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ON BUFFON MACHINES AND NUMBERS
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ABSTRACT. Buffon’s needle experiment is well-known: take a plane on which parallel lines at
unit distance one from the next have been marked, throw a needle of unit length at random, and,
finally, declare the experiment a success if the needle intersects one of the lines. Basic calculus
implies that the probability of success is % = 0.63661, and the experiment can be regarded as an
analog (i.e., continuous) device that stochastically “computes” % Generalizing the experiment
and simplifying the computational framework, we ask ourselves which probability distributions
can be produced perfectly, from a discrete source of unbiased coin flips. We describe and analyse
a few simple Buffon machines that can generate geometric, Poisson, and logarithmic-series distri-
butions (these are in particular required to transform continuous Boltzmann samplers of classical
combinatorial structures into purely discrete random generators). Say that a number is Buffon if
it is the probability of success of a probabilistic experiment based on discrete coin flippings. We
provide human-accessible Buffon machines, which require a dozen coin flips or less, on average, and
produce experiments whose probabilities are expressible in terms of numbers such as 7, exp(—1),
log 2, /3, cos(%)7 ¢(5). More generally, we develop a collection of constructions based on simple
probabilistic mechanisms that enable one to create Buffon experiments involving compositions of
exponentials and logarithms, polylogarithms, direct and inverse trigonometric functions, algebraic
and hypergeometric functions, as well as functions defined by integrals, such as the Gaussian error
function.
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supp. distribution PGF machine
Bernoulli,  Ber(p) |{0,1} PX=1)=p (pu+ (1—p))| I'B(p)
geometric  Geo(\) | Zso P(X =r)=X(1-)) 11: AAU I'G(\)
Poisson, Poi(A\) | Z>o P(X=r)= ef/\% D T'P(N)
. . o 1 A" | log(1—Au)?
logarithmic, Log()\) | Z>o |P(X =7r) = Tog(1 = N1 7 | Tog(1— )1 T'L(A)

FIGURE 1. The main probability laws: support, expression of the distribution, proba-
bility generating function (PGF), and naming convention for generators.

The Buffon experiment described in the abstract is modelled by two variates, U, V', uniformly
distributed over the unit interval [0, 1] (representing the initial position of the centre of the needle
modulo 1 and its orientation measured as a fraction of 180 degrees). The condition for intersection
is that the closest distance min(U,1 — U) to a parallel line be at most half the length 1 sin(7V')
of the perpendicular projection of the needle; that is, the predicate min(U,1 — U) < Isin(7V).
Simple calculations then justify the % probability evaluation.

One can regard Buffon’s experiment as a simple analog device that takes as input uniform
[0, 1]-random variables and outputs a discrete {0, 1}-random variable, with 1 for success and 0 for
failure. What are permitted are exact operations over real numbers; here, computing a minimum,
multiplying by 1/2, computing x +— sin(7z), and determining inequalities between reals. Without
attempting a formal definition, we shall name real Buffon machine, any abstract device that has
internal registers capable of storing infinite-precision real numbers, that is equipped with a fixed
set of base functions (e.g., £+, max, and sin), and is capable of testing signs of numbers. The
classical problem of simulating random variables can then be described as the contruction of real
Buffon machines that are both simple and computationally efficient. We refer to the encyclopedic
treatise of Devroye [4] for many examples related to the simulation of distributions of various
types, such as Gaussian, exponential, Cauchy, and stable.

Discrete Bujffon machines. Our objective here is the perfect simulation of discrete ran-
dom wvariables, i.e., variables supported by Z or one of its subsets: see Fig. [I| for those we shall
be considering. It is then natural to restrict the source of randomness to produce only uniform
random bits provided by a procedure flip= randomyg ;. Since we are interested in finite com-
putation (rather than infinite-precision real numbers), we introduce discrete Buffon machines, or
discrete generators, whose registers can contain binary sequences of finite length (“strings”). A
fundamental question is then the following.

How to generate discrete distributions exactly and efficiently, using only a discrete
source of random bits and finitary computations?

A pioneering work in this direction is that of Knuth and Yao [I7] who discuss the power of various
restricted devices (e.g., finite-state machines). Knuth’s treatment [I5] §3.4] and the articles [9] [31]
present additional results along these lines.

Our original motivation for studying discrete Buffon machines came from Boltzmann samplers
for combinatorial structures, following the approach of Duchon, Flajolet, Louchard, and Schaef-
fer [5] and Flajolet, Fusy, and Pivoteau [7]. The current implementations relie on real number
computations, and the need arises to generate distributions such as geometric, Poisson, or loga-
rithmic, with various ranges of parameters—since the objects ultimately produced are discrete, it
is natural to try and produce them by purely discrete means.

Bujffon numbers. Here is an intriguing range of related questions. Let M be a discrete Buffon
machine that generates a Bernoulli random variable X, whose value lies in {0,1}. We say that
M is a Buffon computer for the number p := P(X = 1). A number is said to be a Buffon number
if there is a Buffon machine that computes it stochastically. We will be explicitly restricting
attention to devices that have as simple a structure as seems possible. The question then arises
as to which real numbers are Buffon numbers in that sense. In other words, we seek whether there
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exist simple finite mechanisms that transform uniform {0,1}-bits into Bernoulli variables whose
probabilities of success are numbers such as

1 1
(1) 1/vV2, et log2, =, w-—3,
™

e—1’
This problem can be seen as a vast generalization of Buffon’s needle problem.

