoint can save you hours of labor, and then

describe many of the properties and applications of generating functions. While there

are many problems where it’s quite difficult to find and use the correct generating

function, a lot of useful problems can be handled with a small bag of tricks. Thus,

be patient as you read on – the time you spend mastering this material will help you

for years to come.

In probability, the most important use of generating functions is to understand

moments of random variables. As we know, the moments tell us about the shape

of the distribution. A very powerful application of this is in proving the Central

Limit Theorem, which tells us that, in many cases, the sum of independent random

variables tends towards a Gaussian as the number of summands grows. We’ll devote

Chapter 20 to this theorem (which shouldn’t be surprising – anything given the name

‘Central’ should be expected to play a prominent role in a course).

19.1 Motivation

Frequently in mathematics we encounter complex data sets, and then do operations

on it to make it even more complex! For example, imagine the first data set is the

probabilities that the random variable X1 takes on given values, and the second set

440 • Generating Functions and Convolutions

is the probabilities of another random variable X2 taking on given values. From

these we can, painfully through brute force, determine the probabilities ofX1 +X2

equaling anything; however, if at all possible we would like to avoid these tedious

computations. Below we’ll study this problem in great detail in the special case

that our two random variables have Poisson distributions (see §12.6 for properties

of Poisson random variables). We’ll solve the problem completely in this case, but

the solution will be unsatisfying. The problem is we need to have some moments of

divine inspiration in how to handle the algebra. The purpose of this example is to set

the stage: we will introduce generating functions to automate the algebra.

Let’s consider the case when X1 has the Poisson distribution with parameter 5
andX2 is a Poisson with parameter 7. This means

Prob(X1 = m) = 5me−5/m!

Prob(X2 = n) = 7ne−7/n!,

where m and n range over the non-negative integers. If k is a non-negative integer,

then the probability that X1 + X2 = k can be found by looking at all the different

ways two non-negative integers can add to k. Clearly X1 must take on a value be-

tween 0 and k; if it’s ` then we must haveX2 equaling k−`. As our random variables

are independent, the probability this happens is just the product of the probability

that X1 is ` and the probability that X2 is k − `. If we now sum over ` we get the
probability thatX1 +X2 is k:

Prob(X1 +X2 = k) =
k

∑

`=0

Prob(X1 = `)Prob(X2 = k − `)

=
k

∑

`=0

5`e−5

`!
· 7

k−`e−7

(k − `)!
.

For general sums of random variables, it would be hard to write this in a more illu-

minating manner; however, we’re lucky for sums of Poisson random variables if we

happen to think of the following sequence of simplifications!

1. First, note that we have a factor of 1/`!(k − `)!. This is almost
(

k

`

)

, which is

k!/`!(k−`)!. We do one of the most useful tricks in mathematics, wemultiply

cleverly by 1 (see §A.12 for more examples), where we write 1 as k!/k!. Thus
this factor becomes

(

k

`

)

/k!. As our sum is over `, we may pull the 1/k! outside
the `-sum.

2. The e−5 and e−7 inside the sum don’t depend on `, so we may pull them out,

giving us an e−12.

3. We now have e
−12

k!

∑k

`=0

(

k

`

)

5`7k−`. Recalling the Binomial Theorem (Theo-

rem A.2.2), we see the `-sum is just (5 + 7)k, or just 12k.

Putting all the pieces together, we find

Prob(X1 +X2 = k) =
12ke−12

k!
;

Section 19.2: Definition • 441

note this is the probability density for a Poisson random variable with parameter 12

(and 12 = 5 + 7). There’s nothing special about 5 and 7 in the argument above.

Working more generally, we see the sum of two Poisson random variables with pa-

rameters λ1 and λ2 is a Poisson random variable with parameter λ1 + λ2.

This argument can be generalized. Using induction (or cleverly group parenthe-

ses), we find

Sums of Poisson random variables. The sum of n independent Poisson random

variables with parameters λ1, . . . , λn is a Poisson random variable with parameter

λ1 + · · ·+ λn.

