
Chapter 23

Difference Equations, Markov Processes

and Probability

Loesje: Domino effect: Once you drop a good idea, the

rest will follow.

You might not have known this when you purchased this book, but as an added

bonus I’m going to share a wonderful strategy to win at Roulette. You can make

millions with no risk. In fact, as soon as I finish writing this chapter (as I’m so

altruistic I want to share this secret with you), I’ll be flying back to Vegas to win

some more....

Sadly, a lot of people fall for scams like the above. In this chapter we’ll talk about

what looks like a sure, safe bet, and show why it isn’t. What I like about this problem

is that it’s connected to a lot of great math, and can be understood without a huge

amount of mathematical (or gambling) pre-requisites. Specifically, we’ll see how

some real world problems can be modeled by recurrence relations. We’ll quickly

develop just enough of the theory to solve a few interesting problems, and end the

chapter with a short primer on the subject for those who want more. Often these

topics are covered in courses on discrete mathematics or differential equations; the

reason they fit in this book is they can be used to compute interesting probabilities.

23.1 From the Fibonacci Numbers to Roulette

The goal of this section is to understand a very popular strategy for Roulette, and

connect it to some mathematics you hopefully have seen before, the Fibonacci num-

bers.

23.1.1 The Double-plus-one strategy

To simplify our discussion, we’ll talk about an easier version of Roulette (see Figure

23.1). We’ll assume that every time the wheel spins the ball either lands on a red or a
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Figure 23.1: A roulette wheel (image from Toni Lozano).

black number, and each outcome happens 50% of the time. The actual game is a bit

more complicated, but the strategy we describe below would work in that case too.

(The real game usually has 18 red, 18 black and 2 green places, so that red and black

each occur about 47.37% of the time.) To make life easy, we’re only allowing bets

on red or black, and we’re eliminating the two green numbers (the greens provide a

huge advantage to the casino). Say we bet $1 on red (if we bet on black the result is

similar). If red comes up we win $1; this means we get back our original dollar plus

an additional one. If, however, black comes up then we lose our dollar.

Obviously, our goal is to make money. Here’s a famous strategy, called Double-

plus-one. Bet $1 on red. If it comes up red, great, we’re up a dollar. If not, we’re

down a dollar and now bet $2. If we win, we’re now up a grand total of one dollar.

What if we lose? If we lose, we’re now down $3. In this case, we bet $4. If we win,

we’re now up a dollar (we lost $3 previously and just one a dollar), while if we lose

we’re down $7, and now we bet $8.

Hopefully the pattern is clear. We keep doubling our bet until we win. When we

win, we recoup all our losses and an extra dollar. As eventually a red should turn up,

eventually we should be up a dollar. We then just keep repeating until we’ve made

whatever amount we desire.

What’s wrong with this? There are two problems; one requires just some com-

mon sense, while the other requires knowing a bit how Vegas works (and why they

listen to mathematicians!). The first issue, of course, is that at some point we may

need to bet $1,267,650,600,228,229,401,496,703,205,376 (or 2100 dollars), and we
‘may’ not have that much money! In order not to worry about such ‘trivialities’, we

assume the existence of a rich, but very eccentric, aunt or uncle. This kind family

member has unlimited financial reserves, and will advance us whatever amount of
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money we need to cover our bets, but won’t just give us a dollar directly. Why won’t

they just give us a dollar? That’s beyond the scope of this book – we just focus on

the mathematics here! The purpose of assuming a rich, eccentric aunt or uncle is to

remove the difficulty of needing a large bankroll for the problem, though after we

analyze the problem I urge you to modify the argument in the case when you have a

fixed, finite amount of money.

What’s the other problem? This one turns out to be far more serious. We haven’t

talked too much about how the bets can be done. It turns out that each casino sets

both lower and upper bounds on how much you can wager on a given spin. For

example, the lower limit may be $1 and the upper limit might be $30. If this is the

case, if the first five spins are black we’re in trouble. If that happens, we’ve lost

1 + 2 + 4 + 8 + 16 = 31 dollars. Our method tells us to bet $32, but we can only
bet $30, and our system breaks down. We’re in even more trouble if we get another

black. The problem is that when we win, we win small, but when we lose, we lose

big.