Complexity and simplicity. For our discrete Buffon generators and computers, we add the
requirement of operating with a constant expected number of coin flippings. We will also impose for
ourselves the losely defined constraint that the programs are short and conceptually simple, to the
extent of being easily implemented by a human. Thus, emulating infinite-precision computation
with multiprecision interval arithmetics or appealing to functions of high complexity as primitives
is disallowed. Our programs then only make use of simple integer counters, string registers (§2)
and stacks (§3), as well as “bags” (§4). The reader may try her hand at determining Buffon-ness
in this sense of some of the numbers listed in . As briefly discussed in Section [5 our universal
interpreter has less than 60 lines of MAPLE code, being built on primitives of between one and a
dozen lines. We shall for instance later produce a Buffon computer for the constant (see (11))

7 2 1 3 1
(2) C= 8{(3) 2 log2 + 6(10g 2)° =0.5372113193 , ¢(s) := nz_:l oyt
one that is human-compatible, that consumes on average less than 6 coin flips, and that requires
at most 20 coin flips in 95% of the simulations.
Warning. Due to space limitations in this extended abstract, we focus the discussion on algorithmic
design. Analytic estimates can be approached by means of (probability, counting) generating functions
in the style of methods of analytic combinatorics [I0]; see, the typical discussion in Subsection The
main results of this note are Theorem [2| (Poisson and logarithmic generators), Theorem [3| (realizability of
exps, logs, and trigs), Theorem |§| (general integrator), and Theorem [7| (inverse trig functions).

1. Framework and examples

Our purpose is to set up a system based on the composition of simple probabilistic experiments,
corresponding to simple computing devices. The framework of our Buffon machines allows for a
finite control, with conditionals and tests, as well as unbounded iterations (do—loops). The basic
data structures used here are: (i) integer registers (subject to addition of +1 and test to 0);
(i4) stacks, in the usual sense of automata theory; (iii) string registers, which are stacks with
some additional operations permitted (e.g., clear from current position to the top); (iv) bags,
which are partly specified string registers with local modification of a symbol being allowed. The
Buffon machines we consider are supposed to be equipped with an unbiased random-bit genemtoﬂ
named “flip”. The cost measure is taken to be the number of coin flips. Since we only consider
restricted devices, the overall simulation cost is, in most cases, proportional to this measure.

Definition 1. Given a class M of Buffon machines, we say that the function A — ¢(\), defined
for X € (0,1) and with values ¢(A) € (0,1) is realizable (or has a simulation) if there is a
machine in M, such that, when equipped with a perfect generator TB(X) of a Bernoulli variable of
parameter A = P(1), it outputs a Bernoulli random variable of parameter ¢p(X\). The function ¢(N)
is said to be strongly realizable (or have a strong simulation) if the number of coin flips C admits
exponential tails: for any € > 0, there are constants K and p < 1 so that, for any A € [e,1 — €],
one has P(C >m) < Kp~™.

If one allows totally unrestricted machines, every computable real number of (0,1) can be
simulated (e.g., make use of continued fraction convergents or dyadic approximations). Similarly,
Nacu and Peres [24] show that essentially every (computable) Lipschitz function is realizable
and every (computable) real-analytic function has a strong simulation, with such unrestricted
devices. Rather, our purpose here is to show how sophisticated perfect simulation algorithms can

LThis convention entails no loss of generality. Indeed, as first observed by von Neumann, suppose we only have
a biased coin, where P(1) = p, P(0) = 1 — p, with p € (0,1). Then, one should toss the coin twice: if 01 is observed,
then output 0; if 10 is observed, then output 1; otherwise, start again another round of coin tossings.
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be systematically and efficiently synthetized by composition of simple probabilistic processes, this
without a need for any multiprecision arithmetic routines. To set the stage of the present study,
we shall briefly discuss in sequence: () decision trees and polynomial functions; (i) Markov chains
(finite graphs) and rational functions.

Decision trees and polynomials. Given three machines P, @, R with outputs in {0,1} and
with Pp(1) = p, Pg(1) = ¢, Pr(1) = r, we can easily build machines, corresponding to loopless
programs, whose probability of success is p - g, 1 — p, or any composition thereof: see below for
the most important boolean primitives:

Name realization function

Conjunction (P A Q) if P() =1 then return(Q()) else return(0) PAG=Dp-q

Disjunction (P V Q) if P() =0 then return(Q()) else return(1) pVqg=p+q—pg
(3) Complementation (—P)  if P() =0 then return(1) else return(0) 1-p

Squaring (PAP) P>

Conditional (R — P|Q) if R() =1 then return(P()) else return(Q()) rp+ (1 —r)q.

Mean if flip() then return(P()) else return(Q()) 1(p+q).

We can then simulate a Bernoulli of parameter any dyadic rational s/2¢, starting from the unbiased
flip procedure, performing ¢ draws, and declaring a success in s designated cases. Also, by calling
a Bernoulli variate of parameter x a fixed number m of times, then observing the sequence of
outcomes and its number k of 1s, we can realize any polynomial function a,,, pz¥ (1 — )™k with
Qi any integer satisfying 0 < ay, 1 < (7,?)