We were fortunate in this case in that we found a ‘natural’ way to manipulate the

algebra so that we could recognize the answer. What would happen if we considered

other sums of random variables? We want a procedure that will work in general,

which will not require us to see these clever algebra tricks.

Fortunately, there is such an approach. It’s the theory of generating functions.

We’ll first describe what generating functions are (there are several variants; depend-

ing on what you are studying, some versions are more useful than others), and then

show some applications.

19.2 Definition

We now define the generating function of a sequence. Though the most common

applications are when the terms in the sequence are probabilities of different events

or moments of distributions, a generating function can be defined for any sequence.

In this section we’ll define generating functions and give an example of their utility.

Later on we’ll apply what we learn to probability by either (1) taking the an’s below
to be the probability that a discrete random variable taking only non-negative integer

values is n, or (2) taking the an’s to be the moments of a random variable.

Definition 19.2.1 (Generating Function) Given a sequence {an}∞n=0, we define its

generating function by

Ga(s) =

∞
∑

n=0

ans
n

for all s where the sum converges.

The standard convention is to use the letter s for the variable; however, it’s just
a dummy variable and we could use any letter: s, x or even a ©. Just looking at

this definition, there’s no reason to believe that we’ve made any progress in studying

anything. We want to understand a sequence {an}∞n=0 – how can it possibly help to

make an infinite series out of these! The reason is that frequently there’s a simple,

closed form expression for Ga(s), and from this simple expression we can derive

many properties of the an’s with ease!

442 • Generating Functions and Convolutions

Let’s do an example. This example is long, but it’s worth the time as it highlights

many of the points of generating functions, and why they’re so useful. Almost ev-

eryone has seen the Fibonacci numbers, defined by F0 = 0, F1 = 1 and in general
Fn = Fn−1+Fn−2. The first few terms are 0, 1, 1, 2, 3, 5, 8, 13, These numbers
have many wonderful properties. They occur throughout nature, from pine cones to

branchings in trees (and of course to counting rabbits). They have applications in

computer science, and generalizations arise in gambling theory (we’ll discuss that

application in Chapter 23). In principle, there are no mysteries about the Fibonacci

numbers, as we have an explicit formula that allows us to compute any term in the se-

quence; in practice, this formula is clearly not useful for large n. While we can com-

pute F10 = 55, it would be tedious to find F100 = 354,224,848,179,261,915,075,

while computing F2011 with pen and paper is cause for alarm, as there are over 400

digits!

We now show how generating functions allow us to determine any Fibonacci

number without having to compute any of the previous terms! The generating func-

tion is

GF (s) =

∞
∑

n=0

Fns
n.

We isolate the n = 0 and n = 1 terms, and for n ≥ 2 we use the defining recurrence
Fn = Fn−1 + Fn−2 and find

GF (s) = F0 + F1s+

∞
∑

n=2

(Fn−1 + Fn−2)s
n

= 0 + s+

∞
∑

n=2

Fn−1s
n +

∞
∑

n=2

Fn−2s
n.

Notice the last two sums are almost our original generating function – they differ in

having the wrong power of s, and the sums don’t start at n = 0. We can fix this by

pulling out some powers of s and then relabeling the summation; this is the hardest
part of the argument, but after many examples it does eventually start to appear as a

natural thing to do:

GF (s) = s+ s
∞
∑

n=2

Fn−1s
n−1 + s2

∞
∑

n=2

Fn−2s
n−2

= s+ s

∞
∑

m=1

Fmsm + s2
∞
∑

m=0

Fmsm.

As F0 = 0, we may extend the first sum to also be fromm = 0. The two sums above
are just GF (s), and thus we find

GF (s) = s+ sGF (s) + s2GF (s).

