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ABSTRACT. Below is a summary of definitions and some key lemmas and theorems
from Math 341.

1. CHAPTER 1

1.1. Definitions. We record some common definitions below.

∙ Sample Space (Ω): all possible outcomes. Example: toss coin thrice: {HHH ,
. . . , TTT}; toss until get head: {H,TH, TTH, . . . }.

∙ Events: Subsets of sample space Ω. Example: at least 2 of 3 tosses a head:
{HHT,HTH, THH,HHH}.

∙ Complement: Ac = Ω− A.

∙ Field:
⋄ A,B ∈ ℱ then A ∪B and A ∩B in ℱ .
⋄ A ∈ ℱ then Ac ∈ ℱ .
⋄ ' ∈ ℱ (so Ω ∈ ℱ ).
⋄ if also Ai ∈ ℱ implies ∪∞

i=1Ai ∈ ℱ then a ¾-field.

∙ Finitely additive: disjoint union then ℙ(∪n
i=1Ai) =

∑n
i=1 ℙ(Ai); countably

additive if the {Ai} pairwise disjoint implies ℙ(∪∞
i=1Ai) =

∑∞
i=1 ℙ(Ai).

∙ Probability space: A triple (Ω,ℱ ,ℙ) is a probability space if Ω is a sample
space with ¾-field ℱ and a probability measure ℙ satisfying

⋄ ℙ(') = 0, ℙ(Ω) = 1.
⋄ ℙ is countably additive: for a disjoint union, ℙ(∪∞

i=1(Ai) =
∑∞

i=1 ℙ(Ai).

∙ Conditional probability: If ℙ(B) > 0 then the conditional probability of A
occurring given B, denoted ℙ(A∣B), is

ℙ(A∣B) =
ℙ(A ∩B)

ℙ(B)
.
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⋄ Interpretation through counting:
N(A ∩B)

N(B)
=

N(A ∩B)/N

N(B)/N
→ ℙ(A ∩B)

ℙ(B)
.

⋄ Example: roll fair die twice: what is probability of a 7 or an 11 given
first roll is 3? Ans: 1/36

6/36
= 1/6 and 0/36

6/36
= 0.

∙ Partition A family of events B1, . . . , Bn is a partition of Ω if the {Bi}’s are
disjoint and ∪n

i=1Bi = Ω.

∙ Independence A and B are independent if

ℙ(A ∩B) = ℙ(A)ℙ(B).

More generally, a family {Ai}i∈I is independent if

ℙ

Ã∩
i∈J

Ai

)
=

∏
i∈J
ℙ(Ai) for any J ⊂ I.

1.2. Basic Lemmas.
Lemma 1.1. For a probability space (Ω,ℱ ,ℙ) we have

∙ Law of total probability: ℙ(Ac) = 1− ℙ(A).

∙ A ⊂ B implies ℙ(A) ≤ ℙ(B) = ℙ(A) + ℙ(B − A).

∙ ℙ(A ∪B) = ℙ(A) + ℙ(B)− ℙ(A ∩B).

∙ ℙ(∪n
i=1Ai) =

∑n
i=1 ℙ(Ai)−

∑
i<j ℙ(Ai∩Aj) + ⋅ ⋅ ⋅+ (−1)n+1ℙ(A1∩⋅ ⋅ ⋅∩An)

(Inclusion - Exclusion Principle).

Lemma 1.2. A1 ⊂ A2 ⊂ ⋅ ⋅ ⋅ and B1 ⊃ B2 ⊃ ⋅ ⋅ ⋅ , then
∙ If A = ∪∞

i=1Ai then ℙ(A) = limn→∞ ℙ(∪n
i=1Ai).

∙ If B = ∩∞
i=1Bi then ℙ(B) = limn→∞ ℙ(∩n

i=1Bi).

Lemma 1.3. If 0 < ℙ(B) < 1 then for any event A we have

ℙ(A) = ℙ(A∣B)ℙ(B) + ℙ(A∣Bc)ℙ(Bc).