Finite graphs (Markov chains) and rational functions. We consider now programs that
allow iteration and correspond to a finite control graph—these are equivalent to Markov chains,
possibly parametrized by “boxes” representing calls to external Bernoulli generators. In this way,
we can produce a Bernoulli generator of any rational parameter A € Q, by combining a simpler
dyadic generator with iteration. (For instance, to get a FB(%), flip an unbiased coin twice; return
success if 11 is observed, failure in case of 01 or 10, and redo the experiment in case of 00.)
Clearly, only rational functions can be realized by finite graphs. A highly useful function is the
even-parity:

4) [even-parity] do { if P() =0 then return(1); if P() = 0 then return(0) }.

The probability of k + 1 calls to P() is (1 — p)p¥, which, when summed over k = 0,2,4,. .., gives
the probability of success as 1/(1 + p); thus, this function is realizable. Here are furthermore
two important characterizations based on works of Nacu—Peres [24] (see also Wastlund [30]) and
Mossel-Peres [23], after adaptation to our framework.

Theorem 1 ([23| 24, 30]). () Any polynomial f(x) with rational coefficients that maps (0,1)
into (0,1) is strongly realizable by a finite graph. (it) Any rational function f(x) with rational
coefficients that maps (0,1) into (0,1) is strongly realizable by a finite graph.

(Both parts relie on the possibility of generating arbitrary rational mixtures of distributions.
Part (¢) is further based on a theorem of Pélya, relative to nonnegative polynomials; Part (i)
depends on an ingenious “block simulation” principle.)

We remark at this stage that we can also produce a geometric variate from a Bernoulli of the
same parameter: just repeat till failure. This gives rise to the program

(5) [Geometric] I'G(A) := { K :=0; do {if I'B(\) = 0 then return(K); K := K +1;} }.

(The even-parity construction implicitly makes use of this.) The particular FG(%) then simply
iterates on the basis of a flip. Also, if we have access in some way to the complete binary expansion
of p, we have a Bernoulli generator as

(6) [Bernoulli/binary] I'B(p) := {let Z :=1+T'G(3); return(bit(Z, p)) }.

In words: in order to draw a Bernoulli variable of parameter p, return the bit of p whose random
index is given by a geometric variable of parameter 1/2. (Proof: emulate a comparison between a
uniformly random U € [0, 1] with p € [0,1].) This property gives us a I'B(p) for p € Q by means
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T'VN[P](A) :={ do {

N :=TG(\);

let U := (Uy,...,Un) be a vector of [0, 1]-uniform variables.

{ bits of the U; are produced on a call-by-need basis to determine o and T}

let 7 := trie(U); let o := type(U); { computed from the trie T}

if 0 € Py then return(N) } }.
FIGURE 2. The von Neumann schema I'VN[P](}), in its continuous version, relative
to a class of permutations P and a parameter A (equivalently given by its Bernoulli
generator I'B(\)).

of a simple Markov chain, based on the eventual periodicity of the representation of p. The cost
is plainly a geometric of rate 1/2. (The construction will prove valuable when we discuss “bags”.)

2. The von Neumann schema

The idea of generating certain probability distributions by means of their Taylor expansion
seems to go back to von Neumann. An early application discussed by Knuth and Yao [17], fol-
lowed by Flajolet and Saheb [9], is the ezact simulation of an exponential variate by means of
random [0, 1]-uniform variates, this by a “continuation” process that altogether avoids multipreci-
sion operations. In this section, we build upon von Neumann’s idea and introduce in Subsection [2.1]
a general schema for random generation—the von Neumann schema. We then explain in Subsec-
tion how this schema may be adapted to realize classical transcendental functions, such as
e, cos()), only knowing a generator I'B()\).

2.1. Von Neumann generators of discrete distributions. First a few notations, follow-
ing [I0]. Start from a class P of permutations, with P,, the subset of permutations of size n
and P, the cardinality of P,. Introduce the (counting) exponential generating function, or EGF,

Z’I’L
P(z) =) P
n>0
For instance, the classes Q, R, S of, respectively, all permutations, sorted permutations, and cyclic
permutations have EGFs given by Q(z) = i, R(z) =¢*, S(z) =log Q—Z, since @, = n!, R, =1,
Sp = (n—1)!, for n > 1. Observe that the class S of cyclic permutation is isomorphic to the class
of permutations such that the maximum occurs in the first position: Uy > Us,...,Un. (It suffices
to “break” a cycle at its maximum element.) We shall also denote by S the latter class, which is
easier to handle algorithmically.

Let U = (Uq,...,U,) be a vector of real numbers. By replacing each U; by its rank in U,
we obtain a permutation ¢ = (o1, ...,0,), which is called the (order) type of U. For instance,
U = (1.41,0.57,3.14,2.71) has order type o = (2,1,4,3). We shall write type(U) for the type
of the vector U. The von Neumann schema, relative to a class P of permutation is described
in Figure Observe that it only needs a geometric generator I'G(\), hence, eventually, only
a Bernoulli generator I'B()A). (The latter can result either from a basic generator that has the
parameter A presented in binary on an auxiliary input tape or be itself constructed by composition
rules such as those of Subsection )

First, by construction, a value N is, at each stage of the iteration, chosen with probability (1 —
MAN. An iteration that succeeds then returns the value N = n with probability

(L=XNP,A"/n! 1 PA"
(1=XN>, P.Ar/nl P\ nl

For P one of the three classes Q, R, S described above this gives us three interesting distributions:

permutations (P): | all (Q) | sorted (R) cyclic (S)
A" 1"
(7) distribution: (1=XA\" | e | =5 L:=log(l—))"!
n! n
geometric | Poisson logarithmic.
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The case of all permutations is trivial, since no order-type restriction is involved, so that the first
value of N € Geo() is returned. It is notable that, in the other two cases, one can generate the
Poisson and logarithmic distributions, by means of permutations obeying simple restrictions.