We now use the quadratic formula, and find

GF (s) =
s

1− s− s2
. (19.1)

Great – we’ve determined the generating function for the Fibonacci numbers:

How does this help us? The reason we’ve made so much progress, though it doesn’t

Section 19.2: Definition • 443

appear as if we have, is that the left hand side and right hand side of (19.1) are

both functions of s. On the left hand side, the coefficient of sn is just Fn; thus the

coefficient of sn on the right hand side must also be Fn. That said, it’s not at all clear

what the coefficient of sn is on the right hand side. One natural idea is to try and

expand using the geometric series:

1

1− (s+ s2)
=

∞
∑

k=0

(s+ s2)k =

∞
∑

k=0

k
∑

`=0

(

k

`

)

s`(s2)k−`,

which gives

s

1− s− s2
=

∞
∑

k=0

∞
∑

`=0

(

k

`

)

s2k−`+1;

it’s not easy to look at this and collect powers of s (but it’s a nice exercise and leads
to an interesting formula for the Fibonacci numbers)!

Fortunately there’s a better way of looking at the right hand side. It goes back to

one of the most disliked integration methods from calculus: partial fractions. Not

surprisingly, there are good reasons your calculus professors taught this; in addition

to being useful here, partial fractions also arise in solving certain differential equa-

tions. We factor 1− s− s2 as (1−As)(1−Bs) = 1− (A+B)s+ABs2, and then
write

s

1− s− s2
=

a

1−As
+

b

1−Bs
,

and then use the geometric series to expand each fraction. It’s because we want

to use the geometric series formula that we write it as (1 − As)(1 − Bs) and not
−(s−C)(s−D); for the geometric series formula we want the denominator to look
like 1 minus something small.

A little algebra (or the quadratic formula) gives the values forA andB. We have

A+B = 1 and AB = −1. ThusB = −1/A andA− 1/A = 1, or A2−A− 1 = 0.

Therefore A = 1±
√
5

2 . We take the positive sign, and simple algebra then gives

B = 1−
√
5

2 (if we had taken the minus sign, the roles of A and B would just be

reversed).

We now find a and b:

s

1− s− s2
=

a

1−As
+

b

1−Bs
=

a+ b− (aB + bA)s

(1−As)(1 −Bs)
.

Note the above is an equality, and it must hold for all values of s. As the denomina-
tors are the same, the only way this can happen is if the two numerators are equal.

Each numerator is a polynomial in s; there’s only one way these two polynomials
can be equal for every choice of s – they must be the same polynomial, which means
they must have the same coefficients.

Looking at the constant term, we find a + b = 0, so b = −a. We now consider

the coefficients of the s term. We now need−(aB+bA) to equal 1. Using our values
for A and B and the fact that b = −a gives

−a1−
√
5

2
+ a

1 +
√
5

2
= 1,

444 • Generating Functions and Convolutions

or a = 1/
√
5 and thus b = −1/

√
5. We’ve proved

GF (s) =
s

1− s− s2
=

1√
5

1

1−As
− 1√

5

1

1−Bs
.

We now expand with the geometric series, and see

GF (s) =
1√
5

∞
∑

n=0

Ansn − 1√
5

∞
∑

n=0

Bnsn

=

∞
∑

n=0

[

1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n]

sn.

We’ve found and proved the desired formula for the nth Fibonacci number.

Binet’s formula. Let {Fn}∞n=0 denote the Fibonacci series, with F0 = 0, F1 = 1
and Fn+2 = Fn+1 + Fn. Then

Fn =
1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n

.

Binet’s formula is spectacular. We can now jump to any term in the sequence

without calculating all the previous terms! I’ve always been amazed by it. The

Fibonacci numbers are integers, yet this expression involves division and square-

roots, yet somehow it all works out to be an integer.

After such a long argument, it’s a good idea to go back and see what we’ve done.

We started with a relation for the Fibonacci numbers. While we could use it to find

any term, it would be time consuming. We bundled the Fibonacci numbers into a

generating functionGF (s). The miracle is that there’s a nice closed form expression

forGF (s), and from that we can deduce a nice formula for the Fibonacci numbers.