This should suggest the following natural, and very important, problem: If we

play n times, what’s the chance we get 5 or more consecutive blacks? Interestingly,

the same mathematics that we can use to study the Fibonacci numbers can be applied

to solve this problem, too. We’ll therefore pause and quickly review the Fibonacci

numbers, and then return to Roulette.

23.1.2 A quick review of the Fibonacci numbers

Let’s briefly recall the Fibonacci numbers, though at first there doesn’t seem to be

any connection. The Fibonacci numbers are the sequence F0 = 0, F1 = 1, F2 = 1,
F3 = 3, F4 = 5, F5 = 8, and in general Fn+2 = Fn+1 + Fn. This is an example

of a linear recurrence relation (also called a difference equation). It’s linear as

the unknown term depends linearly on previous terms; note we don’t have terms

multiplying each other, or exponentials of terms. There are many ways to solve

this. A great approach is through generating functions (see §19.2 for such a proof),

but in the interest of time and to make the exposition self-contained we’ll now give

the proof by Divine Inspiration. Essentially, the way this works is you guess the

answer, and see that you’re right! Obviously the trouble is that, in general, it’s hard

to just guess the answer to a difficult math problem! What saves the method is that

there’s actually a large class of problems where we can just look and rightly guess.

For those who want to see more of the general theory, just read on to §23.2.

Let’s try Fn = rn for some r. This is a reasonable guess. It means each term is
r times the previous. If we had the simpler relation Gn+1 = 2Gn then the solution

is Gn = 2n, as each term is 2 times the previous. We’ll expand on this idea later.
If we substitute our guess into the recurrence Fn+2 = Fn+1 + Fn, we get r

n+2 =
rn+1 + rn. This simplifies to r2 = r+1, or r2 − r− 1 = 0, which by the quadratic
formula has two roots: r1 = (1 +

√
5)/2 ≈ 1.618 and r2 = (1 −

√
5)/2 ≈ −.618.

The polynomial r2−r−1 is called the characteristic polynomial of the recurrence
relation.

It turns out that for a linear recurrence relation, any linear combination of solu-

tions of the characteristic polynomial is a solution to the recurrence. In other words,

if you plug in Fn+2 = c1r
n
1 + c2r

n
2 for any choice of c1 and c2, you’ll find it solves

the recurrence relation because r1 and r2 solve the characteristic polynomial; it’s a
good idea to check this to get a feel for how linearity helps. While we can use any
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choice of c1 and c2, we want our sequence to start off with a 0 when n = 0 and a 1
when n = 1. In other words, c1 + c2 = 0 and c1r1 + c2r2 = 1. Solving for c1 and
c2 we find c1 = −c2 = 1/

√
5, and

Binet’s formula. Let Fn+2 = Fn+1 + Fn, with F0 = F1 = 1. Then

Fn =
1
√
5

(

1 +
√
5

2

)n

−
1
√
5

(

1−
√
5

2

)n

.

Don’t worry if this is a bit incomprehensible right now. We’ll talk about recur-

rence relations in general, and the Fibonacci numbers in particular, in more detail and

more leisurely below. Right now, all that matters is you leave this problem knowing

that there exists a method to solve linear recurrence relations. Binet’s formula is very

efficient. It allows us to jump forward and calculate F100 without going through all

the intermediate terms. While it’s of course nice to avoid tedious algebra, if we didn’t

know the advanced theory we could compute F100, assuming we’re very patient. We

just keep using the recurrence relation Fn+2 = Fn+1 + Fn to find more and more

terms, eventually getting F100 = 354, 224, 848, 179, 261, 915, 075.

It’s worth commenting a bit on the Divine Inspiration; what made us think that

an = rn would be a good guess? Here’s one argument that suggests this is a good
thing to try. The Fibonacci series is strictly increasing, so Fn−2 < Fn−1 < Fn. As

Fn = Fn−1 + Fn−2, we have

2Fn−2 < Fn < 2Fn−1.