Next, implementation details should be discussed. At the most general level, once N has
been drawn, we can imagine producing the U; in sequence, by generating at each stage only the
minimal number of bits needed to distinguish any U; from the other ones. This corresponds to
the construction of a digital tree [16] 28] and is summarized by the command “set 7 := trie(U)”
in the schema of Figure[2] As the digital tree 7 is constructed, the U; are gradually sorted, so that
the order type o can be determined—this involves no additional flips, just bookkeeping. The test
o € Py is of this nature and it requires no flip at all. Furthermore, in the case of the distributions
of , one never needs to store the entire digital tree: it suffices to keep a single string register
that preserves the value of current interest. For instance, for the logarithmic series distribution
only the value of U; ever needs to be preserved; for the Poisson distribution, only the value of a
“current” Uy has to be maintained at any given time.

Finally, we need to discuss costs. The cost of each iteration, as measured by the number of
coin flips, is exactly that of generating the tree 7 of random size N. The number of coin flips to
build 7 coincides with the path length of 7, written w(7), which satisfies the inductive definition

(8) w(r) =l +w(n) +wln), [7[=2,
where 7 = (79, 71) and |7] is the size of 7, that is, the number of elements contained in 7.

Path length is a much studied parameter, starting with the work of Knuth in the mid 1960s
relative to the analysis of radix-exchange sort [I6] pp. 128-134]; see also the books of Mahmoud [22]

and Szpankowski [28] as well as Vallée et al.’s analyses under dynamical source models [3] 29]. Tt
is known that the expectation of path length, for n uniform infinite binary sequences, is finite,

with exact value )
oo 1 n—
En[w]:nz [1_(1_%> 1,
k=0

and asymptotic form (given by a Mellin transform analysis [8, 22 28]): E,[w] = nlogy,n + O(n).

The distribution of path length is known to be asymptotically Gaussian, as n — oo, after
Jacquet and Régnier [13] and Mahmoud et al. [21]; see also [20] §11.2] for an exposition. For our
purposes, it suffices to observe that the bivariate EGF

oo . Zn
H(z,q) =) Enlg”]—
n=0 :

satisfies the nonlinear functional equation H(z,q) = H (Z—Q‘J,q)2 + 2(1 — q), with H(0,q) =
This equation fully determines H, since it is equivalent to a recurrence on coefficients; h,(q) :
n![z"|H(z, q), namely, for n > 2,

0 () = =i 2 3 () @)

k=1

1.

We can now summarize the foregoing discussion and state:

Proposition 1. (i) Given a class P of permutations and a parameter X € (0,1), the von Neumann
schema T'VN[P](X) produces exactly a discrete random variable with probability distribution

1 P A"
P(A) n!

(i) The number K of iterations has expectation 1/s, where s = (1 — N\)P(X), and its distribution
is 1+ Geo(s).

(i4i) The number C of flips consumed by the algorithm (not counting the ones in TG(N)) is a
random variable with probability generating function

!
(10) BGC) = 1o s,

P(N =n) =
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where HT, H™ are determined by @D

HY(g) = (1= ()", H (g =(1-2) (1 - i,) hn(@)2"
n=0 " n=0 :

The distribution of C' has exponential tails.

Proof. A crucial observation is that the digital tree created at each step of the iteration is only a
function of the underlying set of values. But there is complete independence between this set of
values and their order type. This serves to justify in particular . O

A simple consequence of Proposition (1| and is the possibility of generating a Poisson or
logarithmic variate by a simple device: only one branch of the trie needs to be maintained.

Theorem 2. The Poisson and logarithmic distributions of parameter A € (0,1) have a strong
simulation by a Buffon machine that only uses a single string register.

Since the sum of two Poisson variates is Poisson (with rate the sum of the rates), the strong
simulation result extends to any X € Poi()\), for any A € R>g. This answers an open question
of Knuth and Yao in [I7, p. 426]. We may also stress here that the distributions of costs are
easily computable: with a symbolic manipulation system, such as MAPLE, the cost of generating a
Poisson(1/2) variate is found to have probability generating function (Item (7i7) of Proposition

§+L 2 119 4y 19 5y 2023 4 179
11287 T 20067 T 10247 T 1310727 T 16384
Interestingly enough, the analysis of the logarithmic generators involves ideas similar to those

relative to a classical leader election protocol [6] 26].

q7+

2.2. Buffon computers: logarithms, exponentials, and trig functions. We can also take
any of the previous constructions and specialize it by declaring a success whenever a special value
N = q is returned, for some predetermined a (usually a = 0,1), declaring a failure, otherwise.
For instance, the Poisson generator with a = 0 gives us in this way a Bernoulli generator with
parameter \' = exp(—A). Since the von Neumann machine only requires a Bernoulli generator
I'B(\), we thus have a purely discrete construction 'B(\) — I'B (e*)‘) . Similarly, the logarithmic
generator restricted to a = 1 provides a construction TB()\) — I'B (W) . Naturally, these
constructions can be enriched by the basic ones of Section [I] in particular, complementation.