It’s worth emphasizing the miracle that occurred, namely that GF (s) is nice. If
we were to take a random sequence of numbers for the an’s, this would not happen.
Fortunately in many problems of interest, when the an’s are related to probabilistic
items we care about, there will be a nice form for the generating function.

The rest of this section may be safely skipped; however, as miracles are rare,

it’s worth trying to understand why one just happened. We’re trying to answer why

it’s worth constructing a generating function. After all, if it’s just equivalent to our

original sequence of data, what have we gained? Were we just really lucky with the

Fibonacci numbers, or do we expect this to happen again? Their most important

advantage is that generating functions help simplify the algebra we’ll encounter in

probability calculations. We can’t stress too strongly how useful it is in life to min-

imize the algebra you need to do. In addition to being a frequent source for errors,

the more elaborate an expression is, the harder it is to see patterns and connections.

Simplifying algebra is a great aid in illuminating connections, and often leads to

enormous computational savings.

Section 19.2: Definition • 445

We give two examples to remind you how useful it can be to simplify algebra.

The first is from calculus, and involves telescoping series.

Consider the following addition problem: evaluate

12 − 7

+ 45 − 12

+ 231 − 45

+ 7981 − 231

+ 9812 − 7981.

The ‘natural’ way to do this is to do evaluate each line and then add; if we do this we

get

5 + 33 + 186 + 7750 + 1831 = 9805

(or at least that’s what we got on our calculators). A much faster way to do this is to

regroup (see §A.3 for additional instances of proofs by grouping); we have a +12
and a −12, and so these terms cancel. Similarly we have a +45 and a −45, so these
terms cancel. In the end we’re left with

9812− 7 = 9805,

a much simpler problem! One of the most important applications of telescoping se-

ries is in the proof of the fundamental theorem of calculus, where they’re used to

show the area under the curve y = f(x) from x = a to b is given by F (b) − F (a),
where F is any anti-derivative of f .

We turn to linear algebra for our second example; if you haven’t seen eigenvalues

and eigenvectors don’t worry, as we won’t use this later in the book but merely

provide it as another illustration of the utility of simplifying algebra. Consider the

matrix

A =

(

1 0
1 1

)

;

what is A100? If your probability (or linear algebra) grade depended on you getting

this right, you would be in good shape. So long as you don’t make any algebra

errors, after a lot of brute force computations (namely 99 matrix multiplications!)

you’ll find

A100 =

(

218922995834555169026 354224848179261915075
354224848179261915075 573147844013817084101

)

.

We can find this answer much faster if we diagonalize A. The eigenvalues of A are

ϕ = 1+
√
5

2 and −1/ϕ, with corresponding eigenvectors

−→v 1 =

(

−1 + ϕ
1

)

and −→v 2 =

(

−1− 1/ϕ
1

)

(remember −→v is an eigenvector of the matrix A with eigenvalue λ if A−→v = λ−→v ;
in other words, applying A to −→v doesn’t change the direction – it just rescales its

446 • Generating Functions and Convolutions

length). Letting S = (−→v 1
−→v 2) and Λ =

(

ϕ 0
0 −1/ϕ

)

, we see A = SΛS−1. The

key observation is that S−1S = I , the 2× 2 identity matrix. Thus

A2 = (SΛS−1)(SΛS−1) = SΛ(S−1S)ΛS−1 = SΛ2S−1;

more generally,

An = SΛnS−1.

If we only care about finding A2, this is significantly more work; however, there’s a

lot of savings if n is large. Note how similar this is to the telescoping example, with

all the S−1S terms canceling.