If the {Bi} form a pairwise disjoint partition, then

ℙ(A) =
n∑

i=1

ℙ(A∣Bi)ℙ(Bi).
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2. CHAPTER 2

2.1. Definitions.

∙ Random Variables: Consider a probability space (Ω,ℱ ,ℙ). A random variable
is a function X from the sample space Ω to the real numbers with the property
that {! ∈ Ω : X(!) ≤ x} ∈ ℱ for each x.

⋄ Example: Ω: tosses of a fair coin five times, ℱ = 2Ω, the set of all sub-
sets of Ω, and let X(!) denote the number of heads in !. As there are 25 = 32
elements, there are 232 or about 4,000,000,000 elements in ℱ . Each element
of ℱ is a subset of Ω, and each subset of Ω is an element of ℱ . If we write
F = {!1, . . . , !k} for an element of ℱ , then ℙ(F ) =

∑k
i=1 ℙ(!i). A straight-

forward computation shows that X has the desired property; this is clear as all
subsets of Ω are in ℱ! If x = 1 then {! ∈ Ω : X(!) ≤ 1} = {TTTTT ,
TTTTH , TTTHT , TTHTT , THTTT , HTTTT}. If instead we took x = 4,
then the set would be all outcomes except HHHHH .

∙ Distribution Function: The distribution function of a random variable X :
Ω → ℝ is the function F : ℝ → [0, 1] given by F (x) = ℙ(X ≤ x). In other
words, it’s the probability of observing a value of X of at most x.

⋄ Example: Consider five tosses of a fair coin. We have F (0) = 1/32,
F (1) = 6/32, F (2) = 16/32, F (3) = 26/32, F (4) = 31/32 and F (5) =
32/32. Our function is supposed to be defined for all real x, so what we re-
ally have is the following: F (x) = 0 if x < 0, F (x) = 1/32 if 0 ≤ x < 1,
F (x) = 6/32 if 1 ≤ x < 2, and so on.

∙ Discrete Random Variables: A random variable X is discrete if it takes values
in a countable subset {x1, x2, . . . } of ℝ. It has probability mass function f :
ℝ→ [0, 1] given by f(x) = ℙ(X = x).

⋄ Example: Toss a fair coin until the first head is obtained. Then Ω =
{H,TH, TTH, . . . }. Let X be the number of tosses needed to obtain the first
head. Then X is discrete, taking on the values {1, 2, 3, . . . }, with the probabil-
ity X equals n just 1/2n.

∙ Continuous Random Variables: A random variable X is continuous if its dis-
tribution function can be written as F (x) =

∫ x

−∞ f(u)du for some integrable
function f (which is called the probability density function of X).

⋄ Example: Let Ω = [0, 1] and let ℱ be the ¾-field generated by the open
intervals. (This is the standard ¾-field.) Let X(!) equal !2. If we let Y be uni-
formly distributed on [0, 1], then we see ℙ(X ≤ x) is the same as ℙ(Y ≤ √

x),
which is just

√
x. We are therefore looking for f so that

√
x =

∫ x

0
f(u)du for

0 ≤ x ≤ 1. Differentiating both sides gives 1
2
x−1/2 = f(x) (note the integral is

F(x) − F(0) with F any anti-derivative of f ; differentiating yields the claim as
F′ = f ). We see that for our random variable X , we may take f(u) = 1/2

√
u

for 0 < u ≤ 1 and 0 otherwise.
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∙ Joint Distribution of a Random Vector: The joint distribution function of a
random vector

−→
X = (X1, . . . , Xn) on a probability space (Ω,ℱ ,ℙ) is the func-

tion F−→
X : ℝn → [0, 1] given by F−→

X (
−→x ) = ℙ(

−→
X ≤ −→x ) for −→x ∈ ℝn, where

−→x ≤ −→y means each xi ≤ yi, and {−→X ≤ −→x } = {! ∈ Ω :
−→
X (!) ≤ −→x }.

∙ Jointly Discrete X1, . . . , Xn random vectors on (Ω,ℱ ,ℙ) are jointly discrete
if
−→
X = (X1, . . . , Xn) takes values in a countable subset of ℝn and has joint

probability mass function f : ℝn → [0, 1] given by

f(x1, . . . , xn) = ℙ(X1 = x1, . . . , Xn − xn).