Another possibility is to make use of the number K of iterations, which is a shifted geometric
of rate s = (1 — A)P()); see Proposition 1} Item (ii). If we declare a success when K = b, for some
predetermined b, we then obtain yet another brand of generators. The Poisson generator used in
this way with b = 1 gives us TB(A\) — T'B((1—A)e), IB (Xe'™*), where the latter involves
an additional complementation.

Trigonometric functions can also be brought into the game. A sequence U = (Uy,...,U,) is
said to be alternating if Uy < Uy > Us < Uy > ---. It is well known that the EGFs of the classes AT
of even-sized and A~ of odd-sized permutations are respectively AT (z) = sec(z) = 1/cos(z), and
A~ (z) = tan(z) = sin(z)/cos(z). (This result, due to Désiré André around 1880, is in most books
on combinatorial enumeration, e.g., [I0, 1T} 27].) Note that the property of being alternating can
be tested sequentially: only a partial expansion of the current value of U; needs to be stored at
any given instant. By making use of the properties AT, A~, with, respectively N = 0,1, we then
obtain new trigonometric constructions. In summary:

Theorem 3. The following functions admit a strong simulation:

e e 1 (1 —x)e®, xel=2,
T 1—=z 1
1—2)log —— log(1
log(l _ m)_l’ 1Og(1/m)7 ( I) Og 1 _ .’L" x Og( /x)?
1

zcot(x), (1 —x)cos(z), (1 — z)tan(z).

cos(z)’
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2.3. Polylogarithmic constants. The probability that a vector U is such that U; > Us,...,U,
(the first element is largest) equals 1/n, a property that underlies the logarithmic series generator.
By sequentially drawing r several such vectors and requiring success on all r trials, we deduce
constructions for families involving the polylogarithmic functions,

oo Zn
L.'r = >
ir(2) 2
with » € Z>1. Of course, Li;(1/2) = log2. There are a few special evaluations known for

polylogarithmic values, when r > 2 (see the books by Berndt on Ramanujan [2] Ch. 9] and by
Lewin [I8] [T9]). Of special interest for us are the evaluations

| 1
11 Lig(1/2) = — — = 21

By rational convex combinations, we obtain Buffon computers for g—i and 312 (3). Similarly, the
celebrated BBP [Bailey-Borwein-Plouffe] formulae [I] can be implemented as Buffon machines.

2
7
log?2,  Lig(1/2) = > log®2 — % log2 + £((3).

3. Square roots, algebraic, and hypergeometric functions

We now examine a new brand of generators based on properties of ballot sequences, which open
the way to new constructions, including an important square-root mechanism. The probability
that, in 2n tosses of a fair coin, there are as many heads as tails is w,, = 22% (27?) The property

is easily testable with a single integer counter R subject only to the basic operation R := R+ 1

and to the basic test R~0. From this, one can build a square-root computer and, by repeating
the test, certain hypergeometric constants can be obtained.

3.1. Square-roots. Let N be a random variable with distribution Geo(A). Assume we flip
2N coins and return a success (1), if the score of heads and tails is balanced. The probabil-
ity of success is

S(A) = i(l - M)A\, = V1= A
n=0

(The final simplification is due to the binomial expansion of (1 — 2)~1/2.) This simple property
gives rise to the square-root constructionﬂ
I'B(V1—=2X):= {let N:=TG(\);
(12) draw Xi,..., Xon with X; € {—1,+1} and P(+1) = P(-1) = 1;
set A := Zfﬁo X,; if A =0 then return(1) else return(0) }.

The mean number of coin flips used is then simply obtained by differentiation of generating
functions.

Theorem 4. The square-root construction of Equation provides an exact Bernoulli generator
of parameter /1 — A, given a TB(\). The mean number of coin flips required, not counting the

ones involved in the calls to TB(\), is % The function \/1 — x is strongly realizable.

By complementation of the original Bernoulli generator, we also have a construction 'B(\) — TI'B(1—
A) —TI'B (ﬁ) , albeit one that is irregular at 0.

Note 1. Computability with a pushdown automaton. It can be seen that the number N in the square-root
generator never needs to be stored. If we expand the code of the I'G()A) generator that produces N, we
obtain the equivalent sequence of instructions

T'B (\/1 —)\) = {do { A:=0;
if 'B(A\) = 0 then break;
if flip=1 then A := A+ 1else A:=A —1; ifflip=1 then A:=A+1lelse A:=A—-1}
if A =0 then return(1) else return(0) }.
In this way, only a stack of unary symbols needs to be maintained: the stack keeps track of the absolute
value |A| stored in unary, the finite control can keep track of the sign of A. We thus have realizability of
the square-root construction by means of a pushdown (stack) automaton.

2 Similar generators have been first developed by Wistlund [30] and by Mossel-Peres [23].
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{let N :=TG());
draw w := X1 X5 --- Xy with X; € {H,T} and P(H) =P(T) =
if w € L(G;S) then return(1) else return(0) }.