As you might have guessed, this is not a randomly chosen matrix! This matrix

arises in another approach to solving the Fibonacci relation Fn+1 = Fn + Fn−1

(with F0 = 0, F1 = 1). If we let

−→v 0 =

(

0
1

)

and −→v n =

(

Fn

Fn+1

)

,

then −→v n = An−→v 0. Thus, if we know An, we can quickly compute any Fi-

bonacci number without having to determine its predecessors. This gives an alterna-

tive derivation of Binet’s formula.

19.3 Uniqueness and Convergence of Generating Func-

tions

Depending on the sequence {an}∞n=0, it’s possible for the generating functionGa(s)
to exist for all s, for only some s, or sadly only s = 0 (as Gs(0) = a0, this isn’t
really saying much!).

Consider the following examples.

1. The simplest case is when a0 = 1 and all other an = 0, which leads to

Ga(s) = 1. More generally, if an is zero except for finitely many n then

Ga(s) is a polynomial.

2. If an = 1 for all n then Ga(s) =
∑∞

n=0 s
n = 1

1−s
by the geometric series

formula. Of course, we need |s| < 1 in order to use the geometric series

formula; for larger s, the series doesn’t converge.

3. If an = 1/n!, then Ga(s) =
∑∞

n=0 s
n/n!. This is the definition of es, and

henceGa(s) exists for all s.

4. If an = 2n, then Ga(s) =
∑∞

n=0 2
nsn =

∑∞
n=0(2s)

n. This is a geometric

series with ratio 2s; the series converges for |2s| < 1 and diverges if |2s| > 1.
Thus Ga(s) = (1− 2s)−1 if |s| < 1/2.

5. If an = n!, a little inspection shows Ga(s) diverges for any |s| > 0. Probably
the easiest way to see that this series diverges is to note that for any fixed s 6= 0,
for all n sufficiently large we have n!|s| > 1; as the terms in the series don’t

Section 19.3: Uniqueness and Convergence of Generating Functions • 447

tend to zero, the series can’t converge. Using Stirling’s formula (see Chapter

18) we can get a good estimate on how large nmust be for n!|s| > 1. Stirling’s
formula states that n! ∼ (n/e)n

√
2πn, so n!|s|n > (n|s|/e)n, which doesn’t

go to zero as whenever n > e/|s| we have |n!sn| > 1.

If we’re given a sequence {an}∞n=0, then clearly we know its generating function

(it may not be easy to write down a closed form expression for Ga(s), but we do
have a formula for it). The converse is also true: if we know a generating function

Ga(s) (which converges for |s| < δ for some r), then we can recover the original
sequence. This is easy if we can differentiate Ga(s) arbitrarily many times, as then

an = 1
n!

d
n
Ga(s)
dsn

. This result is extremely important; as we’ll use it frequently later,

it’s worth isolating as a theorem.

Theorem 19.3.1 (Uniqueness of generating functions of sequences) Let

{an}∞n=0 and {bn}∞n=0 be two sequences of numbers with generating func-

tions Ga(s) and Gb(s) which converge for |s| < δ. Then the two sequences

are equal (i.e., ai = bi for all i) if and only if Ga(s) = Gb(s) for all |s| < δ.
We may recover the sequence from the generating function by differentiating:

an = 1
n!

d
n
Ga(s)
dsn

.

Proof: Clearly if ai = bi then Ga(s) = Gb(s). For the other direction, if we can

differentiate arbitrarily many times, we find ai =
1
i!

d
i
Ga(s)
dsi

and bi =
1
i!

d
i
Gb(s)
dsi

; as

Ga(s) = Gb(s), their derivatives are equal and thus ai = bi. 2

Remark 19.3.2 The division by n! is a little annoying; later we’ll see a related

generating function that doesn’t have this factor. If we don’t want to differentiate, we

can still determine the coefficients from the generating function. Clearly we can get

a0 by setting s = 0. We can then find a1 by looking at (Ga(s)− a0)/s and sending
s to zero in this expression; continuing in this manner we can find any am. Note, of

course, how similar this is to differentiating!