After some algebra, we see Fn < 2n. The lower bound is a bit harder. From
2Fn−2 < Fn, we see that every time the index increases by 2, our Fibonacci number

at least doubles. Continuing this line backwards, we get

Fn > 2Fn−2 > 22Fn−4 > 23Fn−6 > · · · > 2n/2F0

(at least if n is even). In other words, Fn > 2n/2 = (
√
2)n. We’ve sandwiched the

nth Fibonacci number between two exponential bounds; it grows at least as fast as
(
√
2)n, and at most as fast as 2n. It’s thus reasonable to guess it grows like rn for

some r. For large n Binet’s formula says Fn+1 is approximately
1+
√

5

2
larger than

Fn; note this constant is about 1.61803, sandwiched beautifully between our lower

bound of
√
2 ≈ 1.414 and our upper bound of 2.

23.1.3 Recurrence Relations and Probability

Why are recurrence relations helpful for our roulette problem? Let’s try to compute

the probability that, in n spins of the wheel, we have at least 5 consecutive blacks.
We’ll call this probability an. It turns out to be easier to compute bn, the probability
that in n spins we do not have at least 5 consecutive blacks. Note that an is just
1−bn, so if we can find one we can surely find the other. This is a powerful principle
in probability, namely that complementary events have probabilities summing to 1.
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Red bn-1 Black

Red bn-2 Black

Red bn-3 Black

Red bn-4 Black

Red bn-5 Black

Figure 23.2: Developing the recurrence relation for not having 5 consecutive blacks

in n spins of our roulette wheel.
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There are many names for this, includingLaw of Total Probability. Let’s use this to

get a recurrence relation for bn. We sketch what happens as we spin in Figure 23.2.
What is bn? Well, there are two possibilities for the first spin, and each happens

with probability 1/2. Half the time we get a red, half the time we get a black. What

is the probability we do not have 5 consecutive black spins in n spins, given that the
first spin is a red? The answer to this question is just bn−1; since the first spin is a

red, it can’t contribute to 5 consecutive blacks. We now analyze the branch coming

from a first spin of black. There are two possibilities for the second spin, again each

happening half the time: a red spin, a black spin. If we start off black then red, which

happens 1

2
· 1
2
= 1

4
of the time, then the probability that we don’t have 5 consecutive

blacks is just bn−2.

Continuing along these lines, we find

bn =
1

2
bn−1 +

1

4
bn−2 +

1

8
bn−3 +

1

16
bn−4 +

1

32
bn−5.

Why do we stop here, why aren’t there more terms? Well, if we start off with five

consecutive black spins, then there’s no chance that we won’t have 5 consecutive

black spins! It’s precisely for this reason that we’re trying to find bn and not an. We
now have the recurrence relation. All that remains is to find the initial conditions.

This isn’t too bad; it’s just

b0 = b1 = b2 = b3 = b4 = 1.

Why are each of these 1? If we have fewer than 5 spins, we can’t have at least

5 consecutive blacks! We can either modify the advanced theory or just use the

recurrence relation to find the bn’s or the an’s. After some algebra, we find the an’s
are

0, 0, 0, 0, 0,
1

32
,
3

64
,
1

16
,
5

64
,
3

32
,
7

64
,
255

2048
,
571

4096
, . . . ,

or in decimal form,

0, 0, 0, 0, 0, 0.03125, 0.046875, 0.0625, 0.078125, 0.09375, 0.109375, 0.124512, . . . .

By the time we get to n = 100, there is an 81.01% chance that we’ll have at least 5
consecutive blacks. At n = 200 the probability climbs to 96.59%, while at n = 400
it’s 99.89%.

23.1.4 Discussion and Generalizations

Our roulette problem has a lot of beautiful features. We can extract a nice mathe-

matical formulation from it which we can solve. Without too much trouble, we can

write a simple program to use the recurrence relation and initial conditions to find

the probabilities. This illustrates just a small subset of the different types of math

that can arise in a probability problem. It also shows the importance of looking at

the right object; the recurrence relation is a bit cleaner if we go for the probability of

not having 5 consecutive blacks, rather than what we desire (namely the probability

of having at least 5 consecutive blacks).

We end with one final feature about this problem. Say we desire the probability of

not getting 5 consecutive blacks in 100 spins. We saw we could set up the recurrence
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