)

NI

FIGURE 3. The algebraic construction associated to the pushdown automaton arising
from a bistoch grammar.

Note[T]suggests a number of variants of the square-root construction, which are also computable
by a pushdown automaton. For instance, assume that, upon the condition “flip=1", one does
A := A+ 2 (and still does A := A — 1 otherwise). The sequences of H (heads) and T (tails)
that lead to eventual success (i.e., the value 1 is returned) correspond to lattice paths that are
bridges with vertical steps in {42, —1}; see [10, §VII.8.1]. The corresponding counting generating
function is then S(z) = >, 5 (3:) 2%" and the probability of success is (1 —\)S (3). As it is well
known (via Lagrange inversion), the function S(z) is a variant of an algebraic function of degree 3;
namely, S(z) = m, where Y (2) = 2+ 2Y(2)?, and Y (2) = 2+ 24 +327+- - - is a generating
function of ternary trees. One can synthetize in the same way the family of algebraic functions

== (1)

n>0

by updating A with A := A+ (¢t —1).

3.2. Algebraic functions and stochastic grammars. It is well known that unambiguous
context-free grammars are associated with generating functions that are algebraic: see [10] for
background (the Chomsky—Schiitzenberger Theorem).

Definition 2. A binary stochastic grammar (a “bistoch”) is a context-free grammar whose ter-
minal alphabet is binary, conventionally {H, T}, where each production is of the form

(13) X — Hm+1Thn,

with m,n that are monomials in the non-terminal symbols. It is assumed that each non-terminal
is the left hand side of at most one production.

Let G, with axiom S, be a bistoch. We let L[G;S] be the language associated with S. By the
classical theory of formal languages and automata, this language can be recognized by a pushdown
(stack) automata. The constraint that there is a single production for each non-terminal on the left
means that the automaton corresponding to a bistoch is deterministic. (It is then a simple matter
to come up with a recursive procedure that parses a word in {H,T'}* according to a non-terminal
symbols S.) In order to avoid trivialities, we assume that all non-terminals are “useful”, meaning
that each of them produces at least one word of { H, T}*. For instance, the one-terminal grammar
Y = HYYY + T generates all Lukasiewicz codes of ternary trees [10} §1.5.3] and is closely related
to the previously seen construction.

Next, we introduce the ordinary generating function (or OGF) of G and S,

S(z) := Z Zvl = ZSnz”,

weL[G;S] n>0

where S, is the number of words of length n in L[G; S]. The deterministic character of a bistoch
grammar implies that the couting OGFs are bound by a system of equations (one for each non-
terminal) deduced directly from (I3), X(z) = 2m + 20, where m,n are monomials in the OGFs
corresponding to the non-terminals of m,n; see [10, §1.5.4]. For instance we have, in the ternary
tree case, Y = z + zY3.

Thus, any OGF y arising from a bistoch is a component of a system of polynomial equations,
hence, an algebraic function. By elimination, the system can be reduced to a single polynomial
equation P(z,y) = 0. We obtain, with a simple proof, a result of Mossel-Peres [23, Th. 1.2]:

Theorem 5 ([23]). To each bistoch grammar G and non-terminal S, there corresponds a con-
struction (Figure @), which can be implemented by a deterministic pushdown automaton and calls
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to a T'B(X) and is of type TB(\) — T'B (S (%)) , where S(z) is the algebraic function canonically
associated with the grammar G and non-terminal S.

Note 2. Stochastic grammars and positive algebraic functions. First, we observe that another way to
describe the process is by means of a stochastic grammar with production rules X — %m + %n, where
each possibility is weighted by its probability (1/2). Then fixing N = n amounts to conditioning on
the size of the resulting object (n). This bears a superficial resemblance to branching processes, upon
conditioning on the size of the total progeny, itself assumed to be finite. (The branching process may well
be supercritical, as in the ternary tree case.)

The algebraic generating functions that may arise from such grammars and positive systems of equations
have been widely studied. Regarding their coefficients and singularities, we refer to the discussion of the
Drmota—Lalley-Woods Theorem in [I0} pp. 482-493] and references therein. Regarding the values of the
generating functions, we mention the studies by Kiefer, Luttenberger, and Esparza [14] and by Pivoteau,
Salvy, and Soria [25]. The former is motivated by the probabilistic verification of recursive Markov
processes, the latter by the efficient implementation of Boltzmann samplers.

It is not known however at this moment whether a function as simple as (1 — )\)1/ 3 is realizable by a
stochastic context-free grammar or, equivalently, a deterministic pushdown automaton. (We conjecture a
negative answer, as it seems that only square-root and iterated square-root singularities are possible for a
wide class of positive polynomial systems.)

3.3. Ramanujan, hypergeometrics, and a Buffon computer for 1/x. A subtitle might be:
What to do if you want to perform Buffon’s experiment but don’t have needles, just coins? The

identity
1 & /2n\’6n+1
=2 (1) G
n=0
due to Ramanujan (see [12] for related material), lends itself somewhat miraculously to evaluation
by a simple Buffon computer. The following simple experiment (the probabilistic procedure Rama)

succeeds (returns the value 1) with probability exactly 1/7. It thus constitutes a discrete analogue
of Buffon’s original, one with only three counters (T, a copy of T, and A).

procedure Rama();  {returns the value 1 with probability 1/}
S1. let T := X + X5, where X1, X5 € Geom(%);
S2. with probability g doT :=T+1;
S3. forj=1,2,3 do
S4. draw a sequence of 27" coin flippings;

if (A = # Heads — # Tails) # 0 then return(0);
S5. return(1).