We end with a quick caveat to the reader: just because we’ve written down the

generating function, it doesn’t mean that it makes sense! Unfortunately it’s possible

that the resulting sum doesn’t converge for any value of s (other than s = 0, of
course, which trivially converges). Fortunately the generating functions that arise in

probability frequently (but not always) converge, at least for some s; we’ll discuss
this in much greater detail later. There are many tests to determine whether or not

a series converges or diverges, and we summarize four of the more popular and

powerful (ratio, root, comparison and integral) in Appendix B.3.

In the next section we show how generating functions behave nicely with con-

volution, and from this we’ll finally get some examples of why generating functions

are so useful in probability.

448 • Generating Functions and Convolutions

19.4 Convolutions I: Discrete random variables

Abovewe introduced generating functions. We gave a few examples, we talked about

how to see where it converges and diverges; however, we haven’t seen why they’re

such a powerful tool in probability. We correct that now. After defining some no-

tation, we’ll return to the problem from the motivation section, namely determining

the density of the sum of two random variables. The main result is that generating

functions allow us to readily determine probability densities.

First, however, we need some notation.

Definition 19.4.1 (Convolution of sequences) If we have two sequences {am}∞m=0

and {bn}∞n=0, we define their convolution to be the new sequence {ck}∞k=0 given by

ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0 =

k
∑

`=0

a`bk−`.

We frequently write this as c = a ∗ b.

This definition arises from multiplying polynomials; if f(x) =
∑∞

m=0 amxm

and g(x) =
∑∞

n=0 bnx
n, then assuming everything converges we have

h(x) = f(x)g(x) =

∞
∑

k=0

ckx
k,

with c = a ∗ b. For example, if f(x) = 2 + 3x− 4x2 and g(x) = 5 − x + x3, then

f(x)g(x) = 10 + 13x− 23x2 + 6x3 + 3x4 − 4x5. According to our definition, c2
should equal

a0b2 + a1b1 + a2b0 = 2 · 0 + 3 · (−1) + (−4) · 5 = −23,

which is exactly what we get from multiplying f(x) and g(x).

Lemma 19.4.2 Let Ga(s) be the generating function for {am}∞m=0 and Gb(s) the
generating function for {bn}∞n=0. Then the generating function of c = a ∗ b is

Gc(s) = Ga(s)Gb(s).

We can now give a nice application of how generating functions can simplify

algebra: What is
∑n

m=0

(

n

m

)2
? If we evaluate this sum for small values of n we find

that when n = 1 the sum is 1, when n = 2 it’s 6, when n = 3 it is 20, then 70

and then 252. We might realize that the answer seems to be
(

2n
n

)

, but even if we

notice this, how would we prove it? A natural idea is to try induction. We could

write
(

n

m

)2
as

(

(

n−1
m−1

)

+
(

n−1
m

)

)2

(noting that we have to be careful when m = 0).

If we expand the square we get two sums similar to the initial sum but with an n− 1

Section 19.4: Convolutions I: Discrete random variables • 449

instead of an n, which we would know by induction; the difficulty is that we have

the cross term
(

n−1
m−1

)(

n−1
m

)

to evaluate, which requires some effort to get this to look

like something nice times something like
(

n−1
`

)2
.

Using generating functions, the answer just pops out. Let a = {am}nm=0, where

am =
(

n

m

)

. Thus

Ga(s) =
n

∑

m=0

(

n

m

)

sm =
n

∑

m=0

(

n

m

)

sm1n−m = (1 + s)n

(when we have binomial sums such as this, it’s very useful to introduce factors such

as 1n−m, which facilitates using the Binomial Theorem, Theorem A.2.2).

Let c = a ∗ a, so by Lemma 19.4.2 we have Gc(s) = Ga(s)Ga(s) = Ga(s)
2.

