Math 341: Probability Thirteenth Lecture (10/27/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu
http://www.williams.edu/go/math/sjmiller/
public_html/341/

Bronfman Science Center Williams College, October 27, 2009

Summary for the Day

Summary for the day

- Change of variable formulas:
 - Review of Jacobians.
 - Joint density of functions of random variables.
- Sums of random variables:
 - Convolution.
 - Properties of convolution.
 - Poisson example.
- Distributions from Normal:
 - Sample mean and variance.
 - Central Limit Theorem and Testing.
 - Pepys' Problem.

Section 4.7 Functions of Random Variables

One-dimension

Change of variable formula

g a strictly increasing function with inverse h, Y = g(X) then $f_Y(y) = f_X(h(y))h'(y)$.

Summary for the Day

Change of variable formula

g a strictly increasing function with inverse h, Y = g(X) then $f_Y(y) = f_X(h(y))h'(y)$.

Proof:

$$\mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \le g^{-1}(y)) = F_X(g^{-1}(y)) = F_X(h(y)).$$

$$f_{Y}(y) = F'_{X}(h(y))h'(y) = f_{X}(h(y))h'(y).$$

As
$$g(h(y)) = y$$
, $g'(h(y))h'(y) = 1$ or $h'(y) = 1/g'(h(y))$.

Review of Jacobian

Summary for the Day

Definition of the Jacobian

Given variables (x_1, x_2) that are transformed to (y_1, y_2) by

$$T(x_1, x_2) = (y_1(x_1, x_2), y_2(x_1, x_2))$$

and inverse mapping

$$T^{-1}(y_1, y_2) = (x_1(y_1, y_2), x_2(y_1, y_2)).$$

The Jacobian is defined by

$$J(y_1,y_2) \; = \; \left| \begin{array}{cc} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_1}{\partial y_2} \end{array} \right| \, .$$

Summary for the Day

• Note
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
.

• Use: $dx_1 dx_2 \rightarrow |J| dy_1 dy_2$ (tells us how the volume element is transformed).

Polar Coordinates

$$x_1(r,\theta) = r\cos\theta, \quad x_2(r,\theta) = r\sin\theta.$$

Calculating gives

$$J = \begin{vmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{vmatrix} = r.$$

Thus $dx_1 dx_2 \rightarrow rdrd\theta$.

a

Change of Variable Theorem

Theorem

 f_{X_1,X_2} joint density of X_1 and X_2 , $(Y_1, Y_2) = T(X_1, X_2)$ with Jacobian J. For points in the range of T,

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(x_1(y_1,y_2),x_2(y_1,y_2))|J(y_1,y_2)|.$$

Example: X_1, X_2 independent $\operatorname{Exponential}(\lambda)$. Find the joint density of $Y_1 = X_1 + X_2$, $Y_2 = X_1/X_2$. Answer is

$$f_{Y_1,Y_2}(y_1,y_2) = \lambda^2 y_1 e^{-\lambda y_1} \cdot \frac{1}{(1+y_2)^2}.$$

If instead had $Y_1 = X_1 + X_2$ and $Y_3 = X_1 - X_2$, would find

$$f_{Y_1,Y_3}(y_1,y_3) = \frac{\lambda^2}{2} e^{-\lambda y_1} \text{ for } |y_3| \leq y.$$

Summary for the Day

Strange Example

Let X_1, X_2 be independent Exponential(λ). Compute the conditional density of $X_1 + X_2$ given $X_1 = X_2$.

One solution is to use Y_1 , Y_2 from above; another is to use Y_1, Y_3 .

Note $\{X_1 = X_2\}$ is a null event, these two describe it differently.

Sections 3.8 and 4.8 Sums of Random Variables

Example

 X_1, X_2 independent Uniform(0, 1). What is $X_1 + X_2$?

- Build intuition: extreme examples.
- Consider discrete analogue: die.

Example

 X_1, X_2 independent Uniform(0, 1). What is $X_1 + X_2$?

- Build intuition: extreme examples.
- Consider discrete analogue: die.
- Answer: triangle from 0 to 2 with maximum at 1.

Summary for the Day

Definition

$$(f*g)(x) := \int_{-\infty}^{\infty} f(t)g(x-t)dt.$$

Interpretation: X and Y with densities f and g then density of X + Y is f * q.

Revisit sum of uniforms.

Properties of the convolution

Lemma

- $\bullet f * g = g * f.$
- $(\widehat{f * g})(x) = \widehat{f}(x) \cdot \widehat{g}(x)$, where

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi}$$

Sections 3.8 and 4.8

is the Fourier transform.

- $f * \delta = f$ where δ is the Dirac delta functional.
- $\bullet f * (q * h) = (f * q) * h.$

Example

$$X_1, X_2 \operatorname{Poisson}(\lambda_1)$$
 and $\operatorname{Poisson}(\lambda_2)$, then $X_1 + X_2$ is $\operatorname{Poisson}(\lambda_1 + \lambda_2)$

Proof: Evaluate convolution, using binomial theorem.

Section 4.10 Distributions from the Normal

Standard results and definitions

Summary for the Day

- $X \sim N(0,1)$ then X^2 is chi-square with 1 degree of freedom.
- Sample mean: $\overline{X} := \frac{1}{N} \sum_{i=1}^{n} X_i$.
- Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$.

Summary for the Day

Sums of normal random variables

Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$. Then

- $\bullet \overline{X} = N(\mu, \sigma^2/n).$
- $(n-1)S^2$ is a chi-square with n-1 degrees of freedom. (Easier proof with convolutions?)
- \bullet \overline{X} and S^2 are independent.
- Central Limit Theorem: $\overline{X} \sim N(\mu, \sigma^2/n)$.

Clicker Questions

Pepys' Problem

Problem Statement

Alice and Bob decide wager on the rolls of die. Alice rolls 6*n* fair die and wins if she gets at least *n* sixes, while Bob wins if she fails. What *n* should Alice choose to maximize her chance of winning?

Pepys' Problem

Problem Statement

Alice and Bob decide wager on the rolls of die. Alice rolls 6*n* fair die and wins if she gets at least *n* sixes, while Bob wins if she fails. What *n* should Alice choose to maximize her chance of winning?

- (a) 1
- (b) 2
- (c) 6
- (d) 10
- (e) 20
- (f) 341
- (g) The larger *n* is, the greater chance she has of winning.

Pepys' Problem (continued): probability versus *n*