Observe that setting up the generation of a variable that is geometric with parameter i necessitates
2 coin flips and then 2 coin flips per incrementation in the worst case (in fact 1% coin flip on
average); drawing a Bernoulli variable with probability g requires about 4 coin flips on average—
this crude analysis takes care of steps S1 and S2. The mean value of S is % = 1.222, so that
typical values for 25 are in the set {0,2,4,6,8} (about 95% of the time). Finally, the for-loop of
Step S3. is aborted as soon as the number of heads (or tails) differs from S, in which case the
procedure returns 0, which means “failure”. It is only when the battery of the three tests in S4
is successful that the procedure terminates returns the value 1, meaning “success” (in S5). On
average, 9.8 coin flips are consumed by this experiment. (Similar hypergeometric constants can
be produced by such devices.)

4. A Buffon integrator

Our purpose here is to develop, given a construction of type I'B(A) — I'B(¢(\)), a generator
for the function

A
(14) () = 1 /0 B(w) duw.

An immediate consequence will be a generator for A®(\); that is, an “integrator”.
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Ghalf:=proc() local K;

z Z # a geometric RV of param. 1/2

7 ? — g K:=-1; do K:=K+1; if flip()=0

6 1 then return(K) fi; od;

= Z 2 bag:=proc(U) local J;
e J:=1+Ghalf () ;

3:0 if type(U[J],name)

240 then ULJ]:=flip(); fi;
11 return(U[J]); end;

FIGURE 4. The “geometric-bag” procedure bag(U): two graphic representations of a
state (the pairs index—values and a partly filled register) and the complete MAPLE code.

To start with, we discuss a purely discrete implementation of TB(A) — TB(U\), with
U € [0,1], uniformly, where multiple invocations of I'B(\) must involve the same value of U.
Conceptually, it suffices to draw U as an infinite sequence of flips, then make use of this U to
get a I'B(U) and then appeal to the conjunction (product) construction to get a I'B(AU) as
I'B(U) - I'B(\). To implement this idea, it suffices to resort to lazy evaluation. One may think
of U as a potentially infinite vector (v1, ve, ...), where v, represents the jth bit of U. Only a finite
section of the vector is used at any given time and the v; are initially undefined (or unspecified).
Remember that a I'B(U) is simply obtained by fetching the bit of U that is of order J, where
J € 1+ Geo(4). In our relaxed lazy context, whenever such a bit v; is fetched, we first examine
whether it has already been assigned a {0, 1}—value; if so, we return this value; if not, we first
perform a flip, assign it to v;, and return the corresponding value: see Figure El In a language
like MAPLE, where it is possible to test whether a variable has been assigned, the implementation
is obvious; otherwise, one should maintain an association list of the already “known” indices and
values, and update it, as the need arises.

Assume that ¢(\) is realized by a Buffon machine that calls a Bernoulli generator I'B(A). If
we replace I'B(A) by I'B(AU), as described in the previous paragraph, we obtain a Bernoulli
generator whose parameter is ¢(AU), where U is uniform over [0,1]. This is equivalent to a

Bernoulli generator whose parameter is fol d(Au) du = ®(X), with ®(A) as in (14). In summary:

Theorem 6. Let ¢(\) be realizable by a Buffon machine M. Then the function ®()\) = + fo/\ o(w) dw
is realizable by addition of a geometric bag to M. In particular, if ¢(N\) is realizable, then its in-
tegral taken starting from 0 is also realizable. If in addition ¢(N) is analytic at 0, then its integral
is strongly realizable.

This result paves the way to a large number of derived constructions. For instance, starting
from the parity construction, we obtain ®¢(A) := % fo)\ 1—|+w dw = % log(1+ ), hence, by product, a
construction for log(14+X). When we now combine the parity construction with “squaring”, where
a I'B(p) is replaced by the product I'B(p) - I'B(p), we obtain ®1()) := + 0)\ 11%2 = 1 arctan()),
hence also arctan(\). When use is made of the exponential (Poisson) construction A — e~*, one

obtains (by squaring and after multiplication by A) a construction for ®o(\) := fOA e—w?/2 dw, so
that the error function (“erf”) is also realizable. Finally, the square-root construction combined

with parity and integration provides ®5(A) := 0)‘ Vll;fz dw = —1 4+ v/1 — A2 + arcsin(\), out of

which we can construct 1 arcsin(A). In summary:

Theorem 7. The following functions are strongly realizable (0 < x < 1):

1 x
log(1 + ), arctan(x), 3 arcsin(z), / e’ /2 du.
0

The first two only require one bag; the third requires a bag and a stack; the fourth can be imple-
mented with a string register and bag.
Buffon computers for w. Of special interest, in connection with ®1, is the fact that ®;(1) =

m
arctan(1l) = T This gives us a Buffon computer for /4. There are even further simplifications
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FIGURE 5. The distribution of costs of the Machin machine (I5). Left: histogram.
Right: decimal logarithms of the probabilities, compared to log,,(10~"/%) (dashed line).

due to the fact that T'B(1) is trivial: this computer then only makes use of the U vector. Given its
extreme simplicity, we can even list the complete code of this Madhava—-Gregory—Leibniz (MGL)
generator for 7/4:
MGL:=proc() do
if bag(U)=0 then return(l) fi; if bag(U)=0 then return(l) fi;
if bag(U)=0 then return(0) fi; if bag(U)=0 then return(0) fi; od; end.