At first this doesn’t seem too useful, until we note that

cn =
n

∑

`=0

a`an−` =
n

∑

`=0

(

n

`

)(

n

n− `

)

=
n

∑

`=0

(

n

`

)2

as
(

n

n−`

)

=
(

n

`

)

. Thus the answer to our problem is cn. We don’t know cn, but we
do know its generating function, and the entire point of this exercise is to show that

sometimes it’s more useful to know one and deduce the other. We have

2n
∑

k=0

cks
k = Gc(s) = Ga(s)

2 = (1+s)n ·(1+s)n = (1+s)2n =

2n
∑

k=0

(

2n

k

)

sk,

where the last equality is just the Binomial Theorem. Thus cn =
(

2n
n

)

as claimed.

While we’ve found an example where it’s easier to study the problem through

generating functions, some things are unsatisfying about this example. The first is

we still needed to have some combinatorial expertise, noting
(

n

`

)

=
(

n

n−`

)

. This is

minor for two reasons. First, this is one of the most important properties of binomial

coefficients (the number of ways of choosing ` people from n people when order

doesn’t matter is the same as the number of ways of excluding n− `). The second is
more severe: why would one ever consider convolving our sequence a with itself to

solve this problem!

The answer to the second objection is that convolutions arise all the time in prob-

ability, and thus it’s natural to study any process which is nice with respect to convo-

lution. To see this, we define

450 • Generating Functions and Convolutions

Definition 19.4.3 (Probability generating function) Let X be a discrete random

variable taking on values in the integers. Let GX(s) be the generating function to

{am}∞m=−∞ with am = Prob(X = m). Then GX(s) is called the probability

generating function. If X is only non-zero at the integers, a very useful way of

computingGX(s) is to note that

GX(s) = E[sX] =

∞
∑

m=−∞
smProb(X = m).

More generally, if the probabilities are non-zero on an at most countable set {xm},
then

GX(s) = E[sX] =
∑

m

sxmProb(X = xm).

The function GX(s) can be a bit more complicated than the other generating

functions we’ve seen if X takes on negative values; if this is the case, we’re no

longer guaranteed that GX(0) makes sense! One way we can get around this prob-
lem is by restricting to s with 0 < α < |s| < β for some α, β; another is to restrict
ourselves to random variables that are never negative, and thus this issue can’t arise!

We concentrate on the latter. While this does restrict the distributions we may study

a bit, so many of the common, important probability distributions (Bernoulli, geo-

metric, Poisson, negative binomial, ...) of Chapter 12 take on non-negative integer

values that we have a wealth of examples and applications.

We can now state one of the most important results for probability generating

functions.

Theorem 19.4.4 Let X1, . . . , Xn be independent discrete random variables taking

on non-negative integer values, with corresponding probability generating functions

GX1
(s), . . . , GXn

(s). Then

GX1+···+Xn
(s) = GX1

(s) · · ·GXn
(s).

Proof: This is one of the cornerstone results in the subject; you should keep reading

the proof until it completely sinks in. We’ll do the case when n = 2 in full detail,
and leave arbitrary n for you.

Basically, all we need to do is unwind the definitions. We have

Prob(X1 +X2 = k) =

∞
∑

`=0

Prob(X1 = `)Prob(X2 = k − `).

If we let am = Prob(X1 = m), bn = Prob(X2 = n) and ck = Prob(X1 +
X2 = k), we see that c = a ∗ b. Thus Gc(s) = Ga(s)Gb(s), or equivalently,
GX1+X2

(s) = GX1
(s)GX2

(s).
What if now n = 3? It’s another proof by grouping (see §A.3): write X1 +

X2 +X3 as (X1 +X2) +X3. Using the n = 2 result twice we get

GX1+X2+X3
(s) = G(X1+X2)+X3

(s)

= GX1+X2
(s)GX3

(s) = GX1
(s)GX2

(s)GX3
(s).