∙ Jointly Continuous Jointly continuous defined analogously, with

F−→
X (

−→x ) =

∫ x1

u1=−∞
⋅ ⋅ ⋅

∫ xn

un=−∞
f(u1, . . . , un)du1 ⋅ ⋅ ⋅ dun

for some integrable function f : ℝn → [0,∞).

∙ Marginals: Same set-up as above, the j th marginal FXj
is defined by

FXj
(xj) := lim

x1,...,xj−1,xj+1,...,xn→∞
F−→

X (
−→x ).

2.2. Lemmas.

Lemma 2.1. The (cumulative) distribution function satisfies the properties:
∙ limx1,...,xn→−∞ F−→

X (
−→x ) = 0, limx1,...,xn→∞ F−→

X (
−→x ) = 1.

∙ If −→x ≤ −→x ′ then F−→
X (
−→x ) ≤ F−→

X (
−→x ′).

∙ F−→
X continuous from above.

3. CHAPTERS 3 AND 4

3.1. Definition.
∙ Probability Mass Function: The Probability Mass Function of a discrete ran-

dom variable X is a function f : ℝ→ [0, 1] given by f(x) = ℙ(X = x).

∙ Probability Density Function: The Probability Density Function of a contin-
uous random variable X is the f such that F (x) =

∫ x

−∞ f(u)du.

∙ Independence of events: Two events A and B are independent if ℙ(A ∩ B) =
ℙ(A)ℙ(B).

⋄ As ℙ(A∩B) = ℙ(A∣B)ℙ(B), if ℙ(B) > 0 this is equivalent to ℙ(A∣B) =
ℙ(A), or that knowledge of one happening does not affect knowledge of the
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other happening.

∙ Independence of random variables: Two random variables X and Y are in-
dependent if for all x, y:

⋄ Discrete case: events {X = x} and {Y = y} are independent.
⋄ Continuous case: events {X ≤ x} and {Y ≤ y} are independent.

∙ Expectation (mean value, average): X random variable with density / mass
function fX , then expected value is

⋄ Discrete case: E[X] :=
∑

x xfX(x) if sum converges absolutely.
⋄ Continuous case: E[X] :=

∫∞
−∞ xfX(x)dx if integral converges abso-

lutely.

∙ Moments: Let X be a random variable. We define
⋄ kth moment: mk := E[Xk] (if converges absolutely).

∙ Assume X has a finite mean, which we denote by ¹ (so ¹ = E[X]). We define
⋄ kth centered moment: ¾k := E[(X − ¹)k] (if converges absolutely).

∙ Variance: Call ¾2 the variance, write it as ¾2. Note ¾2 = E[(X − ¹)2] =
E[X2]− E[X]2.

3.2. Lemmas.

Lemma 3.1. Standard properties of the probability mass function:
∙ F (x) =

∑
xi≤x f(xi), and f(x) = F (x)− limy→x− F (y).

∙ {x : f(x) ∕= 0} is at most countable.
∙ ∑

i f(xi) = 1 where {x1, x2, . . . } is where f is non-zero.

Lemma 3.2. Standard properties of the probability density function:
∙ ∫∞

−∞ f(x)dx = 1.
∙ ℙ(X = x) = 0 for all x ∈ ℝ.
∙ ℙ(a ≤ X ≤ b) =

∫ b

a
f(x)dx.

Lemma 3.3. Let g, ℎ : ℝ→ ℝ and assume X and Y are independent random variables.
Then g(X) and ℎ(Y ) are independent.
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Lemma 3.4 (Key results). Let X and Y be two random variables, and let a, b ∈ ℝ.
∙ Linearity: E[aX + bY ] = aE[X] + bE[Y ].

∙ Independence: X, Y independent then E[XY ] = E[X]E[Y ]. If RHS holds say
uncorrelated.

∙ Variance: Var(aX + bY ) = a2Var(X)+ b2Var(Y ) if uncorrelated. In general:

CoVar(X,Y ) = E[(X − ¹X)(Y − ¹Y )]

Var

Ã
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n

CoVar(Xi, Xj).