The Buffon computer based on arctan(1) works fine for small simulations. For instance, based on
10,000 experiments, we infer the approximate value 7/4 ~ 0.7876, whereas w/4 = 0.78539. In
that particular run, the mean number of flips per experiment was about 27. However, values of
U very close to 1 are occasionally generated (the more so, as the number of simulation increases),
and in fact the expected number of flips is infinite. This unwanted feature is somehow a reflection
of the fact that, behind the identity 7/4 = arctan(1), there is lurking the slowly convergent series
representation (Madhava-Gregory-Leibniz): § = % — % + % — % 4+

The next idea is to consider formulae of a kind made well-known by Machin, who made use of
arc-tangent addition formulae in order to reach the record computation of 100 digits of 7 in 1706.
For our purposes, a formula without negative signs is needed, the simplest of which

1 1
(15) g = arctan <2> + arctan (3> ,

being especially suitable for a short program and is easily compiled n silico. With 10° simulations,
we obtained an estimate w/4 ~ 0.78598, to be compared to the exact value /4 = 0.78539---;
that is, an error of about 0.5 - 1074, well within normal statistical fluctuations. The empirically
measured average number of flips per generation of this Machin-like I'B(7/4) turned out to be
about 6.45 coin flips. Figure 5] furthermore displays the empirical distribution of the number of
coin flips, based on another campaign of 10° simulations. The distribution of costs appears to
have exponential tails matching fairly well the approximate formula P(C = k) ~ 10~*/8.

Yet an alternative construction can be based on the arcsine and ®3. Many variations are clearly
possible, related to multiple or iterated integrals (use several bags).

5. Experiments and conclusions

We have built a complete protype implementation under the MAPLE symbolic manipulation
system, in order to test and validate the ideas expounded above; see Figure [f] A generator such
as Z4 is specified as a composition of basic constructions, such as f — exp(—f) [expn], f — /f
[sqrt0], f — [ f [int1], and so on. An interpreter using as source of randomness the built-in
function random then takes this description and produces a {0, 1} result; this interpreter, which is
comprised of barely 60 lines, contains from one to about a dozen intructions for each construction.
In accordance with the general conditions of our contract, only simple register manipulations are
ever used, so that a transcription in C or Java would be of a comparable size.
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> Z4:=expn(compl (ave(flip,ave(intl(intl(intl(even(prod(z, prod
(x, ¥))), ¥, ONE), y, ONE), z, ONE),compl(sqrtO(intO(ave(logp
(flip), sqrtO(prod(flip, intO(prod(Y, even(intO(even(prod(X,
X)), X, expn(prod(£flip,2))))), ¥, expn(prod(flip,£flip)))))),
L 2, flip))))))):
> test(Z4,10000);
mean_number of flips = 103.1645000
0.6313000000 (

> val(z4);

| —

(

> evalf(val(z4));
0.6356033009 (

FIGURE 6. Screen copy of a MAPLE session fragment showing: (i) the symbolic descrip-
tion of a generator; (i) a simulation of 10* executions having a proportion of successes
equal to 0.63130, with a mean number of flips close to 103; (ii7) the actual symbolic
value of the probability of success and its numerical evaluation 0.63560 - - - .

We see here that even a complicated constant such as the “value” of the probability associated
with Z4 is effectively simulated with an error of 0.4 102, which is consistent with normal statistical
fluctuations. For such a complicated constant, the observed mean number of flips is here a little
above 100. Note that the quantity ¢(3) is produced (as well as retrieved automatically by MAPLE’s
symbolic engine!) from Beuker’s triple integral:

7 1 ,r1 pl 1
—((3) = ———dxdydz.
L) ///nyy

(On batches of 10° experiments, that quantity alone only consumed an average of 6.5 coin flips,

whereas the analogous % (5) required barely 6 coin flips on average.)
Note that the implementation is, by nature, freely extendible. Thus, given integration and our

basic primitives (e.g., even(f) = ﬁ), we readily program an arc-tangent as a one-liner,

f
arctan(f) = f - [1/0 dz

f 1+22|’
and similarly for sine, arc-sine, erf, etc, with the symbolic engine automatically providing the
symbolic and numerical values, as a validation.

Here is finally a table recapitulating 9 ways of building Buffon machines for 7 related constants,
with, for each of the methods, the value, and empirical average of the number of coin flips, as
observed over 10* simulations:

Li>(1/2) | Rama arcsin [1; %; 7] arctan [1/2+1/3;1] | ¢(4) ¢(2)

2 4 2

(16) L L ul T Tz s o
24 m 4 8 12| 4 8 720 12

7.9 10.8 | 76.5 (c0) 16.2 4.9 | 4.5 26.7 (00) 6.2 7.2

(The tag “oc0” means that the expected cost of the simulation is infinite.)
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