Section 19.4: Convolutions I: Discrete random variables • 451

A similar idea works for all n. 2

Whenever you see a theorem, you should remove a hypothesis and ask if it’s still

true. Usually the answer is a resounding NO! (or, if true, the proof is usually signifi-

cantly harder). In the theorem above, how important is it for the random variables to

be independent? As an extreme example consider what would happen ifX2 = −X1.

ThenX1 +X2 is identically zero, but GX1+X2
(s) 6= GX1

(s)G−X1
(s).

The above shows why generating functions play such a central role in probability.

The density of the sum of independent discrete random variables is the convo-

lution of their probabilities!

We can begin to see why generating functions are so useful. From Theorem

19.3.1 we know the generating function is unique, and from Theorem 19.4.4 we

know that the generating function of the sum of random variables is the product of

the generating functions. If we happen to recognize the resulting product, we can

immediately glean the density function of the sum!

Let’s return to the problem from the motivation section, §19.1. We have two

independent Poisson random variables,X1 with parameter 5 andX2 with parameter

7, and we want to understand X1 + X2. From Definition 19.5.1, the generating

function of a Poisson random variableX with parameter λ is just

GX(s) =

∞
∑

n=0

Prob(X = n)sn

=

∞
∑

n=0

λne−λ

n!
sn

= e−λ

∞
∑

n=0

(λs)n

n!

= e−λeλs = eλ(s−1),

where we used the exponential function’s series expansion: eu =
∑∞

n=0 u
n/n!.

Thus

GX1
= e5(s−1), GX2

= e7(s−1).

From Theorem 19.4.4 we have

GX1+X2
(s) = GX1

(s)GX2
(s)

= e5(s−1) · e7(s−1)

= e12(s−1);

however, note that e12(s−1) is just the generating function of a Poisson random vari-

able with parameter 12. As Theorem 19.3.1 tells us generating functions are unique,

452 • Generating Functions and Convolutions

we can now deduce thatX1 +X2 is a Poisson random variable with parameter 12.

In the above example, note how much easier it was to understand X1 + X2 by

using properties of generating functions than from doing the algebra directly. We

tackled the algebra in §19.1; while we solved the problem, we had to make several

clever choices in the analysis. The arguments are far more straightforward when

we use generating functions. We’ll do more examples of this later, and even study

cousins of generating functions that makes the algebra even easier, namely the mo-

ment generating functions and the characteristic functions.

19.5 Convolutions II: Continuous random variables

Fortunately the same arguments that analyzed the discrete case can be easily adapted

to handle continuous random variables. Essentially the only difference is writing in-

tegrals rather than sums. (There’s a few subtle, technical difficulties with integration,

which we’ll briefly mention.) While a general random variable need not be purely

discrete or continuous, for most problems our random variables are one or the other.

Frequently books adopt the convention that a sum could also mean an integral, or

an integral could mean a sum. This allows them greater flexibility in writing as one

notation can refer to either case.

Let’s now adjust our notation and study the case of generating functions for con-

tinuous random variables.

Definition 19.5.1 (Probability generating function) Let X be a continuous ran-

dom variable with density f . Then

GX(s) =

∫ ∞

−∞
sxf(x)dx

is the probability generating function ofX .

Let’s compute some generating functions of continuous random variables. If we

let X be an exponential with parameter λ, we have its density is

f(x) =

{

1
λ
exp(−x/λ) if x ≥ 0

0 otherwise.

(Note that there’s unfortunately a difference in opinion among authors as to what

the exponential density should be; some books use this notation while others would

use λ exp(−λx); I prefer the first choice as this way an exponential random variable

with parameter λ has mean λ and not mean 1/λ.) The generating function is thus

GX(s) =

∫ ∞

0

sx
1

λ
exp(−x/λ)dx =

1

λ

∫ ∞

0

exp(x log s) exp(−x/λ)dx.

Notice we rewrote sx as exp(x log s). While we can see these two expressions are

the same by taking logarithms, why did we do this? Remember s is fixed and x is

the integration variable. If instead of sx we had ex then we could just combine the

